当前位置:育文网>初中>初中数学> 初中数学知识点总结

初中数学知识点总结

时间:2024-06-07 15:59:21 初中数学 我要投稿

(通用)初中数学知识点总结

  总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它可以给我们下一阶段的学习和工作生活做指导,让我们来为自己写一份总结吧。那么总结应该包括什么内容呢?以下是小编帮大家整理的初中数学知识点总结,欢迎阅读,希望大家能够喜欢。

(通用)初中数学知识点总结

初中数学知识点总结1

  一、重要概念

  1.总体:考察对象的全体。

  2.个体:总体中每一个考察对象。

  3.样本:从总体中抽出的一部分个体。

  4.样本容量:样本中个体的数目。

  5.众数:一组数据中,出现次数最多的数据。

  6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)

  二、计算方法

  1.样本平均数:⑴;⑵若,…,,则(a—常数,…,接近较整的常数a);⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。

  2.样本方差:⑴;⑵若,,…,,则(a—接近、、…、的平均数的较“整”的常数);若、、…、较“小”较“整”,则;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。

  3.样本标准差:

  三、应用举例(略)

  初三数学知识点:第四章直线形

  ★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。

  ☆内容提要☆

  一、直线、相交线、平行线

  1.线段、射线、直线三者的区别与联系

  从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。

  2.线段的中点及表示

  3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)

  4.两点间的距离(三个距离:点-点;点-线;线-线)

  5.角(平角、周角、直角、锐角、钝角)

  6.互为余角、互为补角及表示方法

  7.角的平分线及其表示

  8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)

  9.对顶角及性质

  10.平行线及判定与性质(互逆)(二者的区别与联系)

  11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。

  12.定义、命题、命题的组成

  13.公理、定理

  14.逆命题

  二、三角形

  分类:⑴按边分;

  ⑵按角分

  1.定义(包括内、外角)

  2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中

  3.三角形的主要线段

  讨论:①定义②x线的交点—三角形的×心③性质

  ①高线②中线③角平分线④中垂线⑤中位线

  ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形

  4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

  5.全等三角形

  ⑴一般三角形全等的判定(sas、asa、aas、sss)

  ⑵特殊三角形全等的`判定:①一般方法②专用方法

  6.三角形的面积

  ⑴一般计算公式⑵性质:等底等高的三角形面积相等。

  7.重要辅助线

  ⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线

  8.证明方法

  ⑴直接证法:综合法、分析法

  ⑵间接证法—反证法:①反设②归谬③结论

  ⑶证线段相等、角相等常通过证三角形全等

  ⑷证线段倍分关系:加倍法、折半法

  ⑸证线段和差关系:延结法、截余法

  ⑹证面积关系:将面积表示出来

  三、四边形

  分类表:

  1.一般性质(角)

  ⑴内角和:360°

  ⑵顺次连结各边中点得平行四边形。

  推论1:顺次连结对角线相等的四边形各边中点得菱形。

  推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。

  ⑶外角和:360°

  2.特殊四边形

  ⑴研究它们的一般方法:

  ⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定

  ⑶判定步骤:四边形→平行四边形→矩形→正方形

  ┗→菱形——↑

  ⑷对角线的纽带作用:

  3.对称图形

  ⑴轴对称(定义及性质);⑵中心对称(定义及性质)

  4.有关定理:①平行线等分线段定理及其推论1、2

  ②三角形、梯形的中位线定理

  ③平行线间的距离处处相等。(如,找下图中面积相等的三角形)

  5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。

  6.作图:任意等分线段。

初中数学知识点总结2

  1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等

  5过一点有且只有一条直线和已知直线垂直

  6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边

  17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余

  19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等

  22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等

  26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合

  30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°

  34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

  35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形

  37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半

  39定理线段垂直平分线上的点和这条线段两个端点的距离相等

  40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

  41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形

  43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

  45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

  46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2

  47勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形

  48定理四边形的内角和等于360°49四边形的外角和等于360°

  50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°

  52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等

  55平行四边形性质定理3平行四边形的对角线互相平分

  56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等

  62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等

  65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等

  70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  71定理1关于中心对称的两个图形是全等的

  72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

  73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

  74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等

  76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形

  78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

  79推论1经过梯形一腰的中点与底平行的`直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半

  L=(a+b)÷2S=L×h

  83(1)比例的基本性质如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),

  那么(a+c+…+m)/(b+d+…+n)=a/b

  86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

  87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

  89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

  90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

  91相似三角形判定定理1两角对应相等,两三角形相似(ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94判定定理3三边对应成比例,两三角形相似(SSS)

  95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方

  99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

  101圆是定点的距离等于定长的点的集合

  102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等

  105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线

  108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

  110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形

  114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  116定理一条弧所对的圆周角等于它所对的圆心角的一半

  117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心

  126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

  127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角

  129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

  131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

  133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

  134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r

  ②两圆外切d=R+r

  ③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)

  136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):

  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形

  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  (n2)180139正n边形的每个内角都等于

  n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  pnrn141正n边形的面积Sn=p表示正n边形的周长

  2142正三角形面积

  32aa表示边长4143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,

  k(n2)180360化为(n-2)(k-2)=4因此

  n144弧长计算公式:L=

  nR180nR2LR145扇形面积公式:S扇形==

  3602146内公切线长=d-(R-r)外公切线长=d-(R+r)

  公式分类及公式表达式

  乘法与因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解

  bb24ac2a

  根与系数的关系:X1+X2=-b/aX1*X2=c/a注:韦达定理判别式

  b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac

初中数学知识点总结3

  整式的加减

  2、1整式

  1、单项式:由数字和字母乘积组成的式子。系数,单项式的次数、单项式指的是数或字母的积的代数式、单独一个数或一个字母也是单项式、因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式、

  2、单项式的系数:是指单项式中的数字因数;

  3、单项数的次数:是指单项式中所有字母的指数的和、

  4、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式、每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式、特别注意多项式的项包括它前面的性质符号、

  5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

  6、单项式和多项式统称为整式。

  2、2整式的加减

  1、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

  2、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可、同类项与系数大小、字母的'排列顺序无关

  3、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

  4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

  5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。

  6、整式加减的一般步骤:

  一去、二找、三合

  (1)如果遇到括号按去括号法则先去括号、(2)结合同类项、(3)合并同类项葫芦岛

  初中数学知识点归纳

  三角和的公式

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  倍角公式

  tan2A = 2tanA/(1-tan2 A)

  Sin2A=2SinA?CosA

  Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

  三倍角公式

  sin3A = 3sinA-4(sinA)3;

  cos3A = 4(cosA)3 -3cosA

  tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

  三角函数特殊值

  α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

  α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

  a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

  α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

  α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

  α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

  α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

  α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

  α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

  α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

  α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  三角函数记忆顺口溜

  1三角函数记忆口诀

  “奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。

  以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。

  2符号判断口诀

  全,S,T,C,正。这五个字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。

  也可以这样理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是对应象限三角函数为正值的名称。口诀中未提及的都是负值。

  “ASTC”反Z。意即为“all(全部)”、“sin”、“tan”、“cos”按照将字母Z反过来写所占的象限对应的三角函数为正值。

  3三角函数顺口溜

  三角函数是函数,象限符号坐标注。函数图像单位圆,周期奇偶增减现。

  同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

  中心记上数字一,连结顶点三角形。向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

  计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

  逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

  万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

  一加余弦想余弦,一减余弦想正弦,幂升一次角减半,升幂降次它为范;

  三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

  利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。

  初中数学知识点大全

  诱导公式的本质

  所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。

  常用的诱导公式

  公式一: 设为任意角,终边相同的角的同一三角函数的值相等:

  sin(2k)=sin kz

  cos(2k)=cos kz

  tan(2k)=tan kz

  cot(2k)=cot kz

  公式二: 设为任意角,的三角函数值与的三角函数值之间的关系:

  sin( )=-sin

  cos( )=-cos

  tan( )=tan

  cot( )=cot

  公式三: 任意角与 -的三角函数值之间的关系:

  sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  公式四: 利用公式二和公式三可以得到与的三角函数值之间的关系:

  sin( )=sin

  cos( )=-cos

  tan( )=-tan

  cot( )=-cot

初中数学知识点总结4

  ∴当x1时函数取得最大值,且ymax(1)2(1)13例4、已知函数f(x)x22(a1)x2

  4],求实数a的取值(1)若函数f(x)的递减区间是(,4]上是减函数,求实数a的取值范围(2)若函数f(x)在区间(,分析:二次函数的单调区间是由其开口方向及对称轴决定的,要分清函数在区间A上是单调函数及单调区间是A的区别与联系

  解:(1)f(x)的对称轴是x可得函数图像开口向上

  2(a1)21a,且二次项系数为1>0

  1a]∴f(x)的单调减区间为(,∴依题设条件可得1a4,解得a3

  4]上是减函数(2)∵f(x)在区间(,4]是递减区间(,1a]的子区间∴(,∴1a4,解得a3

  例5、函数f(x)x2bx2,满足:f(3x)f(3x)

  (1)求方程f(x)0的两根x1,x2的和(2)比较f(1)、f(1)、f(4)的'大小解:由f(3x)f(3x)知函数图像的对称轴为x(3x)(3x)23

  b3可得b62f(x)x26x2(x3)211

  而f(x)的图像与x轴交点(x1,0)、(x2,0)关于对称轴x3对称

  x1x223,可得x1x26

  第三章第32页由二次项系数为1>0,可知抛物线开口向上又134,132,431

  ∴依二次函数的对称性及单调性可f(4)f(1)f(1)(III)课后作业练习六

  (Ⅳ)教学后记:

  第三章第33页

  扩展阅读:初中数学函数知识点归纳

  学大教育

  初中数学函数板块的知识点总结与归类学习方法

  初中数学知识大纲中,函数知识占了很大的知识体系比例,学好了函数,掌握了函数的基本性质及其应用,真正精通了函数的每一个模块知识,会做每一类函数题型,就读于中考中数学成功了一大半,数学成绩自然上高峰,同时,函数的思想是学好其他理科类学科的基础。初中数学从性质上分,可以分为:一次函数、反比例函数、二次函数和锐角三角函数,下面介绍各类函数的定义、基本性质、函数图象及函数应用思维方式方法。

  一、一次函数

  1.定义:在定义中应注意的问题y=kx+b中,k、b为常数,且k≠0,x的指数一定为1。2.图象及其性质(1)形状、直线

初中数学知识点总结5

  代数部分:有理数、无理数、实数整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程组、二元二次方程组、分式方程、一元一次不等式函数(一次函数、二次函数、反比例函数)

  几何部分:线段、角相交线、平行线三角形、四边形、相似形、圆。

  1、实数的分类

  有理数:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数。如:—3,0.231,0.737373......

  无理数:无限不环循小数叫做无理数如:π,—,0.1010010001......(两个1之间依次多1个0)。

  实数:有理数和无理数统称为实数。

  2、无理数

  在理解无理数时,要抓住"无限不循环"这一时之,它包含两层意思:一是无限小数;二是不循环。二者缺一不可。归纳起来有四类:

  (1)开方开不尽的数,如等;

  (2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;

  (3)有特定结构的数,如0.1010010001......等;

  (4)某些三角函数,如sin60o等。

  注意:判断一个实数的.属性(如有理数、无理数),应遵循:一化简,二辨析,三判断。要注意:"神似"或"形似"都不能作为判断的标准。

  3、非负数:正实数与零的统称。(表为:x≥0)

  常见的非负数有:

  性质:若干个非负数的和为0,则每个非负担数均为0。

  4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

  解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

  ①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴("三要素")。

  ②任何一个有理数都可以用数轴上的一个点来表示。

  ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

  作用:A、直观地比较实数的大小;B、明确体现绝对值意义;C、建立点与实数的一一对应关系。

  5、相反数

  实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

  即:(1)实数的相反数是。

初中数学知识点总结6

  一、初中数学基本概念

  1.方程:含有未知数的等式叫做方程。

  2.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

  3.方程的解:使方程左右两边相等的未知数的值叫做方程的解。

  4.解方程:求方程的解的过程叫做解方程。

  5.恒等式:两个含有相同的未知数,并且含未知数项的系数都是零的整式方程是一元一次方程。

  二、初中数学基本公式

  1.三角形面积的公式:三角形面积=底×高÷2,用字母表示为“S=ah÷2”。

  2.平行四边形面积的公式:平行四边形面积=底×高,用字母表示为“S=ah”。

  3.梯形面积的公式:梯形面积=(上底+下底)×高÷2,用字母表示为“S=(a+b)h÷2”。

  4.圆的面积公式:圆面积=半径×半径×π,用字母表示为“S=πr2”。

  5.菱形的面积公式:菱形面积=底×高,用字母表示为“S=ab”。

  6.正方形面积公式:正方形面积=边长×边长,用字母表示为“S=a2”。

  7.一元一次方程求解公式:ax=b,其中a和b为方程的系数,x为未知数。当a≠0时,有唯一解;当a=0且b≠0时,无解;当a=0且b=0时,有无数解。

  三、初中数学基本定理

  1.等式的性质:等式两边同时加上(或减去)同一个代数式,所得结果仍是等式;等式两边同时乘以(或除以)同一个不为0的数或代数式,所得结果仍是等式。

  2.方程的解法:通过移项、合并同类项、去括号、去分母等方式,将一元一次方程转化为ax=b的形式,求解得到方程的解。

  3.一元一次不等式的解法:将一元一次不等式转化为ax>b或ax

  4.二元一次方程组的解法:通过代入消元法或加减消元法,将二元一次方程组转化为一个一元一次方程,然后求解得到方程组的解。

  5.菱形的性质:菱形的四条边相等,对角线互相垂直平分,并且每一组对角线平分一组对角。

  6.正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质,并且四条边相等,四个角都是直角。

  7.相似三角形的判定定理:两个三角形对应边成比例且对应角相等,则这两个三角形相似。

  8.全等三角形的判定定理:两个三角形三边相等、两边夹角相等、两角夹边相等、两角和一边相等,则这两个三角形全等。

  9.垂径定理:在圆中,直径平分弦(不是直径的弦)所对的两条弧,平分弦所对的`圆周弧的弦垂直平分弦。

  10.圆的切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线;经过圆的半径外端且垂直于切线的直线是圆的切线;圆的割线定理:一条直线与一个圆有两个不同的交点,则这条直线被圆截得的线段长的平方等于这个圆上两点所对应的弦长的平方差。

  11.相交弦定理:圆内的两条相交弦被交点分成的两条线段长的积相等。

  12.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的积相等。

  13.圆心角、弧、弦的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等;相等的弧所对的弦也相等;相等的弦所对的弧也相等;在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等;弧的度数等于它所对的圆心角度数;一个圆心角等于它所对的弧的度数;半圆(或直径)所对的圆周角是直角;90°的圆周

初中数学知识点总结7

  一、关于初高中数学成绩分化原因的分析

  1、环境与心理的变化。

  对高一新生来讲,环境可以说是全新的,新教材、新同学、新教师、新集体……学生有一个由陌生到熟悉的适应过程。另外,经过紧张的中考复习,考取了自己理想的高中,必有些学生产生“松口气”想法,入学后无紧迫感。也有些学生有畏惧心理,他们在入学前,就耳闻高中数学很难学,高中数学课一开始也确是些难理解的抽象概念,如映射、集合、异面直线等,使他们从开始就处于怵头无趣的被动局面。以上这些因素都严重影响高一新生的学习质量。

  2、教材的变化。

  首先,初中数学教材内容通俗具体,多为常量,题型少而简单;而高中数学内容抽象,多研究变量、字母,不仅注重计算,而且还注重理论分析,这与初中相比增加了难度。

  其次,由于近几年教材内容的调整,虽然初高中教材都降低了难度,但相比之下,初中降低的幅度大,而高中由于受高考的限制,教师都不敢降低难度,造成了高中数学实际难度没有降低。因此,从一定意义上讲,调整后的教材不仅没有缩小初高中教材内容的难度差距,反而加大了。

  3、课时的变化。

  在初中,由于内容少,题型简单,课时较充足。因此,课容量小,进度慢,对重难点内容均有充足时间反复强调,对各类习题的解法,教师有时间进行举例示范,学生也有足够时间进行巩固。而到高中,由于知识点增多,灵活性加大和新工时制实行,使课时减少,课容量增大,进度加快,对重难点内容没有更多的时间强调,对各类型题也不可能讲全讲细和巩固强化。这也使高一新生开始不适应高中学习而影响成绩的提高。

  4、学法的变化。

  在初中,教师讲得细,类型归纳得全,练得熟,考试时,学生只要记准概念、公式及教师所讲例题类型,一般均可对号入座取得好成绩。因此,学生习惯于围着教师转,不注重独立思考和对规律的归纳总结。到高中,由于内容多时间少,教师不可能把知识应用形式和题型讲全讲细,只能选讲一些具有典型性的题目,以落实“三基”培养能力。因此,高中数学学习要求学生要勤于思考,善于归纳总结规律,掌握数学思想方法,做到举一反三,触类旁通。然而,刚入学的高一新生,往往继续沿用初中学法,致使学习困难较多,完成当天作业都很困难,更没有预习、复习及总结等自我消化自我调整的时间。这显然不利于良好学法的形成和学习质量的提高。

  二、搞好初高中衔接所采取的主要措施

  1、做好准备工作,为搞好衔接打好基础。

  ①搞好入学教育。这是搞好衔接的基础工作,也是首要工作。通过入学教育提高学生对初高中衔接重要性的认识,增强紧迫感,消除松懈情绪,初步了解高中数学学习的特点,为其它措施的落实奠定基础这里主要做好四项工作:一是给学生讲清高一数学在整个中学数学中所占的位置和作用;二是结合实例,采取与初中对比的方法,给学生讲清高中数学内容体系特点和课堂教学特点;三是结合实例给学生讲明初高中数学在学法上存在的本质区别,并向学生介绍一些优秀学法,指出注意事项;四是请高年级学生谈体会讲感受,引导学生少走弯路,尽快适应高中学习。

  ②摸清底数,规划教学。

  为了搞好初高中衔接,教师首先要摸清学生的学习基础,然后以此来规划自己的教学和落实教学要求,以提高教学的针对性。在教学实际中,我们一方面通过进行摸底测试和对入学成绩的分析,了解学生的基础;另一方面,认真学习和比较初高中教学大纲和教材,以全面了解初高中数学知识体系,找出初高中知识的衔接点、区别点和需要铺路搭桥的知识点,以使备课和讲课更符合学生实际,更具有针对性。

  2、优化课堂教学环节,搞好初高中衔接。

  ①立足于大纲和教材,尊重学生实际,实行层次教学。高一数学中有许多难理解和掌握的知识点,如集合、映射等,对高一新生来讲确实困难较大。因此,在教学中,应从高一学生实际出发,采劝低起点、小梯度、多训练、分层次”的方法,将教学目标分解成若干递进层次逐层落实。在速度上,放慢起始进度,逐步加快教学节奏。在知识导入上,多由实例和已知引入。在知识落实上,先落实“死”课本,后变通延伸用活课本。在难点知识讲解上,从学生理解和掌握的实际出发,对教材作必要层次处理和知识铺垫,并对知识的理解要点和应用注意点作必要总结及举例说明。

  ②重视新旧知识的联系与区别,建立知识网络。初高中数学有很多衔接知识点,如函数概念、平面几何与立体几何相关知识等,到高中,它们有的加深了,有的研究范围扩大了,有些在初中成立的结论到高中可能不成立。因此,在讲授新知识时,我们有意引导学生联系旧知识,复习和区别旧知识,特别注重对那些易错易混的知识加以分析、比较和区别。这样可达到温故知新、温故而探新的效果。

  ③重视展示知识的形成过程和方法探索过程,培养学生创造能力。高中数学较初中抽象性强,应用灵活,这就要求学生对知识理解要透,应用要活,不能只停留在对知识结论的死记硬套上,这就要求教师应向学生展示新知识和新解法的产生背景、形成和探索过程,不仅使学生掌握知识和方法的本质,提高应用的'灵活性,而且还使学生学会如何质疑和解疑的思想方法,促进创造性思维能力的提高。

  ④重视培养学生自我反思自我总结的良好习惯,提高学习的自觉性。高中数学概括性强,题目灵活多变,只靠课上听懂是不够的,需要课后进行认真消化,认真总结归纳。这就要求学生应具备善于自我反思和自我总结的能力。为此,我们在教学中,抓住时机积极培养。在单元结束时,帮助学生进行自我章节小结,在解题后,积极引导学生反思:思解题思路和步骤,思一题多解和一题多变,思解题方法和解题规律的总结。由此培养学生善于进行自我反思的习惯,扩大知识和方法的应用范围,提高学习效率。

  ⑤重视专题教学。利用专题教学,集中精力攻克难点,强化重点和弥补弱点,系统归纳总结某一类问题的前后知识、应用形式、解决方法和解题规律。并借此机会对学生进行学法的指点,有意渗透数学思想方法。

  3、加强学法指导。

  高中数学教学要把对学生加强学法指导作为教学的重要任务之一。指导以培养学习能力为重点,狠抓学习基本环节,如“怎样预习”、“怎样听课”等等。

  具体措施有三:一是寓学法指导于知识讲解、作业讲评、试卷分析等教学活动之中,这种形式贴近学生学习实际,易被学生接受;二是举办系列讲座,介绍学习方法;三是定期进行学法交流,同学间互相取长补短,共同提高。

  4、优化教育管理环节,促进初高中良好衔接。

  ①重视运用情感和成功原理,唤起学生学好数学的热情。搞好初高中衔接,除了优化教学环节外,还应充分发挥情感和心理的积极作用。我们在高一教学中,注意运用情感和成功原理,调动学生学习热情,培养学习数学兴趣。学生学不好数学,少责怪学生,要多找自己的原因。要深入学生当中,从各方面了解关心他们,特别是差生,帮助他们解决思想、学习及生活上存在的问题。给他们多讲数学在各行各业广泛应用,讲祖国四化建设需要大批懂数学的专家学者;讲爱因斯坦在初中一次数学竟没有考及格,但他没有气馁,终于成了一名伟大科学家,华罗庚在学生时代奋发图强,终于在数学研究中做出了卓越贡献,等等。使学生提高认识,增强学好数学的信心。在提问和布置作业时,从学生实际出发,多给学生创设成功的机会,以体会成功的喜悦,激发学习热情。

  ②重视培养学生正确对待困难和挫折的良好心理素质。由于高中数学的特点,决定了高一学生在学习中的困难大挫折多。为此,我们在教学中注意培养学生正确对待困难和挫折的良好心理素质,使他们善于在失败面前,能冷静地总结教训,振作精神,主动调整自己的学习,并努力争取今后的胜利。平时多注意观察学生情绪变化,开展心理咨询,做好个别学生思想工作。

  ③电视知识的反馈和落实。通过建立多渠道的反馈途径,及时收集学生对知识的掌握情况和对教学的意见,为及时矫上学生的错误,调整教学,提高教学针对性提供依据。知识落实的思路为:以落实“三基”为中心,实行分层落实,做到提优补差。主要措施是:平时练习层次化,单元结束考查制度化,做到章节会,单元清。

初中数学知识点总结8

  [关键词]课堂小结;初中数学;理解提升

  德国作家、科学家利希顿堡说过:“当你还不能对自己说今天学到了什么东西时,你就不要去睡觉。 ”这句话从侧面阐明了总结对于知识学习的重要性。课堂小结作为一项提炼收获、分析问题、概括经验的学习手段,对于初中数学课堂教学具有很好的促进作用。这是因为初中数学与其他学科相比,有更强的思维性、逻辑性和综合性,这使得初中数学的知识体系、概念内容更庞杂,更不容易消化吸收,这就需要我们寻求一项有效的手段来将这些知识进行聚合、巩固、提升,而课堂小结恰恰解决了这一问题。课堂教学形式多变、内涵丰富,并非时时刻刻都应该总结、都需要总结,课堂小结只有在合适的时间运用,才能发挥效果。笔者正是基于此,对初中数学如何有效运用课堂小结进行策略探析,通过对初中数学教学规律、学生数学知识吸收特点进行整理、分析后,提出如下四点建议。

  在知识讲解之后小结,掌握新

  知强调重点

  我们在进行新知识的课堂教学时,一堂课里一般会有多个小知识点,我们在带入新知识的同时,还会引入一些老问题,帮助学生进行对比、区分,增进理解。但这同时也加大了课堂容量,容易让学生在知识吸收中出现遗漏、错读。所以,在新知识教学完成之后进行课堂小结,帮助学生将所学的新知识进行统一规整,能够很好地帮助学生理清思路,明确知识重点,快速掌握新知。在对新知识进行课堂小结时,我们讲究全而美,即小结涵盖的内容要全,要将本节课的所有知识都涵盖进来;美是指总结的语言要生动,要将新知识的特点用趣味的语言表现出来,让学生更容易理解,更方便记忆。

  例如,教学苏教版初中数学“合并同类项”这一部分内容时,笔者进行了这样的小结:“同学们,我们今天学习了合并同类项,合并同类项我们要掌握两个关键,一是什么是同类项,另一个是怎么合并,你们说对不对?”笔者先抛出一个问题,学生回答:“对。 ”“那你们谁能告诉老师答案呢?”笔者继续问,学生思考后回答:“老师,是同类项的话,首先所含字母要相同。”“同一个字母的指数也必须一样。”另一个学生回答。 “合并同类项就是把同类项的系数加起来。 ”还有学生补充。笔者笑着说:“同学们说得很好呢,其实合并同类项只要掌握两同、两无关,常数也是同类项就可以了。两同就是字母同、指数同,两无关是字母顺序无关、系数大小无关。 ”像这样,通过教师引导学生思考,再进行总结,能够有效帮助学生了解新知识的重点,促进学生理解掌握。

  在答疑解惑之后小结,突出要

  点指明问题

  学必有疑,学生在数学学习过程中,一定会碰到一些麻烦,提出一些问题。对于学生提出的疑问,教师都会认真讲解、仔细分析,直到学生明白为止,但有时候会出现同一知识点学生听了忘、反复问的现象,出现这种情况的原因是学生对于教师的讲解没理解透彻。而如何才能让学生参透呢?教师在帮学生答疑解惑之后的课堂小结,很多时候刚好能起到这样的点拨作用。教师在答疑解惑之后的课堂小结要注意两个问题:一是小结要指明问题,就学生所出现的问题进行分析,让学生根据自身情况认领问题,以便对症下药;二是小结要注重方法的启发,针对学生的问题阐明解决办法,引导学生领会方法,运用原则,破获解题密码,得到新的收获与启发。

  例如,教学苏教版初中数学“一元一次方程”时,有一位学生向笔者提出疑问:“老师,这道题目:+=2,我算了好几遍,答案都是—1,跟老师给的答案不一样,这是为什么呢?”笔者稍稍看了学生的解题步骤后发现,原来这个学生犯了解一元一次方程非常常见的错误,即他去分母的时候,没有分母的项忘记乘相同的系数了。于是笔者在向他讲解完之后进行小结:“同学们,我们在给一元一次方程去分母的时候,要注意什么呢?方程两边要同时乘以所有分母的最小公倍数,只有这么做,方程的大小才会保持不变。一旦你漏乘了谁,特别是没有分母的项,那就不公平了,等式大小就发生了改变,那么答案肯定就错了。 ”像这样,根据学生的问题,直指关键,帮助学生答疑解惑,能促进学生吃一堑长一智,规避错误,更加进步。

  在迁移发散之后小结,明确关

  系梳理联系

  数学知识盘丝错节,各个知识点之间的联系十分多样、紧密,因此要帮助学生真正深入掌握知识,明晰知识点间的灵活运用,就必须适当对这些知识进行迁移发散。迁移发散是一种举一反三的教学手段,通过一个数学概念迁移出旧识新知,通过一种方法发散出多种不同形式。迁移发散是数学万紫千红总是春的`集中体现,是数学学习的较高阶段,同时也是学生较难理解掌握的部分,因此,在迁移发散之后进行课堂小结很有必要。教师要注意通过小结引导学生明确各个知识点之间的因果先后关系,梳理多个知识点之间联系的条件和影响因素,让学生通过小结可以在脑中形成更为准确的印象。

  例如,教学苏教版初中数学“梯形中位线”这部分内容时,笔者迁移出三角形中位线的相关概念,引导学生进行比对、思考、拓展。迁移发散之后,笔者做了如下总结:“同学们,通过迁移我们可以得出,三角形中位线是梯形中位线的一种特殊形式,所有梯形通过割补平移都可以转换成一个三角形。另外,通过式子的转化我们知道,梯形的面积可以看做是中位线乘以梯形高的积,那么作为梯形中位线的特例,三角形的面积同样也可以是中位线与第三边上的高的乘积。 ”像这样,在迁移之后进行小结,明确了知识之间的联系,能帮助学生进行梳理归纳,有助于学生理解掌握。

  在整体复习之后小结,高屋建

  瓴全面吸收

  复习是数学学习中非常重要的一个环节,是对学生一段时间以来学习的回顾。整体复习一般具有复习量大、知识跨度大、知识整合度高等特点,一堂整体复习课下来,学生需要重新理顺和温习的知识点非常多,初中生注意力容易分散,对于过于繁多的知识概念会出现“消化不良”的现象。整体复习之后的课堂小结,是对整个复习过程的凝练、概括,起到高屋建瓴的作用,能帮助学生更为系统、全面地知悉内容、吸收知识。

初中数学知识点总结9

  动点与函数图象问题常见的四种类型:

  1、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

  2、四边形中的动点问题:动点沿四边形的边运动,判断函数图象.

  3、圆中的动点问题:动点沿圆周运动,判断函数图象.

  4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,判断函数图象.

  图形运动与函数图象问题常见的三种类型:

  1、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,进行分段,判断函数图象.

  2、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,判断函数图象.

  3、多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,判断函数图象.

  动点问题常见的四种类型:

  1、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.

  2、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系.

  3、圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系.

  4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.

  总结反思:

  本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,三角形全等的判定和性质,等腰直角三角形的性质,平行线的性质等,数形结合思想的应用是解题的.关键.

  解答动态性问题通常是对几何图形运动过程有一个完整、清晰的认识,发掘“动”与“静”的内在联系,寻求变化规律,从变中求不变,从而达到解题目的

  解答函数的图象问题一般遵循的步骤:

  1、根据自变量的取值范围对函数进行分段.

  2、求出每段的解析式.

  3、由每段的解析式确定每段图象的形状.

  对于用图象描述分段函数的实际问题,要抓住以下几点:

  1、自变量变化而函数值不变化的图象用水平线段表示.

  2、自变量变化函数值也变化的增减变化情况.

  3、函数图象的最低点和最高点.

初中数学知识点总结10

  1.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

  2.完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

  3.一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

  4. 一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。

  5.一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

  6.分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。

  7.分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。

  8.最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。

  9.特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。

  10.象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。

  11.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。

  12.对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反, Y轴对称,x前面添负号;原点对称记,横纵坐标变符号。

  13.自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。

  14.函数图像的移动规律: 若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。

  15.巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切。正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。

  初三数学上册期末知识点归纳

  单项式与多项式

  仅含有一些数和字母的乘法(包括乘方)运算的式子叫做单项式单独的一个数或字母也是单项式。

  单项式中的数字因数叫做这个单项式(或字母因数)的数字系数,简称系数。

  当一个单项式的系数是1或-1时,“1”通常省略不写。

  一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。

  1、多项式

  有有限个单项式的代数和组成的式子,叫做多项式。

  多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。

  单项式可以看作是多项式的特例

  把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。

  在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。

  2、多项式的值

  任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。

  3、多项式的恒等

  对于两个一元多项式f(x)、g(x)来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即f(a)=g(a),那么,这两个多项式就称为是恒等的记为f(x)==g(x),或简记为f(x)=g(x)。

  性质1如果f(x)==g(x),那么,对于任一个数值a,都有f(a)=g(a)。

  性质2如果f(x)==g(x),那么,这两个多项式的个同类项系数就一定对应相等。

  4、一元多项式的根

  一般地,能够使多项式f(x)的值等于0的未知数x的值,叫做多项式f(x)的根。

  多项式的加、减法,乘法

  1、多项式的加、减法

  2、多项式的乘法

  单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。

  3、多项式的乘法

  多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。

  常用乘法公式

  公式I平方差公式

  (a+b)(a-b)=a^2-b^2

  两个数的和与这两个数的差的积等于这两个数的平方差。

  关于数学常见误区有哪些

  1、被动学习

  许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。

  2、学不得法

  老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

  3、不重视基础

  一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。

  4、进一步学习条件不具备

  高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。

  如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的`。

  如何整理数学学科课堂笔记

  一、内容提纲。老师讲课大多有提纲,并且讲课时老师会将一堂课的线索脉络、重点难点等,简明清晰地呈现在黑板上。同时,教师会使之富有条理性和直观性。记下这些内容提纲,便于课后复习回顾,整体把握知识框架,对所学知识做到胸有成竹、清晰完整。

  二、疑难问题。将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。教师在组织课堂教学时,受到时空的限制,不可能做到顾及每一位同学。相应的,一些问题对部分学生来说,是属于疑难问题,由于课堂上来不及思考成熟,记下疑难问题,可在课后继续加以思考和探究,加以理解和掌握,不致出现知识的断层、方法的缺陷。

  三、思路方法。对老师在课堂上介绍的解题方法和分析思路也应及时记下,课后加以消化,若有疑惑,先作独立分析,因为有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后及时与老师商榷和探讨。勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。在这基础上,若能主动钻研,另辟蹊径,则更难能可贵。

  四、归纳总结。注意记下老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找规律,融会贯通课堂内容都很有作用。同时,很多有经验的老师在课后小结时,一方面是承上归纳所学内容,另一方面又是启下布置预习任务或点明后面所要学的内容,做好笔记可以把握学习的主动权,提前作准备,做到目标任务明确。

  五、错误反思。学习过程中不可避免地会犯这样或那样的错误,记下自己所犯的错误,并用红笔醒目地加以标注,以警示自己,同时也应注明错误成因,正确思路及方法,在反思中成熟,在反思中提高。

  数学常用解题技巧有哪些

  第一,应坚持由易到难的做题顺序。近年来高考数学试题的设置是8道选择题、6道填空题、6到大题,通常称为866结构。在实体设置的结构中有三个小高峰,选择题是由易到难,最难的题是第8题。填空题同样是这样设置的。也是第9题容易到第14题最难,大题从第15题到第20题,它们的设置也是这样的。根据这样的试题结构,应先做前面容易的,基础好一点的考生就先做前7个选择,前5个填空、前5个大题,称为是755结构。基础差的就是644,先把自己能做的、会做的拿到手。这是第一点。

  第二,审题是关键。把题给看清楚了再动笔答题,看清楚题以后问什么、已知什么、让你做什么,把这些问题搞清楚了,自己制订了一个完整的解题策略,在开始写的时候,这个时候是很快就可以完成的。

  第三,属于非智力因素导致想不起来。本来是很简单的题比如说是做到第三题、第四题的时候不是难题,但想不起来了,卡住了,这时候怎么办?虽然是简单题却不会做怎么办?应先跳过去,不是这道题不会做吗?后面还有很多的简单题呢,把后面的题做一做,不要在考场上愣神,先跳过去做其他的题,等稳定下来以后再回过头来看会顿悟,豁然开朗。

  第四,做选择题的时候应运用最好的解题方法。因为选择题和填空题都是看结果不看过程,因此在这个过程中都应不择手段,只要是能把正确的结论找到就行。考生常用的方法是直接法,从已知的开始也不看它的四个选项,从头到尾写完了之后一看答案就写上去了。另外就是特质法(音),一些出现字母、特别是不等式,这时候给它赋一个值,代进去这时候速度会比较快,正确地找出结果来。再就是数形结合法。最后实在不行了,就将四个选项代入验证,看看哪个符合就是哪个了。填空题用上述的直接法、特质法、数形结合法三种方法都适合。做大题的时候要特别注意解题步骤,规范答题可以减少失分。简单地说,规范答题就是从上一步的原因到下一步的结论,这是一个必然的过程,让谁写、谁看都是这样的。因为什么所以什么是一个必然的过程,这是规范答题。

初中数学知识点总结11

  一、圆

  1、圆的有关性质

  在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。

  由圆的意义可知:

  圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

  就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。

  圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。

  圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。

  圆心相同,半径不相等的两个圆叫同心圆。

  能够重合的两个圆叫等圆。

  同圆或等圆的半径相等。

  在同圆或等圆中,能够互相重合的弧叫等弧。

  二、过三点的圆

  l、过三点的圆

  过三点的圆的作法:利用中垂线找圆心

  定理不在同一直线上的三个点确定一个圆。

  经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

  2、反证法

  反证法的三个步骤:

  ①假设命题的结论不成立;

  ②从这个假设出发,经过推理论证,得出矛盾;

  ③由矛盾得出假设不正确,从而肯定命题的结论正确。

  例如:求证三角形中最多只有一个角是钝角。

  证明:设有两个以上是钝角

  则两个钝角之和>180°

  与三角形内角和等于180°矛盾。

  ∴不可能有二个以上是钝角。

  即最多只能有一个是钝角。

  三、垂直于弦的直径

  圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

  垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

  推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。

  弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

  平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。

  推理2:圆两条平行弦所夹的弧相等。

  四、圆心角、弧、弦、弦心距之间的关系

  圆是以圆心为对称中心的中心对称图形。

  实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。

  顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。

  定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。

  推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。

  五、圆周角

  顶点在圆上,并且两边都和圆相交的角叫圆周角。

  推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

  推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

  推理3:如果三角形一边上的.中线等于这边的一半,那么这个三角形是直角三角形。

  由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。

  相关的角:

  1、对顶角:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。

  2、互为补角:如果两个角的和是一个平角,这两个角做互为补角。

  3、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。

  4、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。

  注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。

  角的性质

  1、对顶角相等。

  2、同角或等角的余角相等。

  3、同角或等角的补角相等。

  其实角的大小与边的长短没有关系,角的大小决定于角的两条边张开的程度。

  角的静态定义

  具有公共端点的两条射线组成的图形叫做角(angle)。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

  角的动态定义

  一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边

  角的符号

  角的符号:∠

  角的种类

  在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

  锐角:大于0°,小于90°的角叫做锐角。

  直角:等于90°的角叫做直角。

  钝角:大于90°而小于180°的角叫做钝角。

  平角:等于180°的角叫做平角。

  优角:大于180°小于360°叫优角。

  劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

  角周角:等于360°的角叫做周角。

  负角:按照顺时针方向旋转而成的角叫做负角。

  正角:逆时针旋转的角为正角。

  0角:等于零度的角。

  特殊角

  余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

  对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

  邻补角:两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,互为邻补角。

  内错角:互相平行的两条直线直线,被第三条直线所截,如果两个角都在两条直线的

  内侧,并且在第三条直线的两侧,那么这样的一对角叫做内错角(alternate interior angle )。如:∠1和∠6,∠2和∠5

  同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角。如:∠1和∠5,∠2和∠6

  同位角:两个角都在截线的同旁,又分别处在被截的两条直线同侧,具有这样位置关系的一对角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7

  外错角:两条直线被第三条直线所截,构成了八个角。如果两个角都在两条被截线的外侧,并且在截线的两侧,那么这样的一对角叫做外错角。例如:∠4与∠7,∠3与∠8。

  同旁外角:两个角都在截线的同一侧,且在两条被截线之外,具有这样位置关系的一对角互为同旁外角。如:∠4和∠8,∠3和∠7

  终边相同的角:具有共同始边和终边的角叫终边相同的角。与角a终边相同的角属于集合:

  A{bb=k_360+a,k∈Z}表示角度制;

  B{bb=2kπ+a,k∈Z}表示弧度制

  ①直线和圆无公共点,称相离。 AB与圆O相离,d>r。

  ②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d

  ③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)

  平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:

  1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程

  如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

  如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

  如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

  2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

  当x=-C/Ax2时,直线与圆相离;

初中数学知识点总结12

  一、在创新中培养学生的归纳意?R

  在初中数学教学中,重点是对学生的创新精神和实践能力的培养,体现出现代素质教育。学生创新能力的培养在学习中占据非常重要的作用,在创新中学生可以巩固自身所学的知识,使数学知识在自己的头脑中根深蒂固,各类知识点在学生的头脑中形成清晰的框架,有助于学生归纳意识的培养。归纳意识的培养,可以减轻学生的学习负担,提升学生对知识的理解能力。

  初中生在学习数学的环节中,常常会接触到大量的图像,在数学学习中,老师应该鼓励学生大胆创新,在创新环节中完成对知识点的归纳。数学学习并不死板,不仅仅学习教科书上的知识,还应该学习书本以外的知识,从而创新自己的思维。例如在进行函数的学习中,老师可以让学生绘制函数图像,对函数进行分类讨论,从而掌握递增函数和递减函数的定义,在分类讨论后,学生结合图像进行归纳。在数学教学中,老师不仅仅要重视书本上的逻辑内容,而且在把握逻辑内容的基础上,将图像和数学知识有机结合起来,使学生可以大胆创新。

  很多学生在数学学习中存在困难,认为数学的学习就是解答大量的难题,他们在大量的题海战术后不善于归纳,导致数学学习的'效率不高。

  二、在交流中归纳知识点

  在数学学习中,如果学生只是自己探究,那么在学习中不会得到灵感。数学学习不仅仅要求学生具有认真的钻研态度,而且也需要老师帮助学生养成归纳的意识。沟通和交流不仅仅在语言的学习中发挥非常重要的作用,而且在数学学习中同样非常重要。学生在解答数学问题中,常常会遇到一些问题,学生自己探究会陷入到死胡同中,需要老师和同学的帮助才能进一步完成。

  为了切实在初中数学教学中培养学生的归纳意识,老师可以将班级内的学生分成几个不同的小组,组内的同学可以通过合作的方式,对知识点进行归纳,在数学的学习中更加变通,将数学这门学科应用到生活中。

  例如,在进行二次函数的学习中,老师可以将学生分成不同的小组,留给学生充足的时间,让他们互相帮助,在沟通中对知识点进行归纳。学生很快就能得到结论,如果函数有两个解,那么函数与数轴会有两个交点,如果方程只有一个解,那么函数与数轴只有一个交点,如果方程没有解,那么函数与数轴没有交点。学生通过分组讨论的方式得到结论,通过归纳,学生对二次函数知识点的印象非常深刻。

  三、学会正确归纳

  在数学学习中,归纳思想非常重要,数学这门学科的知识非常细碎,是一门系统性很强的学科。数学知识错综复杂,很多学生在学习数学中力不从心,掌握合理的归纳方式,可以切实提升学生的数学成绩。初中生的思维还不是特别完善,在进行数学学习环节中,对知识点进行合理的归纳,是每位老师应该采取的方法。如果学生不懂得归纳,那么在数学考试中,学生会将知识点混淆。为了提升学生的归纳能力,老师在课堂上应该将一些容易混淆和容易出现错误的习题让学生总结。

  例如,在学习圆和直线这部分内容中,老师都会将重点内容,圆和圆的位置关系,直线和圆的位置关系进行重点分析。老师可以借助一些参考书目和资料,总结一些相似的题目,让学生在课堂上解答这些题目,使学生对这部分知识点进行总结,从而加深对这部分知识的理解。归纳思想在数学学习中应用非常多,在进行初中数学教学环节中,学生应该花更多的时间进行归纳。

  在进行初中数学的学习中,学生归纳意识的养成可以完善学生的数学思维,学生学会归纳,在学习中就会如鱼得水,在考试中取得好成绩。

  四、在反思中完成知识点的归纳

初中数学知识点总结13

  一、数与代数

  1.有理数

  有理数:包括正整数、0和负整数。

  数轴:包括原点、正方向和单位长度。

  相反数:只有符号不同的两个数叫做互为相反数。

  绝对值:正数的绝对值是其本身,负数的绝对值是它的'相反数,0的绝对值是0。

  2.整式与分式

  整式:包括单项式和多项式。

  分式:包括一般形式和特殊形式。

  代数式:包括单字母、单项式和多项式。

  二、空间与图形

  1.点、线、面

  点:没有大小,没有长度。

  线:没有宽度,只有长度。

  面:有长度和宽度,没有高度。

  2.基本图形

  直线:包括直线、射线、线段。

  角:包括平角、周角和一般的角。

  三角形:包括等边三角形、等腰三角形和一般三角形。

  四边形:包括矩形、正方形、梯形和平行四边形。

  圆:包括圆的性质和圆的定理。

  三、统计与概率

  1.统计

  统计图:包括扇形统计图、折线统计图和条形统计图。

  统计表:包括简单统计表和复合统计表。

  数据的收集与整理:包括抽样调查、全面调查和自主调查。

  2.概率

  随机事件:包括必然事件、不可能事件和随机事件。

  概率:包括计算事件发生的概率和随机事件的概率。

  以上是初中数学知识点总结的主要内容,这些知识点是数学学习的基础,需要学生熟练掌握和应用。

初中数学知识点总结14

  本章内容通过让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步发展空间观察,培养几何思维和审美意识,在实际问题中体验数学的快乐,激发对学习学习。

  一.知识框架

  二.知识概念

  1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。)

  2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。

  3.中心对称和中心对称图形是两个不同而又紧密联系的概念.区别是:中心对称是指两个全等图形之间的相互位置关系,这两个图形关于一点对称,这个点是对称中心,两个图形关于点的对称也叫做中心对称.成中心对称的两个图形中,其中一个上所有点关于对称中心的对称点都在另一个图形上,反之,另一个图形上所有点的`对称点,又都在这个图形上;而中心对称图形是指一个图形本身成中心对称.中心对称图形上所有点关于对称中心的对称点都在这个图形本身上.如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形;一个中心对称图形,如果把对称的部分看成是两个图形,那么它们又是关于中心对称.

  4.中心对称图形与中心对称:

  中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。

  中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。

  5.把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(centralsymmetry),这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。

  6.中心对称的性质:

  关于中心对称的两个图形是全等形。

  关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。

初中数学知识点总结15

  1、重心的定义:

  平面图形中,几何图形的重心是当支撑或悬挂时图形能在水平面处于平衡状态,此时的支撑点或者悬挂点叫做平衡点,也叫做重心。

  2、几种几何图形的重心:

  ⑴线段的重心就是线段的`中点;

  ⑵平行四边形及特殊平行四边形的重心是它的两条对角线的交点;

  ⑶三角形的三条中线交于一点,这一点就是三角形的重心;

  ⑷任意多边形都有重心,以多边形的任意两个顶点作为悬挂点,把多边形悬挂时,过这两点铅垂线的交点就是这个多边形的重心。

  提示:⑴无论几何图形的形状如何,重心都有且只有一个;

  ⑵从物理学角度看,几何图形在悬挂或支撑时,位于重心两边的力矩相同。

  3、常见图形重心的性质:

  ⑴线段的重心把线段分为两等份;

  ⑵平行四边形的重心把对角线分为两等份;

  ⑶三角形的重心把中线分为1:2两部分(重心到顶点距离占2份,重心到对边中点距离占1份)。

  上面对重心知识点的巩固学习,同学们都能熟练的掌握了吧,希望同学们很好的复习学习数学知识。

  ①直线和圆无公共点,称相离。 AB与圆O相离,d>r。

  ②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d

  ③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)

  平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:

  1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程

  如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

  如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

  如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

  2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

  当x=-C/Ax2时,直线与圆相离;

【初中数学知识点总结】相关文章:

初中数学知识点总结07-14

初中数学必备知识点总结03-01

初中数学圆的知识点总结12-05

初中数学知识点总结07-15

初中数学函数知识点总结11-24

初中数学几何知识点总结11-05

初中数学人教知识点总结10-09

【荐】初中数学知识点总结07-04

初中数学知识点归纳总结12-02

(优)初中数学知识点总结12-04