当前位置:育文网>初中>初中数学> 初中数学知识点总结

初中数学知识点总结

时间:2024-05-24 10:03:21 初中数学 我要投稿

(优秀)初中数学知识点总结15篇

  总结是对取得的成绩、存在的问题及得到的经验和教训等方面情况进行评价与描述的一种书面材料,它可以促使我们思考,不妨坐下来好好写写总结吧。你想知道总结怎么写吗?下面是小编为大家整理的初中数学知识点总结,仅供参考,希望能够帮助到大家。

(优秀)初中数学知识点总结15篇

初中数学知识点总结1

  一、关于初高中数学成绩分化原因的分析

  1、环境与心理的变化。

  对高一新生来讲,环境可以说是全新的,新教材、新同学、新教师、新集体……学生有一个由陌生到熟悉的适应过程。另外,经过紧张的中考复习,考取了自己理想的高中,必有些学生产生“松口气”想法,入学后无紧迫感。也有些学生有畏惧心理,他们在入学前,就耳闻高中数学很难学,高中数学课一开始也确是些难理解的抽象概念,如映射、集合、异面直线等,使他们从开始就处于怵头无趣的被动局面。以上这些因素都严重影响高一新生的学习质量。

  2、教材的变化。

  首先,初中数学教材内容通俗具体,多为常量,题型少而简单;而高中数学内容抽象,多研究变量、字母,不仅注重计算,而且还注重理论分析,这与初中相比增加了难度。

  其次,由于近几年教材内容的调整,虽然初高中教材都降低了难度,但相比之下,初中降低的幅度大,而高中由于受高考的限制,教师都不敢降低难度,造成了高中数学实际难度没有降低。因此,从一定意义上讲,调整后的教材不仅没有缩小初高中教材内容的难度差距,反而加大了。

  3、课时的变化。

  在初中,由于内容少,题型简单,课时较充足。因此,课容量小,进度慢,对重难点内容均有充足时间反复强调,对各类习题的解法,教师有时间进行举例示范,学生也有足够时间进行巩固。而到高中,由于知识点增多,灵活性加大和新工时制实行,使课时减少,课容量增大,进度加快,对重难点内容没有更多的时间强调,对各类型题也不可能讲全讲细和巩固强化。这也使高一新生开始不适应高中学习而影响成绩的提高。

  4、学法的`变化。

  在初中,教师讲得细,类型归纳得全,练得熟,考试时,学生只要记准概念、公式及教师所讲例题类型,一般均可对号入座取得好成绩。因此,学生习惯于围着教师转,不注重独立思考和对规律的归纳总结。到高中,由于内容多时间少,教师不可能把知识应用形式和题型讲全讲细,只能选讲一些具有典型性的题目,以落实“三基”培养能力。因此,高中数学学习要求学生要勤于思考,善于归纳总结规律,掌握数学思想方法,做到举一反三,触类旁通。然而,刚入学的高一新生,往往继续沿用初中学法,致使学习困难较多,完成当天作业都很困难,更没有预习、复习及总结等自我消化自我调整的时间。这显然不利于良好学法的形成和学习质量的提高。

  二、搞好初高中衔接所采取的主要措施

  1、做好准备工作,为搞好衔接打好基础。

  ①搞好入学教育。这是搞好衔接的基础工作,也是首要工作。通过入学教育提高学生对初高中衔接重要性的认识,增强紧迫感,消除松懈情绪,初步了解高中数学学习的特点,为其它措施的落实奠定基础这里主要做好四项工作:一是给学生讲清高一数学在整个中学数学中所占的位置和作用;二是结合实例,采取与初中对比的方法,给学生讲清高中数学内容体系特点和课堂教学特点;三是结合实例给学生讲明初高中数学在学法上存在的本质区别,并向学生介绍一些优秀学法,指出注意事项;四是请高年级学生谈体会讲感受,引导学生少走弯路,尽快适应高中学习。

  ②摸清底数,规划教学。

  为了搞好初高中衔接,教师首先要摸清学生的学习基础,然后以此来规划自己的教学和落实教学要求,以提高教学的针对性。在教学实际中,我们一方面通过进行摸底测试和对入学成绩的分析,了解学生的基础;另一方面,认真学习和比较初高中教学大纲和教材,以全面了解初高中数学知识体系,找出初高中知识的衔接点、区别点和需要铺路搭桥的知识点,以使备课和讲课更符合学生实际,更具有针对性。

  2、优化课堂教学环节,搞好初高中衔接。

  ①立足于大纲和教材,尊重学生实际,实行层次教学。高一数学中有许多难理解和掌握的知识点,如集合、映射等,对高一新生来讲确实困难较大。因此,在教学中,应从高一学生实际出发,采劝低起点、小梯度、多训练、分层次”的方法,将教学目标分解成若干递进层次逐层落实。在速度上,放慢起始进度,逐步加快教学节奏。在知识导入上,多由实例和已知引入。在知识落实上,先落实“死”课本,后变通延伸用活课本。在难点知识讲解上,从学生理解和掌握的实际出发,对教材作必要层次处理和知识铺垫,并对知识的理解要点和应用注意点作必要总结及举例说明。

  ②重视新旧知识的联系与区别,建立知识网络。初高中数学有很多衔接知识点,如函数概念、平面几何与立体几何相关知识等,到高中,它们有的加深了,有的研究范围扩大了,有些在初中成立的结论到高中可能不成立。因此,在讲授新知识时,我们有意引导学生联系旧知识,复习和区别旧知识,特别注重对那些易错易混的知识加以分析、比较和区别。这样可达到温故知新、温故而探新的效果。

  ③重视展示知识的形成过程和方法探索过程,培养学生创造能力。高中数学较初中抽象性强,应用灵活,这就要求学生对知识理解要透,应用要活,不能只停留在对知识结论的死记硬套上,这就要求教师应向学生展示新知识和新解法的产生背景、形成和探索过程,不仅使学生掌握知识和方法的本质,提高应用的灵活性,而且还使学生学会如何质疑和解疑的思想方法,促进创造性思维能力的提高。

  ④重视培养学生自我反思自我总结的良好习惯,提高学习的自觉性。高中数学概括性强,题目灵活多变,只靠课上听懂是不够的,需要课后进行认真消化,认真总结归纳。这就要求学生应具备善于自我反思和自我总结的能力。为此,我们在教学中,抓住时机积极培养。在单元结束时,帮助学生进行自我章节小结,在解题后,积极引导学生反思:思解题思路和步骤,思一题多解和一题多变,思解题方法和解题规律的总结。由此培养学生善于进行自我反思的习惯,扩大知识和方法的应用范围,提高学习效率。

  ⑤重视专题教学。利用专题教学,集中精力攻克难点,强化重点和弥补弱点,系统归纳总结某一类问题的前后知识、应用形式、解决方法和解题规律。并借此机会对学生进行学法的指点,有意渗透数学思想方法。

  3、加强学法指导。

  高中数学教学要把对学生加强学法指导作为教学的重要任务之一。指导以培养学习能力为重点,狠抓学习基本环节,如“怎样预习”、“怎样听课”等等。

  具体措施有三:一是寓学法指导于知识讲解、作业讲评、试卷分析等教学活动之中,这种形式贴近学生学习实际,易被学生接受;二是举办系列讲座,介绍学习方法;三是定期进行学法交流,同学间互相取长补短,共同提高。

  4、优化教育管理环节,促进初高中良好衔接。

  ①重视运用情感和成功原理,唤起学生学好数学的热情。搞好初高中衔接,除了优化教学环节外,还应充分发挥情感和心理的积极作用。我们在高一教学中,注意运用情感和成功原理,调动学生学习热情,培养学习数学兴趣。学生学不好数学,少责怪学生,要多找自己的原因。要深入学生当中,从各方面了解关心他们,特别是差生,帮助他们解决思想、学习及生活上存在的问题。给他们多讲数学在各行各业广泛应用,讲祖国四化建设需要大批懂数学的专家学者;讲爱因斯坦在初中一次数学竟没有考及格,但他没有气馁,终于成了一名伟大科学家,华罗庚在学生时代奋发图强,终于在数学研究中做出了卓越贡献,等等。使学生提高认识,增强学好数学的信心。在提问和布置作业时,从学生实际出发,多给学生创设成功的机会,以体会成功的喜悦,激发学习热情。

  ②重视培养学生正确对待困难和挫折的良好心理素质。由于高中数学的特点,决定了高一学生在学习中的困难大挫折多。为此,我们在教学中注意培养学生正确对待困难和挫折的良好心理素质,使他们善于在失败面前,能冷静地总结教训,振作精神,主动调整自己的学习,并努力争取今后的胜利。平时多注意观察学生情绪变化,开展心理咨询,做好个别学生思想工作。

  ③电视知识的反馈和落实。通过建立多渠道的反馈途径,及时收集学生对知识的掌握情况和对教学的意见,为及时矫上学生的错误,调整教学,提高教学针对性提供依据。知识落实的思路为:以落实“三基”为中心,实行分层落实,做到提优补差。主要措施是:平时练习层次化,单元结束考查制度化,做到章节会,单元清。

初中数学知识点总结2

  锐角三角函数定义

  锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

  正弦(sin):对边比斜边,即sinA=a/c;

  余弦(cos):邻边比斜边,即cosA=b/c;

  正切(tan):对边比邻边,即tanA=a/b;

  余切(cot):邻边比对边,即cotA=b/a;

  正割(sec):斜边比邻边,即secA=c/b;

  余割(csc):斜边比对边,即cscA=c/a。

  三角函数关系

  1、互余角的关系

  sin(90°—α)=cosα,cos(90°—α)=sinα,tan(90°—α)=cotα,cot(90°—α)=tanα。

  2、平方关系

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  3、积的关系

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  4、倒数关系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  两角和差公式

  sin(A+B)= sinAcosB+cosAsinB

  sin(A—B)= sinAcosB—cosAsinB

  cos(A+B)= cosAcosB—sinAsinB

  cos(A—B)= cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1—tanAtanB)

  tan(A—B)=(tanA—tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB—1)/(cotB+cotA)

  cot(A—B)=(cotAcotB+1)/(cotB—cotA)

  1、不在同一直线上的三点确定一个圆。

  2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧。

  3、圆是以圆心为对称中心的中心对称图形。

  4、圆是定点的距离等于定长的点的集合

  5、圆的内部可以看作是圆心的距离小于半径的点的集合。

  6、圆的外部可以看作是圆心的距离大于半径的点的集合。

  7、同圆或等圆的半径相等。

  8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

  9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的`弦的弦心距相等。

  10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  11、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

  13、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

  14、切线的性质定理圆的切线垂直于经过切点的半径。

  15、推论1经过圆心且垂直于切线的直线必经过切点。

初中数学知识点总结3

  一、在创新中培养学生的归纳意?R

  在初中数学教学中,重点是对学生的创新精神和实践能力的培养,体现出现代素质教育。学生创新能力的培养在学习中占据非常重要的作用,在创新中学生可以巩固自身所学的知识,使数学知识在自己的头脑中根深蒂固,各类知识点在学生的头脑中形成清晰的框架,有助于学生归纳意识的培养。归纳意识的培养,可以减轻学生的学习负担,提升学生对知识的'理解能力。

  初中生在学习数学的环节中,常常会接触到大量的图像,在数学学习中,老师应该鼓励学生大胆创新,在创新环节中完成对知识点的归纳。数学学习并不死板,不仅仅学习教科书上的知识,还应该学习书本以外的知识,从而创新自己的思维。例如在进行函数的学习中,老师可以让学生绘制函数图像,对函数进行分类讨论,从而掌握递增函数和递减函数的定义,在分类讨论后,学生结合图像进行归纳。在数学教学中,老师不仅仅要重视书本上的逻辑内容,而且在把握逻辑内容的基础上,将图像和数学知识有机结合起来,使学生可以大胆创新。

  很多学生在数学学习中存在困难,认为数学的学习就是解答大量的难题,他们在大量的题海战术后不善于归纳,导致数学学习的效率不高。

  二、在交流中归纳知识点

  在数学学习中,如果学生只是自己探究,那么在学习中不会得到灵感。数学学习不仅仅要求学生具有认真的钻研态度,而且也需要老师帮助学生养成归纳的意识。沟通和交流不仅仅在语言的学习中发挥非常重要的作用,而且在数学学习中同样非常重要。学生在解答数学问题中,常常会遇到一些问题,学生自己探究会陷入到死胡同中,需要老师和同学的帮助才能进一步完成。

  为了切实在初中数学教学中培养学生的归纳意识,老师可以将班级内的学生分成几个不同的小组,组内的同学可以通过合作的方式,对知识点进行归纳,在数学的学习中更加变通,将数学这门学科应用到生活中。

  例如,在进行二次函数的学习中,老师可以将学生分成不同的小组,留给学生充足的时间,让他们互相帮助,在沟通中对知识点进行归纳。学生很快就能得到结论,如果函数有两个解,那么函数与数轴会有两个交点,如果方程只有一个解,那么函数与数轴只有一个交点,如果方程没有解,那么函数与数轴没有交点。学生通过分组讨论的方式得到结论,通过归纳,学生对二次函数知识点的印象非常深刻。

  三、学会正确归纳

  在数学学习中,归纳思想非常重要,数学这门学科的知识非常细碎,是一门系统性很强的学科。数学知识错综复杂,很多学生在学习数学中力不从心,掌握合理的归纳方式,可以切实提升学生的数学成绩。初中生的思维还不是特别完善,在进行数学学习环节中,对知识点进行合理的归纳,是每位老师应该采取的方法。如果学生不懂得归纳,那么在数学考试中,学生会将知识点混淆。为了提升学生的归纳能力,老师在课堂上应该将一些容易混淆和容易出现错误的习题让学生总结。

  例如,在学习圆和直线这部分内容中,老师都会将重点内容,圆和圆的位置关系,直线和圆的位置关系进行重点分析。老师可以借助一些参考书目和资料,总结一些相似的题目,让学生在课堂上解答这些题目,使学生对这部分知识点进行总结,从而加深对这部分知识的理解。归纳思想在数学学习中应用非常多,在进行初中数学教学环节中,学生应该花更多的时间进行归纳。

  在进行初中数学的学习中,学生归纳意识的养成可以完善学生的数学思维,学生学会归纳,在学习中就会如鱼得水,在考试中取得好成绩。

  四、在反思中完成知识点的归纳

初中数学知识点总结4

  定义

  对应角相等,对应边成比例的两个三角形叫做相似三角形

  比值与比的概念

  比值是一个具体的数字如:AB/EF=2

  而比不是一个具体的数字如:AB/EF=2:1判定方法

  证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。

  方法一(预备定理)

  平行于三角形一边的直线截其它两边所在的.直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)

  方法二

  如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

  方法三

  如果两个三角形的两组对应边成比例,并且相应的夹角相等,

  那么这两个三角形相似

  方法四

  如果两个三角形的三组对应边成比例,那么这两个三角形相似

  方法五(定义)

  对应角相等,对应边成比例的两个三角形叫做相似三角形

  三个基本型

  Z型A型反A型

  方法六

  两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。一定相似的三角形

  1、两个全等的三角形

  (全等三角形是特殊的相似三角形,相似比为1:1)

  2、两个等腰三角形

  (两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。)

  3、两个等边三角形

  (两个等边三角形,三角都是60度,且边边相等,所以相似)

  4、直角三角形中由斜边的高形成的三个三角形(母子三角形)

  图形的学习需要大家对于知识的详细了解和渗透,而不是一带而过。

初中数学知识点总结5

  第一章:勾股定理

  1.如果直角三角形的两条直角边长分别是a和b,斜边长为c,那么a的平方加上b的平方等于c的平方。

  2.如果直角三角形的两条直角边长分别是a和b,斜边长为c,那么a的平方加上b的平方等于c的平方。

  3.如果直角三角形的两条直角边长分别是a和b,斜边长为c,那么两条直角边长的平方和等于斜边长的平方。

  4.如果直角三角形的两条直角边长分别是a和b,斜边长为c,那么a、b、c三者之间的关系是a的平方加上b的平方等于c的平方。

  第二章:四边形

  1.平行四边形:两组对边分别平行的四边形叫做平行四边形。

  2.菱形:有一组邻边相等的平行四边形叫做菱形。

  3.矩形:有一个角是直角的平行四边形叫做矩形。

  4.正方形:有一组邻边相等的矩形叫做正方形。

  5.平行四边形的性质:对边平行且相等;对角相等,且互补;对角线互相平分。

  6.菱形的性质:四边相等;对角线互相垂直,且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的`面积等于两条对角线长的积的一半。

  7.矩形的性质:矩形的四个角都是直角;矩形的对角线相等。

  8.正方形的性质:四个角都是直角,四条边都相等;对角线相等,且互相垂直平分,每条对角线平分一组对角;正方形被两条对角线分成四个全等的直角三角形;正方形是特殊的长方形,所以正方形具有矩形的一切性质。

  第三章:一次函数

  1.一次函数:如果所给函数表达式是正比例函数,那么它经过原点(0,0);如果所给函数表达式是一次函数(斜截式),那么它经过原点(0,0)。

  2.正比例函数:如果y=kx(k是常数,且k≠0),那么y叫做x的正比例函数。

  3.一次函数:如果正比例函数y=kx(k是常数,且k≠0)的图像经过第一、二、三象限,那么一次函数y=kx+b(k,b是常数,k≠0)的图像也经过第一、二、三象限。

  4.一次函数:如果正比例函数y=kx(k是常数,且k≠0)的图像经过第一、二、三象限,那么一次函数y=kx+b(k,b是常数,k≠0)的图像也经过第一、二、三象限。

  5.正比例函数:如果y=kx(k是常数,且k≠0),那么y叫做x的正比例函数。

  6.一次函数:如果正比例函数y=kx(k是常数,且k≠0)的图像经过第一、二、三象限,那么一次函数y=kx+b(k,b是常数,k≠0)的图像也经过第一、二、三象限。

  7.正比例函数:如果y=kx(k是常数,且k≠0),那么y叫做x的正比例函数。

  8.一次函数:如果正比例函数y=kx(k是常数,且k≠0)的图像经过第一、二、三象限,那么一次函数y=kx+b(k,b是常数,k≠0)的图像也经过第一、二、三象限。

  9.正比例函数:如果y=kx(k是常数,且k≠0),那么y叫做x的正比例函数。

  10.一次函数:如果正比例函数y=kx(k是常数,且k≠0)的图像经过第一、二、三象限,那么一次函数y=kx+b(k,b是常数,k≠0)的图像也经过第一、二、三象限。

初中数学知识点总结6

  1、相交线

  对顶角相等。

  过一点有且只有一条直线与已知直线垂直。

  连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。

  2、平行线

  经过直线外一点,有且只有一条直线与这条直线平行。

  如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

  直线平行的条件:

  两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

  两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

  两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

  3、平行线的性质

  两条平行线被第三条直线所截,同位角相等。

  两条平行线被第三条直线所截,内错角相等。

  两条平行线被第三条直线所截,同旁内角互补。

  判断一件事情的'语句,叫做命题。

初中数学知识点总结7

  一.圆的定义

  1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。

  2.平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

  二.圆心

  1.定义1中的定点为圆心。

  2.定义2中绕的那一端的端点为圆心。

  3.圆任意两条对称轴的交点为圆心。

  4.垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

  注:圆心一般用字母O表示

  5.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

  6.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

  7.圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的'对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

  8.圆的半径或直径决定圆的大小,圆心决定圆的位置。

  三.圆的基本性质

  1.圆的对称性

  (1)圆是轴对称图形,它的对称轴是直径所在的直线。

  (2)圆是中心对称图形,它的对称中心是圆心。

  (3)圆是旋转对称图形。

  2.垂径定理

  (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

  (2)推论:

  平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

  平分弧的直径,垂直平分弧所对的弦。

  3.圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。

  (1)同弧所对的圆周角相等。

  (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

  4.在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

  5.夹在平行线间的两条弧相等。

  (1)过两点的圆的圆心一定在两点间连线段的中垂线上。

  (2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

  (直角三角形的外心就是斜边的中点。)

  6.直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。

  直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。

  四.圆和圆

  1.两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。

  2.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。

  3.两个圆有两个交点,叫做两个圆的相交。

  4.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。

  5.两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。

  五.正多边形和圆

  1.正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。

  2.正多边形与圆的关系:

  (1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。

  (2)这个圆是这个正多边形的外接圆。

初中数学知识点总结8

  初中数学知识点总结:中位线

  知识要点:梯形的中位线平行于两底,并且等于两底和的一半。

  1.中位线概念

  (1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。

  (2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线。

  注意:

  (1)要把三角形的中位线与三角形的中线区分开。三角形中线是连结一顶点和它对边的中点,而三角形中位线是连结三角形两边中点的线段。

  (2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段。

  (3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线。

  2.中位线定理

  (1)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.

  三角形两边中点的连线(中位线)平行于第BC边,且等于第三边的一半。

  知识要领总结:三角形的中位线所构成的小三角形(中点三角形)面积是原三角形面积的四分之一。

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的.原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

  通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

初中数学知识点总结9

  ∴当x1时函数取得最大值,且ymax(1)2(1)13例4、已知函数f(x)x22(a1)x2

  4],求实数a的取值(1)若函数f(x)的递减区间是(,4]上是减函数,求实数a的取值范围(2)若函数f(x)在区间(,分析:二次函数的单调区间是由其开口方向及对称轴决定的,要分清函数在区间A上是单调函数及单调区间是A的区别与联系

  解:(1)f(x)的对称轴是x可得函数图像开口向上

  2(a1)21a,且二次项系数为1>0

  1a]∴f(x)的.单调减区间为(,∴依题设条件可得1a4,解得a3

  4]上是减函数(2)∵f(x)在区间(,4]是递减区间(,1a]的子区间∴(,∴1a4,解得a3

  例5、函数f(x)x2bx2,满足:f(3x)f(3x)

  (1)求方程f(x)0的两根x1,x2的和(2)比较f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函数图像的对称轴为x(3x)(3x)23

  b3可得b62f(x)x26x2(x3)211

  而f(x)的图像与x轴交点(x1,0)、(x2,0)关于对称轴x3对称

  x1x223,可得x1x26

  第三章第32页由二次项系数为1>0,可知抛物线开口向上又134,132,431

  ∴依二次函数的对称性及单调性可f(4)f(1)f(1)(III)课后作业练习六

  (Ⅳ)教学后记:

  第三章第33页

  扩展阅读:初中数学函数知识点归纳

  学大教育

  初中数学函数板块的知识点总结与归类学习方法

  初中数学知识大纲中,函数知识占了很大的知识体系比例,学好了函数,掌握了函数的基本性质及其应用,真正精通了函数的每一个模块知识,会做每一类函数题型,就读于中考中数学成功了一大半,数学成绩自然上高峰,同时,函数的思想是学好其他理科类学科的基础。初中数学从性质上分,可以分为:一次函数、反比例函数、二次函数和锐角三角函数,下面介绍各类函数的定义、基本性质、函数图象及函数应用思维方式方法。

  一、一次函数

  1.定义:在定义中应注意的问题y=kx+b中,k、b为常数,且k≠0,x的指数一定为1。2.图象及其性质(1)形状、直线

初中数学知识点总结10

  关键词:数学;总复习;初中;方法

  中图分类号:G633。6文献标识码:B文章编号:1672—1578(20xx)12—0217—01

  初中数学是义务教育阶段一门主要课程,它是进一步学习工作的基础。因此,进行初三数学总复习,使学生具有一定的数学素质,合格毕业,对于提高全民族素质,为培养改革人才奠定基础是十分必要的。本文将要探讨的就是搞好初三数学总复习的一些体会。

  1、明确总复习的目的

  中考是总结性的检验,考试成绩也必然会促使我们认真地总结检查自己的教学工作,改进教学方法,提高教学质量。因此,中考的需要是初三总复习的重要目的,但不是唯一的目的。在复习方面要从单纯面向升学的需要,转变为面向学生终身学习的需要。通过初三数学总复习,要使学生全面而系统地掌握初中数学的基础知识加深理解这些知识,进一步提高运用这些动知识的分析和解决问题的能力,从而大面积地扎扎实实的提高教学质量,为学生升入高一级学校打下必要的基础。

  2、在《课标》和《考试说明》的指导下开展复习工作

  "人人都能获得良好的数学教育,不同的人在数学上得到不同的发展"。这是新课程标准努力倡导的目标。也是我们总复习工作的出发点。20xx年版的《初中数学新课程标准》(以下简称《课程标准》)以及历年的《河北省文化课考试说明》(以下简称《考试说明》)中所确定的必学内容是要求所有学生都应当学习的,一定要教好学好,降低难度、减轻学生过重的学习负担,正是为了使学生掌握那些最基本、最重要的内容,使绝大多数同学能学得好,增强信心,大面积提高教学质量。另一方面,对学有余力的同学也要创造条件,指导他们进一步学习,充分发挥他们的数学才能,做到既面向全体学生又因材施教。这一重要的教学指导思想,也是我们初三数学总复习必须遵循的方针。

  3、从学生的实际出发,有序地进行初三数学总复习

  教学是师生双方的共同活动,教师的教是为学生积极主动地学。初三总复习时间短,内容多,要想取得较好的复习效果,除教师钻研《课标》与《考试说明》,通晓教材,突出重点之外,还要调查研究、了解学生、明确难点,从学生实际出发,进行复习。否则,课的'起点高了,学生接受有困难,起点低了,讲得太容易了,学生听起来乏味厌烦,使复习课不能有的放矢,对症下药、因材施教。因此,要了解学生的思想状况,复习的学习态度和方法;要了解学生对哪些知识是掌握提比较好的,哪些知识理解得不够深透,还有哪些知识是应当补缺的,哪些知识是普遍性的问题,哪些知识是个别性问题,充分估计学生的实际水平究竟如何。

  4、突出数学思想方法,狠抓"四基"的落实

  数学思想方法是数学知识的精髓,是沟通数学知识与运算能力的桥梁。教师应在平时教学中不断引导学生从数学知识中提炼数学思想,注重运用数学思想去分析问题与解决问题,并有意识、有目的地结合教材逐步渗透给学生:转化的思想、数形结合的思想、分类讨论的思想、方程的思想、函数的思想,要求学生理解待定系数法、消元法、降次法、配方法、换元法。对学习成绩好的学生,还应激发他们去总结带全局性的数学思想方法。

  20xx年版初中数学课程标准明确提出"四基",即基础知识、基本技能、基本思想和基本活动经验。要使学生复习好基础知识和掌握基本技能,首先要使学生正确理解概念,对易混的概念抓住它们之间的区别与联系,同时要抓基本运算、抓基本数学方法和思维方法。基本概念、基本运算必须反复地练习,才能达到纯熟和巩固。凡属这方面的错误,必复习一段、练习一段、检查一段。务求落实"段段清",以掌握知识的本质为标准。当然还要注意因材施教,逐步深入。

初中数学知识点总结11

  初中数学基础知识点

  平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

  初中数学平行四边形的性质知识点

  1.定义:两组对边分别平行的四边形叫平行四边形

  2.平行四边形的性质

  (1)平行四边形的对边平行且相等;

  (2)平行四边形的邻角互补,对角相等;

  (3)平行四边形的对角线互相平分;

  3.平行四边形的判定

  平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:

  第一类:与四边形的'对边有关

  (1)两组对边分别平行的四边形是平行四边形;

  (2)两组对边分别相等的四边形是平行四边形;

  (3)一组对边平行且相等的四边形是平行四边形;

  第二类:与四边形的对角有关

  (4)两组对角分别相等的四边形是平行四边形;

  第三类:与四边形的对角线有关

  (5)对角线互相平分的四边形是平行四边形

  初中数学函数知识点总结

  1.一次函数

  (1)定义:形如y=kx+b(k、b是常数,且k≠0)的函数,叫做一次函数。特别地,当b=0时,y是x的正比例函数。即:y=kx(k为常数,k≠0)

  所以,正比例函数是特殊的一次函数。

  (2)一次函数的图像及性质:

  1在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

  2一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。

  3正比例函数的图像总是过原点。

  4k,b与函数图像所在象限的关系:

  当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

  当k>0,b>0时,直线通过一、二、三象限;

  当k>0,b<0时,直线通过一、三、四象限;

  当k<0,b>0时,直线通过一、二、四象限;

  当k<0,b<0时,直线通过二、三、四象限;

  当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

  2.二次函数

  (1)定义:一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,),称y为x的二次函数。

  (2)二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0);

  顶点式:y=a(x-h)^2+k(抛物线的顶点P(h,k));

  交点式:

  (3)二次函数的图像与性质

  1二次函数的图像是一条抛物线。

  2抛物线是轴对称图形。对称轴为直线x=-b/2a。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。

  3二次项系数a决定抛物线的开口方向。

  当a>0时,抛物线向上开口;

  当a<0时,抛物线向下开口。

  4一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5抛物线与x轴交点个数

  Δ=b^2-4ac>0时,抛物线与x轴有2个交点;

  Δ=b^2-4ac=0时,抛物线与x轴有1个交点;

  Δ=b^2-4ac<0时,抛物线与x轴没有交点。

  3.反比例函数

  (1)定义:形如y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。

  (2)反比例函数图像性质:

  1反比例函数的图像为双曲线;

  当K>0时,反比例函数图像经过一,三象限,是减函数;

  当K<0时,反比例函数图像经过二,四象限,是增函数;

  反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

  2由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

初中数学知识点总结12

  一、初中数学基本概念

  1.方程:含有未知数的等式叫做方程。

  2.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

  3.二元一次方程:含有两个未知数,并且未知数的次数是1的二元一次方程。

  4.二元一次方程组:由两个二元一次方程组成的方程组。

  5.一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程。

  6.一元二次方程的解:使一元二次方程左右两边相等的未知数的值。

  7.一元二次方程的根:一元二次方程的解。

  8.一元二次方程的判别式:当a是正数时,如果一元二次方程左右两边相等时,那么这个一元二次方程有两个不相等的实数根;当a是负数时,如果一元二次方程左右两边相等时,那么这个一元二次方程没有实数根;当a是零时,如果一元二次方程左右两边相等时,那么这个一元二次方程有两个相等的实数根。

  9.函数:在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫做自变量。

  10.一次函数:在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的一次函数。

  11.正比例函数:在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,并且这个数值在比例上成正比,那么称y是x的比例函数。

  12.反比例函数:在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,并且这个数值在比例上成反比,那么称y是x的反比例函数。

  13.平行四边形:在同一个平面内两组对角分别平行的四边形叫做平行四边形。

  14.矩形:有一个内角是直角的平行四边形叫做矩形。

  15.菱形:有两组邻边相等的平行四边形叫做菱形。

  16.正方形:四边相等的矩形叫做正方形。

  17.等腰梯形:两条腰相等的梯形叫做等腰梯形。

  18.三角形:在同一个平面内由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  19.中线:连接一个顶点和它对边的中点的线段叫做中线。

  20.高线:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做高线。

  21.角平分线:三角形的一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做角平分线。

  22.中位线:连接三角形两边中点的线段叫做中位线。

  23.轴对称图形:一条物体沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。

  24.直接开平方法:形如x2=p或者(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程的方法。

  25.配方法:把一元二次方程的常数项移到方程的右边,两边加上一次项系数的.一半的平方,再用右边的式子除以左边的式子,得到一个平方的形式,再用直接开平方的方法求解一元二次方程的方法。

  26.公式法:用求根公式解一元二次方程的方法。

  27.因式分解法:将一元二次方程分解成两个一次因式的积等于0的一元二次方程,然后将各个因式分解,得到一元一次方程,再用直接开方法求解一元一次方程的方法。

  二、初中数学基本运算

  1.整式:单项式和多项式的统称。

  2.单项式:由数字和字母的积组成的代数式叫做单项式。单独的一个数字或字母也叫做单项式。

  3.多项式:几个单项式的和叫做多项式。每个单项式叫做多项式的项。其中不含字母的项叫做常数

初中数学知识点总结13

  一次函数:一次函数图像与性质是中考必考的内容之一。中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。甚至有存在探究题目出现。

  主要考察内容:

  ①会画一次函数的图像,并掌握其性质。

  ②会根据已知条件,利用待定系数法确定一次函数的解析式。

  ③能用一次函数解决实际问题。

  ④考察一ic函数与二元一次方程组,一元一次不等式的关系。

  突破方法:

  ①正确理解掌握一次函数的概念,图像和性质。

  ②运用数学结合的思想解与一次函数图像有关的问题。

  ③掌握用待定系数法球一次函数解析式。

  ④做一些综合题的训练,提高分析问题的能力。

  函数性质:

  1.y的变化值与对应的x的变化值成正比例,比值为k.即:y=kx+b(k,b为常数,k≠0),∵当x增加m,k(x+m)+b=y+km,km/m=k。

  2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。

  3当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。

  4.在两个一次函数表达式中:

  当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。若两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0)则称y是x的一次函数图像性质

  1、作法与图形:通过如下3个步骤:

  (1)列表.

  (2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。

  正比例函数y=kx(k≠0)的图象是过坐标原点的`一条直线,一般取(0,0)和(1,k)两点。(3)连线,可以作出一次函数的图象一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b).

  2、性质:

  (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

  (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。

  3、函数不是数,它是指某一变化过程中两个变量之间的关系。

  4、k,b与函数图像所在象限:

  y=kx时(即b等于0,y与x成正比例):

  当k>0时,直线必通过第一、三象限,y随x的增大而增大;当k0,b>0,这时此函数的图象经过第一、二、三象限;当k>0,b

初中数学知识点总结14

  一、平移变换:

  1、概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。

  2、性质:

  (1)平移前后图形全等;

  (2)对应点连线平行或在同一直线上且相等。

  3、平移的作图步骤和方法:

  (1)分清题目要求,确定平移的方向和平移的距离。

  (2)分析所作的图形,找出构成图形的关健点。

  (3)沿一定的方向,按一定的距离平移各个关健点。

  (4)连接所作的各个关键点,并标上相应的字母。

  (5)写出结论。

  二、旋转变换:

  1、概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

  说明:

  (1)图形的'旋转是由旋转中心和旋转的角度所决定的;

  (2)旋转过程中旋转中心始终保持不动。

  (3)旋转过程中旋转的方向是相同的。

  (4)旋转过程静止时,图形上一个点的旋转角度是一样的。⑤旋转不改变图形的大小和形状。

  2、性质:

  (1)对应点到旋转中心的距离相等;

  (2)对应点与旋转中心所连线段的夹角等于旋转角;

  (3)旋转前、后的图形全等。

  3、旋转作图的步骤和方法:

  (1)确定旋转中心及旋转方向、旋转角;

  (2)找出图形的关键点;

  (3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;

  (4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。

  说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。

  4、常见考法

  (1)把平移旋转结合起来证明三角形全等;

  (2)利用平移变换与旋转变换的性质,设计一些题目。

  误区提醒

  (1)弄反了坐标平移的上加下减,左减右加的规律;

  (2)平移与旋转的性质没有掌握。

初中数学知识点总结15

  代数部分:有理数、无理数、实数整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程组、二元二次方程组、分式方程、一元一次不等式函数(一次函数、二次函数、反比例函数)

  几何部分:线段、角相交线、平行线三角形、四边形、相似形、圆。

  1、实数的分类

  有理数:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数。如:—3,0.231,0.737373......

  无理数:无限不环循小数叫做无理数如:π,—,0.1010010001......(两个1之间依次多1个0)。

  实数:有理数和无理数统称为实数。

  2、无理数

  在理解无理数时,要抓住"无限不循环"这一时之,它包含两层意思:一是无限小数;二是不循环。二者缺一不可。归纳起来有四类:

  (1)开方开不尽的数,如等;

  (2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;

  (3)有特定结构的数,如0.1010010001......等;

  (4)某些三角函数,如sin60o等。

  注意:判断一个实数的属性(如有理数、无理数),应遵循:一化简,二辨析,三判断。要注意:"神似"或"形似"都不能作为判断的标准。

  3、非负数:正实数与零的统称。(表为:x≥0)

  常见的非负数有:

  性质:若干个非负数的和为0,则每个非负担数均为0。

  4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

  解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

  ①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴("三要素")。

  ②任何一个有理数都可以用数轴上的`一个点来表示。

  ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

  作用:A、直观地比较实数的大小;B、明确体现绝对值意义;C、建立点与实数的一一对应关系。

  5、相反数

  实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

  即:(1)实数的相反数是。

【初中数学知识点总结】相关文章:

初中数学函数知识点总结11-24

初中数学圆的知识点总结12-05

初中数学几何知识点总结11-05

初中数学知识点总结07-14

初中数学必备知识点总结03-01

初中数学知识点总结07-15

初中数学知识点总结(精)05-15

初中数学知识点总结(推荐)05-15

(优)初中数学知识点总结12-04

初中数学知识点归纳总结12-02