当前位置:育文网>初中>初中数学> 初中数学知识点总结

初中数学知识点总结

时间:2024-06-16 10:01:07 初中数学 我要投稿

初中数学知识点总结汇编[15篇]

  总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,它可以有效锻炼我们的语言组织能力,快快来写一份总结吧。但是却发现不知道该写些什么,以下是小编收集整理的初中数学知识点总结,仅供参考,希望能够帮助到大家。

初中数学知识点总结汇编[15篇]

初中数学知识点总结1

  一、函数及其相关概念

  1、变量与常量

  在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

  一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

  2、函数解析式

  用来表示函数关系的数学式子叫做函数解析式或函数关系式。

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

  3、函数的三种表示法及其优缺点

  (1)解析法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图像法

  用图像表示函数关系的方法叫做图像法。

  4、由函数解析式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的`点

  (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

  二、相交线与平行线

  1、知识网络结构

  2、知识要点

  (1)在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。

  (2)在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。

  (3)两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是

  邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,

  与互为邻补角。+=180°;+=180°;+=180°;+=180°。

  3、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=; =。

  4、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,

  其中一条叫做另一条的垂线。如图2所示,当=90°时,⊥。

  垂线的性质:

  性质1:过一点有且只有一条直线与已知直线垂直。

  性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

  性质3:如图2所示,当a⊥b时,====90°。

  点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

  5、同位角、内错角、同旁内角基本特征:

  在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样的两个角叫同位角。图3中,共有对同位角:与是同位角;与是同位角;与是同位角;与是同位角。

  在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。

  在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。

  三、实数

  1、实数的分类

  (1)按定义分类:

  (2)按性质符号分类:

  注:0既不是正数也不是负数.

  2、实数的相关概念

  (1)相反数

  ①代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

  ②几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

  ③互为相反数的两个数之和等于0.a、b互为相反数a+b=0.

  (2)绝对值|a|≥0.

  (3)倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.

  (4)平方根

  ①如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.

  ②一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.

  (5)立方根

  如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

  3、实数与数轴

  数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.

  4、实数大小的比较

  (1)对于数轴上的任意两个点,靠右边的点所表示的数较大.

  (2)正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.

  (3)无理数的比较大小:

初中数学知识点总结2

  常用数学公式

  乘法与因式分a2-b2=(a+b)(a-b)

  a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b

  |a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解x1=-b+√(b2-4ac)/2ax2=-b-√(b2-4ac)/2a

  根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理

  判别式

  b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根

  b2-4ac

  某些数列前n项和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4

  1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

  余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角

  圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py

  直棱柱侧面积S=c*h斜棱柱侧面积S=c"*h

  正棱锥侧面积S=1/2c*h"正棱台侧面积S=1/2(c+c")h"圆台侧面积S=1/2(c+c")l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l

  弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

  锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S"L注:其中,S"是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h

  1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等

  5过一点有且只有一条直线和已知直线垂直

  6直线外一点与直线上各点连接的所有线段中,垂线段最短

  7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补

  15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边

  17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余

  19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等

  22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等

  26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等

  28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合

  30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边

  32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°

  34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

  35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半

  39定理线段垂直平分线上的点和这条线段两个端点的距离相等

  40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形

  43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

  44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

  45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

  46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°

  50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°

  52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等

  55平行四边形性质定理3平行四边形的对角线互相平分

  56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形

  59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等

  62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等

  65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1四边都相等的四边形是菱形

  68菱形判定定理2对角线互相垂直的平行四边形是菱形

  69正方形性质定理1正方形的四个角都是直角,四条边都相等

  70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  71定理1关于中心对称的两个图形是全等的

  72定理2关于中心对称的'两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

  74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等

  76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形

  78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

  79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

  80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

  89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

  90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

  91相似三角形判定定理1两角对应相等,两三角形相似(ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)

  94判定定理3三边对应成比例,两三角形相似(SSS)

  95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

  97性质定理2相似三角形周长的比等于相似比

  98性质定理3相似三角形面积的比等于相似比的平方

  99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

  100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

  101圆是定点的距离等于定长的点的集合

  102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等

  105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

  107到已知角的两边距离相等的点的轨迹,是这个角的平分线

  108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

  109定理不在同一直线上的三点确定一个圆。110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形

  114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半

  117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

  119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

  121①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r

  122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

  123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心

  126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等

  128弦切角定理弦切角等于它所夹的弧对的圆周角

  129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

  131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

  132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

  133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

  134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)

  ④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):

  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形

  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n

  140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2p表示正n边形的周长142正三角形面积√3a/4a表示边长

  143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n兀R/180

  145扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长=d-(R-r)外公切线长=d-(R+r)147完全平方公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2148平方差公式:(a+b)(a-b)=a^2-b^2

初中数学知识点总结3

  一、“三步六环”复习课型范式构建的背景分析

  (一)初三数学总复习的低效教学影响了中考教学质量的提高

  初三数学的复习教学,注重“四基”(基础知识、基本技能、基本思想和基本活动经验)的巩固和“四能”(发现问题、提出问题、分析问题、解决问题的能力)的提升。由于受复习教学方法传统、时间不足等因素的限制,往往不能处理好知识巩固与能力提升之间的关系,导致复习教学实效不强。尤其是在初三下学期的复习教学中,大多数教师采用“一基础二专题三综合”的复习方式,使得复习教学“高耗低效”,不能大大提高学生发现问题、提出问题、分析问题和解决问题的能力。同时在复习教学中,往往采用市面上的教辅资料,内容超标,试题偏难,不符合复习教学的'要求,制约着初三中考数学教学质量的提高。

  (二)“三步六环”复习课型范式是课改实验教学的时代产物

  目前,基础教育课程改革深入推进,虽然带来了许多可喜的变化,但许多一线初三教师在实践中看到了许多隐藏的教学危机。如何利用小组合作学习提高初三中考的教学质量,是许多课改实验学校面临的重大课题。笔者对任教学校班级的学生进行了抽样访谈,访谈分析反映出初三学生数学总复习阶段的四个问题:一是不熟悉中考数学考纲的考试要求和考试目标,没有明确的初三数学总复习的方向;二是数学基础知识掌握不够全面,没有完整的认知结构,对初中数学知识的逻辑关系不清晰;三是数学基本解题技能掌握不足,对初中数学知识的应用把握不清;四是数学基本思想和基本活动经验欠缺,不能灵活地运用所学知识和技能。

  “三步六环”复习课型范式的实践研究,能转变教师复习课的教学理念,建立更加适合本地区教学实际情况的初三数学“三步六环”复习课型的范式,掌握更加科学有效的复习方法,形成优质的初三数学复习教学资源,提升初三教师的数学专业能力,转变学生的数学学习方式,提升学生的课堂参与度,变被动的枯燥复习为主动的兴趣探究,从而提高初三数学的教学质量。

  二、“三步六环”复习课型范式构建的策略分析

  (一)关键词的概念界定

  1、复习课型。复习课型是根据学生的认知特点和规律,在学习的某一阶段,以巩固、疏理已学知识、技能,促进知识系统化,提高学生运用所学知识解决问题的能力为主要任务的一种课型。开展数学复习课的目的是温故知新,查漏补缺,完善认知结构,促进学生解题思想方法的形成,发展数学能力,增强学生运用数学知识解决问题的能力。

  2、“三步六环”。这是一种适合初三数学总复习教学的高效课堂模式,其基本框架如下:

  主要包括:

  (1)“三步”:第一步“先做后讲”,体现在三点:①学生提前1~2天完成下发的复习导学案;②老师及时批改了解学生的预习情况;③老师根据考纲、课标,结合学生的预习反馈进行二次备课。

  第二步“反思诊断”,体现在四点:①有反思――作业讲评;②有跟进――针对内容的重难点和学生的易错点;③有变式――针对内容的重难点和学生的易错点;④有系统――二次订正整理。

  第三步“滚动测试”,体现在两点:①滚动及时――重点考查近期重难点、易错点知识;②反馈评价――关注师徒、小组捆绑评价。

  (2)“六环”:指初三数学复习课堂教学的六个步骤:自主复习、合作交流、展示质疑、典例精讲、训练达标、总结评价。这六环环h递进、相辅相成。只有保持复习课堂高效的可持续性,才能保障中考教学质量的提升,这里很关键的两点因素应务必关注:其一,教师要精心研读课标考纲,悉心研究中考试题,用心编制总复习导学案,为学生高效进行总复习指明方向;其二,课堂教学中的发展性评价应及时跟进,让学生学会反思归纳,分享复习的快乐。

初中数学知识点总结4

  锐角三角函数定义

  锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

  正弦(sin):对边比斜边,即sinA=a/c;

  余弦(cos):邻边比斜边,即cosA=b/c;

  正切(tan):对边比邻边,即tanA=a/b;

  余切(cot):邻边比对边,即cotA=b/a;

  正割(sec):斜边比邻边,即secA=c/b;

  余割(csc):斜边比对边,即cscA=c/a。

  三角函数关系

  1、互余角的关系

  sin(90°—α)=cosα,cos(90°—α)=sinα,tan(90°—α)=cotα,cot(90°—α)=tanα。

  2、平方关系

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  3、积的关系

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  4、倒数关系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  两角和差公式

  sin(A+B)= sinAcosB+cosAsinB

  sin(A—B)= sinAcosB—cosAsinB

  cos(A+B)= cosAcosB—sinAsinB

  cos(A—B)= cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1—tanAtanB)

  tan(A—B)=(tanA—tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB—1)/(cotB+cotA)

  cot(A—B)=(cotAcotB+1)/(cotB—cotA)

  1、不在同一直线上的三点确定一个圆。

  2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧。

  3、圆是以圆心为对称中心的中心对称图形。

  4、圆是定点的距离等于定长的点的集合

  5、圆的内部可以看作是圆心的距离小于半径的点的集合。

  6、圆的外部可以看作是圆心的距离大于半径的点的集合。

  7、同圆或等圆的半径相等。

  8、到定点的距离等于定长的点的'轨迹,是以定点为圆心,定长为半径的圆。

  9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

  10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  11、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

  13、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

  14、切线的性质定理圆的切线垂直于经过切点的半径。

  15、推论1经过圆心且垂直于切线的直线必经过切点。

初中数学知识点总结5

  第十一章三角形

  一、知识框架:

  二、知识概念:

  1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.

  2.三边关系:三角形任意两边的和(大于或小于)第三边,任意两边的差(大于或小于)第三边.

  3.高:从三角形的一个顶点向它的对边所在直线作,顶点和间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边的线段叫做三角形的中线.

  5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和之间的线段叫做三角形的角平分线.

  6.三角形的稳定性:三角形的形状是,三角形的这个性质叫三角形的稳定性.

  7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.

  8.多边形的内角:多边形两边组成的角叫做它的内角.

  9.多边形的外角:多边形的一边与它的邻边的线组成的角叫做多边形的外角.

  10.多边形的对角线:连接多边形的两个顶点的线段,叫做多边形的对角线.

  11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.

  12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,

  13.公式与性质:

  ⑴三角形的内角和:三角形的内角和为度。

  ⑵三角形外角的性质:

  性质1:三角形的一个外角等于和它不相邻的的和.

  性质2:三角形的一个外角大于任何一个和它的内角.

  ⑶多边形内角和公式:n边形的内角和等于。

  学无虑课后辅导中心编制

  ⑷多边形的外角和:多边形的外角和为度.

  ⑸多边形对角线的条数:

  ①从n边形的一个顶点出发可以引条对角线,把多边形分成个三角形.

  ②n边形共有条对角线.

  第十二章全等三角形

  一、知识框架:

  二、知识概念:

  1.基本定义:

  ⑴全等形:能够完全的两个图形叫做全等形.

  ⑵全等三角形:能够完全的两个三角形叫做全等三角形.

  ⑶对应顶点:全等三角形中互相的顶点叫做对应顶点.

  ⑷对应边:全等三角形中互相的边叫做对应边.

  ⑸对应角:全等三角形中互相的角叫做对应角.

  2.基本性质:

  ⑴三角形的稳定性:三角形三边的确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.

  ⑵全等三角形的性质:全等三角形的相等,对应角相等.

  3.全等三角形的判定定理:

  ⑴边边边(SSS):。

  ⑵边角边(SAS):。

  ⑶角边角(ASA):。

  ⑷角角边(AAS):。

  ⑸斜边、直角边(HL):。

  4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的上.

  5.证明的基本方法:

  ⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.

  第十三章轴对称

  一、知识框架:

  二、知识概念:

  1.基本概念:

  ⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相,这个图形就叫做轴对称图形.

  ⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且这条线段的直线,叫做这条线段的垂直平分线.

  ⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.

  ⑸等边三角形:都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段的距离相等.②与一条线段两个端点距离相等的点在这条线段的上.⑶关于坐标轴对称的点的坐标性质①点P(x,y)关于x轴对称的.点的坐标为P"(,).②点P(x,y)关于y轴对称的点的坐标为P"(,).⑷等腰三角形的性质:

  ①等腰三角形两腰.

  ②等腰三角形两底角相等(等边对等角).

  ③等腰三角形的、,相互重合.④等腰三角形是图形,对称轴是三线合一(1条).⑸等边三角形的性质:

  ①等边三角形三边都相等.

  ②等边三角形三个内角都相等,都等于度。③等边三角形每条边上都存在三线合一.

  ④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:

  ⑴等腰三角形的判定:

  ①相等的三角形是等腰三角形.

  ②如果一个三角形有两个角相等,那么这两个角所对的边也(等角对等边).

  ⑵等边三角形的判定:

  ①都相等的三角形是等边三角形.②三个角都相等的三角形是三角形.

  ③有一个角是度。的等腰三角形是等边三角形.

  4.基本方法:

  ⑴做已知直线的垂线:

  ⑵做已知线段的垂直平分线:

  ⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.

  ⑷作已知图形关于某直线的对称图形:

  ⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.

  第十四章整式的乘除与分解因式

  一、知识框架:

  整式乘法乘法法则整式除法因式分解

  二、知识概念:

  基本运算:⑴同底数幂的乘法公式:。⑵幂的乘方公式:。⑶积的乘方公式:。

  2.整式的乘法:⑴单项式单项式:系数,同字母,不同字母为积的因式.⑵单项式多项式:。⑶多项式多项式:.

  3.计算公式:

  ⑴平方差公式:ababab

  222222⑵完全平方公式:aba2abb;aba2abb

  224.整式的除法:

  ⑴同底数幂的除法:aaamnmn

  ⑵单项式单项式:系数,同字母,不同字母作为商的因式.⑶多项式单项式:.⑷多项式多项式:用竖式.

  5.因式分解:把一个多项式化成的积的形式,这种变形叫做把这个式子因式分解.

  6.因式分解方法:

  ⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:。②完全平方公式:。③立方和:。④立方差:。⑶十字相乘法:。⑷拆项法⑸添项法第十五章分式一、知识框架:

  二、知识概念:A1.分式:形如,A、B是整式,B中含有字母且B不等于的整式叫做分式.其中AB叫做分式的,B叫做分式的2.分式有意义的条件:分母不等于.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为的整式,分式的值不变.4.约分:把一个分式的分子和分母的(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成的分式,这一过程叫做通分.

  6.最简分式:一个分式的分子和分母没有时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:

  ⑴同分母分式加减法则:同分母的分式相加减,分母,把相加减.用字

  母表示

  为:。

  ⑵异分母分式加减法则:异分母的分式相加减,先,化为同分母的分

  式,然后再按同分母分式的加减法法则进行计算.用字母表示为:。

  ⑶分式的乘法法则:两个分式相乘,把相乘的积作为积的分子,把相乘的积作为积的分母.用字母表示为:。

  ⑷分式的除法法则:两个分式相除,把除式的和颠倒位置后再与被除式相乘.用字母表示为:。⑸分式的乘方法则:、分别乘方.用字母表示为:。8.整数指数幂:⑴aaam⑵amnmn(m、n是正整数)namn(m、n是正整数)nn⑶abab(n是正整数)n⑷aaanmnmn(a0,m、n是正整数,mn)ana⑸n(n是正整数)bb⑹an1(a0,n是正整数)na9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:

  ①(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;

  ③(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).

初中数学知识点总结6

  1.圆是以圆心为对称中心的中心对称图形;同圆或等圆的半径相等。

  2.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

  3.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

  4.圆是定点的距离等于定长的点的集合。

  5.圆的内部可以看作是圆心的'距离小于半径的点的集合;圆的外部可以看作是圆心的距离大于半径的点的集合。

  6.不在同一直线上的三点确定一个圆。

  7.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧。

  推论1:

  ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

  推论2:圆的两条平行弦所夹的弧相等。

  8.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  9.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

  10.经过切点且垂直于切线的直线必经过圆心。

  11.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

  12.切线的性质定理圆的切线垂直于经过切点的半径。

  13.经过圆心且垂直于切线的直线必经过切点

  14.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

  15.圆的外切四边形的两组对边的和相等外角等于内对角。

  16.如果两个圆相切,那么切点一定在连心线上。

  17.

  ①两圆外离d>R+r

  ②两圆外切d=R+r

  ③两圆相交d>R-r)

  ④两圆内切d=R-r(R>r)

  ⑤两圆内含d=r)

  18.定理把圆分成n(n≥3):

  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形

  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。

  19.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。

  20.弧长计算公式:L=n兀R/180;扇形面积公式:S扇形=n兀R^2/360=LR/2。

  21.内公切线长= d-(R-r)外公切线长= d-(R+r)。

  22.定理一条弧所对的圆周角等于它所对的圆心角的一半。

  23.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

  24.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

初中数学知识点总结7

  关于初中数学几何知识点总结

  1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2、三角形的分类

  3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  7、高线、中线、角平分线的意义和做法

  8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  9、三角形内角和定理:三角形三个内角的和等于180°

  推论1直角三角形的两个锐角互余

  推论2三角形的一个外角等于和它不相邻的两个内角和

  推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

  10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

  11、三角形外角的性质

  (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

  (2)三角形的一个外角等于与它不相邻的两个内角和;

  (3)三角形的一个外角大于与它不相邻的任一内角;

  (4)三角形的外角和是360°。

  四边形(含多边形)知识点、概念总结

  一、平行四边形的定义、性质及判定

  1、两组对边平行的四边形是平行四边形。

  2、性质:

  (1)平行四边形的对边相等且平行

  (2)平行四边形的对角相等,邻角互补

  (3)平行四边形的对角线互相平分

  3、判定:

  (1)两组对边分别平行的四边形是平行四边形

  (2)两组对边分别相等的四边形是平行四边形

  (3)一组对边平行且相等的四边形是平行四边形

  (4)两组对角分别相等的四边形是平行四边形

  (5)对角线互相平分的四边形是平行四边形

  4、对称性:平行四边形是中心对称图形

  二、矩形的定义、性质及判定

  1、定义:有一个角是直角的平行四边形叫做矩形

  2、性质:矩形的四个角都是直角,矩形的对角线相等

  3、判定:

  (1)有一个角是直角的平行四边形叫做矩形

  (2)有三个角是直角的四边形是矩形

  (3)两条对角线相等的平行四边形是矩形

  4、对称性:矩形是轴对称图形也是中心对称图形。

  三、菱形的定义、性质及判定

  1、定义:有一组邻边相等的平行四边形叫做菱形

  (1)菱形的四条边都相等

  (2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

  (3)菱形被两条对角线分成四个全等的直角三角形

  (4)菱形的面积等于两条对角线长的积的一半

  2、s菱=争6(n、6分别为对角线长)

  3、判定:

  (1)有一组邻边相等的平行四边形叫做菱形

  (2)四条边都相等的四边形是菱形

  (3)对角线互相垂直的平行四边形是菱形

  4、对称性:菱形是轴对称图形也是中心对称图形

  四、正方形定义、性质及判定

  1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形

  2、性质:

  (1)正方形四个角都是直角,四条边都相等

  (2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  (3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形

  (4)正方形的对角线与边的夹角是45°

  (5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

  3、判定:

  (1)先判定一个四边形是矩形,再判定出有一组邻边相等

  (2)先判定一个四边形是菱形,再判定出有一个角是直角

  4、对称性:正方形是轴对称图形也是中心对称图形

  五、梯形的定义、等腰梯形的'性质及判定

  1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

  2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

  3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形

  4、对称性:等腰梯形是轴对称图形

  六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。

  七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

  八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

  九、多边形

  为什么要学习数学

  作为一门普及度极广的学科,数学在人类文明的发展史上一直占据着重要的地位。虽然很多人可能会对数学产生排斥,认为它枯燥无味,但事实上,数学是所有学科的基石之一,对我们日常生活以及未来的职业发展有着重大影响。下面我将详细阐述学习数学的重要性。

  首先,数学可以帮助我们提高逻辑思维能力。数学的学科性质使我们在学习的过程中时时刻刻面临着思考、推理、证明等诸多问题,而这些问题正是锻炼我们逻辑思维的好机会。通过长期的学习和练习,我们的思维能力得到提升,可以更加清晰地分析问题,更快速地找到正确的答案。这对我们在工作和生活中都非常有帮助,尤其是在解决复杂问题时更能得心应手。

  其次,数学在现代科技中起着至关重要的作用。在计算机科学、物理学、经济学、工程学等领域,数学可以帮助我们建立模型、分析数据、预测趋势,并且可以在实际应用中优化和改进。例如,在人工智能领域,深度学习技术所涉及的数学概念包括线性代数、微积分和概率论等,如果没有深厚的数学基础,很难理解和应用这些技术。同时,在工程学领域,许多机械、电子、化工等产品的设计和制造过程,也需要运用到数学知识,因此学习数学可以使我们更好地参与到现代科技的发展中。

  除此之外,数学也是一种普遍使用的语言,许多学科和领域都使用数学语言进行表达和交流。例如,在自然科学领域,生物学、化学、物理学等学科都使用数学语言来描述自然世界的规律和现象。在社会科学和商科领域,经济学和金融学运用的数学概念,如微积分、线性代数和统计学等,使得我们能够更好地理解经济和财务数据,并进行决策。因此,学习数学可以让我们更好地理解、沟通和交流各个领域的知识。

  最后,学习数学也可以为我们的职业发展带来广泛的机遇和发展空间。在许多领域,数学专业的毕业生都有很广泛的就业机会,如金融界、数据科学、研究机构、教育等。数学专业的人才,不只会提供理论支持,同时也能够解决现实中具体的问题,使其在各自领域脱颖而出。

  怎样快速提高数学成绩?

  一、查缺补漏,主攻薄弱

  请制作“失分分析表”,包括“不会做的”和“不该丢分的”两部分,分析模拟考试等试卷失分情况,在紧跟老师复习的基础上,针对自己的薄弱环节重点弥补、改进。

  别一味冲刺难题。做题是对理论知识的进一步巩固与实检,我们要在理解的基础上加强练习,以达到巩固的目的,但不能一味追求难题偏题。

  因为中考试卷中有30%是比较灵活的题型,只有10%是真正的难题。30%那部分题目是我们能拿但容易失分的题目,我们要做到尽量多拿分,但如果我们一味求难求险,就会因为忽视基础题型的夯实和巩固而失掉这部分该得的分。在基础掌握后,有条件的同学可再进行一些难题怪题的攻关,这样的策略才更能保证效率。

  二、反思错题

  不要盲目找题做,陷入题海中,不要“就题论题”停留在“这题我会了”的低水平上。解题能力是在反思中提升的。懂、会、悟是数学水平的三个层次。简单说,听懂了,但不一定会,更不意味着真正领悟了。

  三、克服无谓失分

  如何避免审题出错?

  原因:看太快。

  应对策略:

  1.默读法;2.重点字词圈点勾画法;3.审图法。

  如何降低计算失误?

  表面原因是粗心,其实是计算能力不足。平时对计算不以为然,认为“没有技术含量”。事实上计算也有很多“聪明算法”,如:边化简边计算、宁加勿减、宁乘勿除、小数化分数、找最小最短的设元、放缩法、凑整法、图象法等等计算技巧。

  应对策略:

  1.不要为了赶时间而跳步计算;

  2.宁可笔算,少用口算,更不要再抱着计算器;

  3.对平时易算错的题型,可以验算一遍。

  四、关注几个重点问题

  1.新定义题型、非常规题型、存在性问题。

  2.分析法—执果索因,逆向思维,倒过来想,假设存在;不完全归纳法—根据例子,大胆猜想、努力验证。反例排除法、特殊图形(特殊位置、极端值)探究法等。

  提高数学成绩常用方法有哪些

  1、预习

  预期常常由于“没时间,看不懂,不必要”等等原因被忽略。实际上预习是学习的必要过程,更是提高自学能力的好方法。

  2、学会听课

  听分析、听思路、听应用,关键内容一字不漏,注意记录。

  3、做好错题本

  每个会学习的学生都会有错题本。调查发现那些没有错题本,或者是只做不用的同学,学习效果都不好。

  4、用好课外书

  正确认识网络课程和课外书籍,是副食,是帮助吸收的良药。

  5、注重数学思维方法的培养

  要注意数学思想和方法的指导,站得高,才能看得远。

初中数学知识点总结8

  初中数学知识点总结及解法

  基本知识

  数与代数A、数与式:

  1、有理数

  有理数:

  ①整数正整数/0/负整数

  ②分数正分数/负分数

  数轴:

  ①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

  ②任何一个有理数都可以用数轴上的一个点来表示。

  ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

  ④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

  绝对值:

  ①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

  ②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

  有理数的运算:

  加法:

  ①同号相加,取相同的符号,把绝对值相加。

  ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

  ③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:

  ①两数相乘,同号得正,异号得负,绝对值相乘。

  ②任何数与0相乘得0。

  ③乘积为1的两个有理数互为倒数。

  除法:

  ①除以一个数等于乘以一个数的倒数。

  ②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

  混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

  2、实数

  无理数:无限不循环小数叫无理数

  平方根:

  ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

  ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

  ③一个正数有2个平方根/0的平方根为0/负数没有平方根。

  ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:

  ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

  ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:

  ①实数分有理数和无理数。

  ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

  ③每一个实数都可以在数轴上的一个点来表示。

  3、代数式

  代数式:单独一个数或者一个字母也是代数式。

  合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

  4、整式与分式

  整式:

  ①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

  ②一个单项式中,所有字母的指数和叫做这个单项式的次数。

  ③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

  整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

  幂的运算:

  ① 同底数幂相乘:a^ma^n=a^(m+n)

  ② 幂的乘方:(a^m)n=a^mn

  ③ 积的乘方:(ab)^m=a^mb^m

  ④ 同底数幂相除:a^ma^n=a^(m-n) (a0)

  这些公式也可以这样用:⑤a^(m+n)= a^ma^n

  ⑥a^mn=(a^m)n

  ⑦a^mb^m=(ab)^m

  ⑧ a^(m-n)= a^ma^n (a0)

  整式的乘法:

  ①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

  ②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

  ③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

  公式两条:平方差公式/完全平方公式

  整式的除法:

  ①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

  ②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

  分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

  方法:提公因式法、运用公式法、分组分解法、十字相乘法。

  分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

  分式的运算:

  乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

  除法:除以一个分式等于乘以这个分式的倒数。

  加减法:

  ①同分母分式相加减,分母不变,把分子相加减。

  ②异分母的分式先通分,化为同分母的分式,再加减。

  分式方程:

  ①分母中含有未知数的方程叫分式方程。

  ②使方程的分母为0的解称为原方程的增根。

  方程与不等式

  1、方程与方程组

  一元一次方程:

  ①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

  ②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

  解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

  二元一次方程:含有两个未知数,并且所含未知数的`项的次数都是1的方程叫做二元一次方程。

  二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

  适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

  二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

  解二元一次方程组的方法:代入消元法/加减消元法。

  一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程

  1、一元二次方程的二次函数的关系

  大家已经学过二次函数(即抛物线)了,对它也有很深的了解,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了。

  2、一元二次方程的解法

  大家知道,二次函数有顶点式(,),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解。

  (1)配方法

  利用配方,使方程变为完全平方公式,在用直接开平方法去求出解。

  (2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解。

  (3)公式法

  这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+[b2-4ac)]}/2a,X2={-b-[b2-4ac)]}/2a

  3、解一元二次方程的步骤:

  (1)配方法的步骤:

  先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式。

  (2)分解因式法的步骤:

  把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式。

  (3)公式法

  就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c。

  4、韦达定理

  利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=,二根之积=

  也可以表示为x1+x2=,x1x2=。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。

  5、一元一次方程根的情况

  利用根的判别式去了解,根的判别式可在书面上可以写为△,读作diao ta,而△=b2-4ac,这里可以分为3种情况:

  I当△0时,一元二次方程有2个不相等的实数根;

  II当△=0时,一元二次方程有2个相同的实数根;

  III当△0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)。

  2、不等式与不等式组

  不等式:

  ①用符号〉,=,〈号连接的式子叫不等式。

  ②不等式的两边都加上或减去同一个整式,不等号的方向不变。

  ③不等式的两边都乘以或者除以一个正数,不等号方向不变。

  ④不等式的两边都乘以或除以同一个负数,不等号方向相反。

  不等式的解集:

  ①能使不等式成立的未知数的值,叫做不等式的解。

  ②一个含有未知数的不等式的所有解,组成这个不等式的解集。

  ③求不等式解集的过程叫做解不等式。

  一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

  一元一次不等式组:

  ①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

  ②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

  ③求不等式组解集的过程,叫做解不等式组。

  一元一次不等式的符号方向:

  在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

  在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:AB,A+CB+C

  在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:AB,A-CB-C

  在不等式中,如果乘以同一个正数,不等号不改向;例如:AB,A*CB*C(C0)

  在不等式中,如果乘以同一个负数,不等号改向;例如:AB,A*C

  如果不等式乘以0,那么不等号改为等号

  所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。

  函数

  变量:因变量,自变量。

  在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

  一次函数:

  ①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。

  ②当B=0时,称Y是X的正比例函数。

  一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数Y=KX的图象是经过原点的一条直线。③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

  空间与图形

  图形的认识

  1、点,线,面

  点,线,面:

  ①图形是由点,线,面构成的。

  ②面与面相交得线,线与线相交得点。

  ③点动成线,线动成面,面动成体。

  展开与折叠:

  ①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

  ②N棱柱就是底面图形有N条边的棱柱。

  截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

  视图:主视图,左视图,俯视图。

  多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

  弧、扇形:

  ①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

  ②圆可以分割成若干个扇形。

  角

  线:

  ①线段有两个端点。

  ②将线段向一个方向无限延长就形成了射线。射线只有一个端点。

  ③将线段的两端无限延长就形成了直线。直线没有端点。

  ④经过两点有且只有一条直线。

  比较长短:

  ①两点之间的所有连线中,线段最短。

  ②两点之间线段的长度,叫做这两点之间的距离。

  角的度量与表示:

  ①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

  ②一度的1/60是一分,一分的1/60是一秒。

  角的比较:

  ①角也可以看成是由一条射线绕着他的端点旋转而成的。

  ②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。

  ③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  平行:

  ①同一平面内,不相交的两条直线叫做平行线。

  ②经过直线外一点,有且只有一条直线与这条直线平行。

  ③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

  垂直:

  ①如果两条直线相交成直角,那么这两条直线互相垂直。

  ②互相垂直的两条直线的交点叫做垂足。

  ③平面内,过一点有且只有一条直线与已知直线垂直。

  垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

  垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

  垂直平分线定理:

  性质定理:在垂直平分线上的点到该线段两端点的距离相等;

  判定定理:到线段2端点距离相等的点在这线段的垂直平分线上

  角平分线:把一个角平分的射线叫该角的角平分线。

  定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

  性质定理:角平分线上的点到该角两边的距离相等

  判定定理:到角的两边距离相等的点在该角的角平分线上

  正方形:一组邻边相等的矩形是正方形

  性质:正方形具有平行四边形、菱形、矩形的一切性质

  判定:

  1、对角线相等的菱形

  2、邻边相等的矩形

  基本方法

  1、配方法

  所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

  2、因式分解法

  因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

  3、换元法

  换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

  4、判别式法与韦达定理

  一元二次方程ax2+bx+c=0(a、b、c属于R,a0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

  韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等

  5、待定系数法

  在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

  6、构造法

  在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

  7、反证法

  反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

  反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一个、一个也没有;至少有n个、至多有(n一1)个;至多有一个、至少有两个;唯一、至少有两个。

  归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

  8、面积法

  平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

  用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

  9、几何变换法

  在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个**的任一元素到同一**的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

  几何变换包括:

  (1)平移;

  (2)旋转;

  (3)对称。

  10、客观性题的解题方法

  选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。

  填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。

  要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。

  (1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

  (2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。

  (3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。

  (4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

  (5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。

  (6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,为分析法。

初中数学知识点总结9

  一、实数

  1.平方根性质:

  (1)一个正数有两个平方根,它们互为相反数;

  (2)零的平方根是零;

  (3)负数没有平方根。

  2.算术平方根性质:

  (1)一个正数的正的平方根叫做它的算术平方根;

  (2)零的算术平方根是零;

  (3)负数没有算术平方根。

  3.立方根性质:

  (1)正数的立方根是正数;

  (2)零的立方根是零;

  (3)负数的立方根是负数。

  4.实数的性质:

  (1)零是唯一没有平方根的数;

  (2)正数和负数可以没有算术平方根;

  (3)任何实数的立方根只有唯一的一个;

  (4)正数的立方根与它本身和零同类。

  二、整式的运算

  1.整式范围:

  (1)整式可以化为分数或整数;

  (2)整式可以化为负数或非负数;

  (3)整式可以化为奇数或偶数;

  (4)整式可以化简为分数指数幂。

  2.单项式:

  (1)单项式的系数是数字因数;

  (2)一个单项式中所有字母的指数的和叫做单项式的次数。

  3.多项式:

  (1)多项式的每一项都是一个单项式;

  (2)一个多项式的项数与多项式中含有几个单项式有关。

  4.同底数幂的乘法:

  (1)同底数幂相乘,底数不变,指数相加;

  (2)同底数幂相除,底数不变,指数相减。

  5.幂的乘方:

  幂的乘方,底数不变,指数相乘。

  6.积的乘方:

  (1)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;

  (2)1的乘方等于1。

  7.同底数幂的除法:

  (1)同底数幂相除,底数不变,指数相减;

  (2)0的任何正整数次幂都是0。

  8.分式:

  (1)分式是整式的一种,在整式中区别于整式,分式的分母中必须含有字母;

  (2)分式的值等于分子除以分母。

  9.分式的运算:

  (1)分式的乘方:分式与分式相乘,再把被乘式的分子、分母分别与乘式的分子、分母相乘,即分子相乘的积做积的分子,分母相乘的积做积的分母;

  (2)分式的除法:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即分子相除的商做被除式的分子,分母相除的商做被除式的分母;

  (3)分式的加减:异分母分式的加减运算,为了使不同分母的`分数直接相加减不便,因此常把不同分母的分数分别化成与原来的分母相同的分母后再相加减。

  三、方程与方程组

  1.方程:

  (1)含有未知数的等式叫方程;

  (2)使方程左右两边相等的未知数的值,叫做方程的解;

  (3)求方程的解的过程叫做解方程。

  2.方程的解:

  (1)能使方程左右两边相等的未知数的值;

  (2)一个数(它不一定是数,也可以是符号和运算)是某一等式(含有未知数的等式)的解,那么这个数就叫做该等式的解。

  3.一元一次方程:

  (1)只有一个未知数;

  (2)未知数的最高次数为1;

  (3)整式方程。

  4.方程的解法:

  (1)去分母:在方程两端同乘各分母的最小公倍数;

  (2)去括号:去括号要变号;

  (3)移项:把含有未知数的项移到等号的一边,其他项移到另一边;

  (4)合并同类项:化未知数为已知数;

  (5)系数化成1:在方程两端同除以未知数的系数。

  5.列方程解应用题

初中数学知识点总结10

  平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系:

  在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的.一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

  因式分解定义

  把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素

  ①结果必须是整式

  ②结果必须是积的形式

  ③结果是等式

  ④因式分解与整式乘法的关系:m(a+b+c)

  公因式:

  一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法

  ①系数是整数时取各项最大公约数。

  ②相同字母取最低次幂

  ③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。

  ②确定商式

  ③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

  通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

初中数学知识点总结11

  一、特殊的平行四边形:

  1.矩形:

  (1)定义:有一个角是直角的平行四边形。

  (2)性质:矩形的四个角都是直角;矩形的对角线平分且相等。

  (3)判定定理:

  ①有一个角是直角的平行四边形叫做矩形。

  ②对角线相等的平行四边形是矩形。

  ③有三个角是直角的四边形是矩形。

  直角三角形的性质:直角三角形中所对的直角边等于斜边的一半。

  2.菱形:

  (1)定义:邻边相等的平行四边形。

  (2)性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

  (3)判定定理:

  ①一组邻边相等的平行四边形是菱形。

  ②对角线互相垂直的平行四边形是菱形。

  ③四条边相等的四边形是菱形。

  (4)面积:

  3.正方形:

  (1)定义:一个角是直角的菱形或邻边相等的矩形。

  (2)性质:四条边都相等,四个角都是直角,对角线互相垂直平分。正方形既是矩形,又是菱形。

  (3)正方形判定定理:

  ①对角线互相垂直平分且相等的四边形是正方形;

  ②一组邻边相等,一个角为直角的平行四边形是正方形;

  ③对角线互相垂直的矩形是正方形;

  ④邻边相等的矩形是正方形

  ⑤有一个角是直角的菱形是正方形;

  ⑥对角线相等的菱形是正方形。

  二、矩形、菱形、正方形与平行四边形、四边形之间的联系:

  1.矩形、菱形和正方形都是特殊的平行四边形,其性质都是在平行四边形的基础上扩充来的。矩形是由平行四边形增加“一个角为90°”的条件得到的,它在角和对角线方面具有比平行四边形更多的特性;菱形是由平行四边形增加“一组邻边相等”的条件得到的,它在边和对角线方面具有比平行四边形更多的特性;正方形是由平行四边形增加“一组邻边相等”和“一个角为90°”两个条件得到的,它在边、角和对角线方面都具有比平行四边形更多的特性。

  2.矩形、菱形的判定可以根据出发点不同而分成两类:一类是以四边形为出发点进行判定,另一类是以平行四边形为出发点进行判定。而正方形除了上述两个出发点外,还可以从矩形和菱形出发进行判定。

  三、判定一个四边形是特殊四边形的步骤:

  常见考法

  (1)利用菱形、矩形、正方形的性质进行边、角以及面积等计算;

  (2)灵活运用判定定理证明一个四边形(或平行四边形)是菱形、矩形、正方形;

  (3)一些折叠问题;

  (4)矩形与直角三角形和等腰三角形有着密切联系、正方形与等腰直角三角形也有着密切联系。所以,以此为背景可以设置许多考题。

  误区提醒

  (1)平行四边形的.所有性质矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性质平行四边形不一定具有,这点易出现混淆;

  (2)矩形、菱形具有的性质正方形都具有,而正方形具有的性质,矩形不一定具有,菱形也不一定具有,这点也易出现混淆;

  (3)不能正确的理解和运用判定定理进行证明,(如在证明菱形时,把四条边相等的四边形是菱形误解成两组邻边相等的四边形是菱形);

  (4)再利用对角线长度求菱形的面积时,忘记乘;

  (5)判定一个四边形是特殊的平行四边形的条件不充分。

初中数学知识点总结12

  一.圆的定义

  1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。

  2.平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

  二.圆心

  1.定义1中的定点为圆心。

  2.定义2中绕的那一端的端点为圆心。

  3.圆任意两条对称轴的交点为圆心。

  4.垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

  注:圆心一般用字母O表示

  5.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

  6.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

  7.圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

  8.圆的半径或直径决定圆的大小,圆心决定圆的位置。

  三.圆的基本性质

  1.圆的对称性

  (1)圆是轴对称图形,它的对称轴是直径所在的直线。

  (2)圆是中心对称图形,它的对称中心是圆心。

  (3)圆是旋转对称图形。

  2.垂径定理

  (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

  (2)推论:

  平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

  平分弧的直径,垂直平分弧所对的弦。

  3.圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。

  (1)同弧所对的圆周角相等。

  (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

  4.在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

  5.夹在平行线间的两条弧相等。

  (1)过两点的圆的圆心一定在两点间连线段的中垂线上。

  (2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

  (直角三角形的外心就是斜边的中点。)

  6.直线与圆的'位置关系。d表示圆心到直线的距离,r表示圆的半径。

  直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。

  四.圆和圆

  1.两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。

  2.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。

  3.两个圆有两个交点,叫做两个圆的相交。

  4.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。

  5.两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。

  五.正多边形和圆

  1.正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。

  2.正多边形与圆的关系:

  (1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。

  (2)这个圆是这个正多边形的外接圆。

初中数学知识点总结13

  字母表示数

  代数式的概念:

  用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

  注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;

  ②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

  ③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

  代数式的书写格式:

  ①代数式中出现乘号,通常省略不写,如vt;

  ②数字与字母相乘时,数字应写在字母前面,如4a;

  ③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如应写作;

  ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

  ⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。

  ⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米

  代数式的系数:

  代数式中的数字中的数字因数叫做代数式的系数。如3x,4y的系数分别为3,4。

  注意:①单个字母的系数是1,如a的系数是1;

  ②只含字母因数的代数式的系数是1或-1,如-ab的系数是-1。a3b的系数是1

  代数式的项:

  代数式表示6x2、-2x、-7的和,6x2、-2x、-7是它的项,其中把不含字母的项叫做常数项

  注意:在交待某一项时,应与前面的符号一起交待。

  同类项:

  所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。这两个条件缺一不可;

  ②同类项与系数无关,与字母的排列顺序无关;

  ③几个常数项也是同类项。

  合差同类项:

  把代数式中的同类项合并成一项,叫做合并同类项。

  ①合并同类项的理论根据是逆用乘法分配律;

  ②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

  注意:

  ①如果两个同类项的系数互为相反数,合并同类项后结果为0;

  ②不是同类项的不能合并,不能合并的项,在每步运算中都要写上;

  ③只要不再有同类项,就是最后结果,结果还是代数式。

  根据去括号法则去括号:

  括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。

  根据分配律去括号:

  括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。

  注意:

  ①去括号时,要连同括号前面的符号一起去掉;

  ②去括号时,首先要弄清楚括号前是“+”号还是“-”号;

  ③改变符号时,各项都变号;不改变符号时,各项都不变号。

  北师大初中数学知识点

  绝对值

  ⒈绝对值的几何定义

  一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。

  2.绝对值的代数定义

  ⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.

  可用字母表示为:

  ①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

  可归纳为①:a≥0,<═>|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)②a≤0,<═>|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)经典考题

  如数轴所示,化简下列各数

  |a|,|b|,|c|,|a-b|,|a-c|,|b+c|

  解:由题知道,因为a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,

  所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c

  3.绝对值的性质

  任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即⑴0的绝对值是0;绝对值是0的数是0.即:a=0<═>|a|=0;

  ⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;

  ⑶任何数的绝对值都不小于原数。即:|a|≥a;

  ⑷绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;

  ⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;

  ⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;

  ⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。

  (非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)

  如何整理数学学科课堂笔记

  一、内容提纲。老师讲课大多有提纲,并且讲课时老师会将一堂课的线索脉络、重点难点等,简明清晰地呈现在黑板上。同时,教师会使之富有条理性和直观性。记下这些内容提纲,便于课后复习回顾,整体把握知识框架,对所学知识做到胸有成竹、清晰完整。

  二、疑难问题。将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。教师在组织课堂教学时,受到时空的限制,不可能做到顾及每一位同学。相应的,一些问题对部分学生来说,是属于疑难问题,由于课堂上来不及思考成熟,记下疑难问题,可在课后继续加以思考和探究,加以理解和掌握,不致出现知识的断层、方法的缺陷。

  三、思路方法。对老师在课堂上介绍的解题方法和分析思路也应及时记下,课后加以消化,若有疑惑,先作独立分析,因为有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后及时与老师商榷和探讨。勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。在这基础上,若能主动钻研,另辟蹊径,则更难能可贵。

  四、归纳总结。注意记下老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找规律,融会贯通课堂内容都很有作用。同时,很多有经验的老师在课后小结时,一方面是承上归纳所学内容,另一方面又是启下布置预习任务或点明后面所要学的内容,做好笔记可以把握学习的主动权,提前作准备,做到目标任务明确。

  五、错误反思。学习过程中不可避免地会犯这样或那样的错误,记下自己所犯的错误,并用红笔醒目地加以标注,以警示自己,同时也应注明错误成因,正确思路及方法,在反思中成熟,在反思中提高。

  数学常用解题技巧有哪些

  第一,应坚持由易到难的做题顺序。近年来高考数学试题的设置是8道选择题、6道填空题、6到大题,通常称为866结构。在实体设置的结构中有三个小高峰,选择题是由易到难,最难的`题是第8题。填空题同样是这样设置的。也是第9题容易到第14题最难,大题从第15题到第20题,它们的设置也是这样的。根据这样的试题结构,应先做前面容易的,基础好一点的考生就先做前7个选择,前5个填空、前5个大题,称为是755结构。基础差的就是644,先把自己能做的、会做的拿到手。这是第一点。

  第二,审题是关键。把题给看清楚了再动笔答题,看清楚题以后问什么、已知什么、让你做什么,把这些问题搞清楚了,自己制订了一个完整的解题策略,在开始写的时候,这个时候是很快就可以完成的。

  第三,属于非智力因素导致想不起来。本来是很简单的题比如说是做到第三题、第四题的时候不是难题,但想不起来了,卡住了,这时候怎么办?虽然是简单题却不会做怎么办?应先跳过去,不是这道题不会做吗?后面还有很多的简单题呢,把后面的题做一做,不要在考场上愣神,先跳过去做其他的题,等稳定下来以后再回过头来看会顿悟,豁然开朗。

  第四,做选择题的时候应运用最好的解题方法。因为选择题和填空题都是看结果不看过程,因此在这个过程中都应不择手段,只要是能把正确的结论找到就行。考生常用的方法是直接法,从已知的开始也不看它的四个选项,从头到尾写完了之后一看答案就写上去了。另外就是特质法(音),一些出现字母、特别是不等式,这时候给它赋一个值,代进去这时候速度会比较快,正确地找出结果来。再就是数形结合法。最后实在不行了,就将四个选项代入验证,看看哪个符合就是哪个了。填空题用上述的直接法、特质法、数形结合法三种方法都适合。做大题的时候要特别注意解题步骤,规范答题可以减少失分。简单地说,规范答题就是从上一步的原因到下一步的结论,这是一个必然的过程,让谁写、谁看都是这样的。因为什么所以什么是一个必然的过程,这是规范答题。

  学霸分享的数学复习技巧

  1、把答案盖住看例题

  例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。

  所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。

  经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。

  2、研究每题都考什么

  数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。

  3、错一次反思一次

  每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。

  学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了.

  4、分析试卷总结经验

  每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。

  数学解题方法分别有哪些

  1、配方法

  所谓的公式是使用变换解析方程的同构方法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。通过配方解决数学问题的公式。其中,用的最多的是配成完全平方式。匹配方法是数学中不断变形的重要方法,其应用非常广泛,在分解,简化根,它通常用于求解方程,证明方程和不等式,找到函数的极值和解析表达式。

  2、因式分解法

  因式分解是将多项式转换为几个积分产品的乘积。分解是恒定变形的基础。除了引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有很多方法可以进行因式分解。还有一些项目,如拆除物品的使用,根分解,替换,未确定的系数等等。

  3、换元法

  替代方法是数学中一个非常重要和广泛使用的解决问题的方法。我们通常称未知或变元。用新的参数替换原始公式的一部分或重新构建原始公式可以更简单,更容易解决。

  4、判别式法与韦达定理

  一元二次方程 ax2+ bx+ c=0( a、 b、 c属于 R, a≠0)根的判别, = b2-4 ac,不仅用来确定根的性质,还作为一个问题解决方法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何以及三角函数都有非常广泛的应用。

  韦达定理除了知道二次方程的根外,还找到另一根;考虑到两个数的和和乘积的简单应用并寻找这两个数,也可以找到根的对称函数并量化二次方程根的符号。求解对称方程并解决一些与二次曲线有关的问题等,具有非常广泛的应用。

  5、待定系数法

  在解决数学问题时,如果我们首先判断我们所寻找的结果具有一定的形式,其中包含某些未决的系数,然后根据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这些待定系数之间的关系。为了解决数学问题,这种问题解决方法被称为待定系数法。它是中学数学中常用的方法之一。

  6、构造法

  在解决问题时,我们通常通过分析条件和结论来使用这些方法来构建辅助元素。它可以是一个图表,一个方程(组),一个方程,一个函数,一个等价的命题等,架起连接条件和结论的桥梁。为了解决这个问题,这种解决问题的数学方法,我们称之为构造方法。运用结构方法解决问题可以使代数,三角形,几何等数学知识相互渗透,有助于解决问题。

初中数学知识点总结14

  在初中数学课堂教学中,教师不仅需要使用引人入胜的导语、精彩绝伦的讲课过程,同时还应该为学生营造一个回味无穷的课堂结尾,让学生学有所思,学有所悟。不过,在具体的初中数学课堂教学实践中,不少教师往往忽视结尾的重要性,从而弱化了教学效果,而运用艺术性的课堂结尾,能够有效提升学习效率。

  1、初中数学课堂结尾的重要意义

  初中数学课堂结尾指的是教师在结束讲课过程时,在更高层次方面挖掘数学知识之际的内在联系,以及数学思想方法,同导入环节一样,也是课堂教学的重要一部分。一节优秀的初中数学课,从开头直到结尾,教师与学生都应该在思维活跃状态,师生双方都是积极的投入者,应该充分利用课堂时间,使课堂教学效果最大化。在课堂结尾时,学生的思想往往比较放松,容易松懈、疲劳,学习注意力不集中,如果教师运用艺术性的课堂结尾,能够促使学生仍然保持较高的学习热情,使课堂中学习的数学知识在归纳中升华,在总结中延续,在练习中巩固,通过相互比较各个数学知识点之间的区别与联系,设置悬念激发学生的求知欲望,使学生对教学成果有更深层次的认知更加加深了学生对已学到的知识的认知。在初中数学课堂上,结尾与其它环节有机整合,可以使整节数学课产生和谐美与整体美,让学生回味悠长,从而提升数学知识的审美情趣。

  2、初中数学课堂艺术性结尾方法

  2.1运用归纳式结尾,训练思维的发散性:在初中数学课堂结束之前,教师可以使用归纳式的结尾方式,训练学生思维的发散性与集中性。初中数学课堂上的归纳式结尾,要求教师使用简洁、准确的表格、文字和图示等,对本节课已经前面所学习的数学知识进行归纳与总结,不仅可以帮助学生掌握数学知识的重点与系统性,还能够促使他们集中精力思考问题,以及运用数学信息综合分析问题的发散性思维能力,有利于提升学习效率。例如,在进行《直线、射线、线段》教学时,教师可以让学生对这三种线的异同点进行归纳和总结,通过对三者之间的对比与总结,对于直线、射线、线段之间的区别,学生能够掌握的更加深刻,通过生活中实例,让学生找出不同类型的直线、射线与线段,使他们的思维得以发散和集中。

  2.2运用悬念式结尾,训练思维的创造性:在初中数学课堂教学中,为培养学生的创造性思维,教师可以运用悬念式的课堂结尾模式,促使学生在悬念中活跃思维,然后发现新的问题,研究新规律,并且寻求解决问题的新手段。悬念式的初中数学课堂结尾意识形式,指的是教师根据本节课所讲的内容,设置一些与本节或下节知识相关的问题,然后引发学生对问题进行思考和分析,促使他们产生积极的学习状态,引发学生通过思考和分析探究新知识、得出新方法和总结新规律,从而培养学生的创造性思维。这个方法也可以通俗的讲为“吊胃口”,这个方法的好处在于可以调动学生的好奇心,引起他们的兴趣,再加一些奖励的措施,可以起到事半功倍的效果,好奇心和兴趣是学习的最大动力。例如,在进行《等腰三角形》教学时,为训练学生的创造性思维,在课堂结尾时教师可以设置这样一个悬念式问题:为什么等腰三角形会三线合一,让学生对其进行分析和研究,从而为下一节课《等边三角形》做铺垫,引导他们发现等边三角形是最为特殊的等腰三角形,激发学习动力。

  2.3运用讨论式结尾,训练思维的求异性:初中生对于新数学知识的学习与认识,往往是由区别它们的性质开始,所以,求异思维在初中数学教学中十分重要。同时,培养它们的求异思维也是初中数学教学的主要目标之一。求异思维(DivergentThinking),又称辐射思维、放射思维、扩散思维或发散思维,是指大脑在思维时呈现的一种扩散状态的思维模式,它表现为思维视野广阔,思维呈现出多维发散状。如“一题多解”、“一事多写”、“一物多用”等方式,培养发散思维能力。不少心理学家认为,发散思维是创造性思维的最主要的特点,是测定创造力的主要标志之一。为训练学生的求异思维,初中数学教师可以运用讨论式的课堂结尾,让他们对某一数学问题进行探讨,通过互相讨论,彼此分享自己的看法与观点,然后进行比较和鉴别,发现数学知识的不同点与相同点,从而认识正确认识到数学知识的.多元化,训练学生的求异思维。例如,在进行《正方形》教学时,针对课堂结尾,教师为培养学生的求异思维,可以让他们根据本节课的具体教学内容,从定义、性质和判定等方面,讨论正方形、菱形和矩形之间异同,促使学生在求异思维中构建数学知识的纵向联系与横向联系,加强对数学知识点的理解。

  2.4运用练习式结尾,训练思维的系统性:初中数学教师在课堂教学中运用练习式的结尾艺术,指的是在课堂临近结尾时,教师给学生布置一些练习作业,通过练习回顾和训练本节课的主要教学内容,从而训练他们的系统性思维。学生通过对练习题的分析和解决,可以使本节知识掌握的更加牢固和更深层次的理解,从而养成熟练的解题技巧;通过有效的课堂练习,可以检测学生对数学知识的掌握和运用情况,考察学生的数学学习能力和知识应用水平。例如,在进行《一次函数》中“函数的图象”教学时,针对课堂结尾,教师可以给学生布置一些课堂练习题,像:y=2x+3、y=7x-4和7=1/4x+8等,让他们画出这些一次函数的图像,以此来检测学生对知识的掌握与使用情况,促使他们数学知识学习的更加整体,训练学生的系统性思维。

  3、总结

  总之,在初中数学课堂教学中,结尾环节十分重要,许多初入课堂的教师讲课结束得太过突然,对结尾不够重视,有的虎头蛇尾、草草结尾,有的拖堂、拖泥带水啰嗦式的结尾,降低教学效果。他们的结束方法不够平顺,缺乏修饰。正确地说,他们没有结尾,只是突然而急骤地停止。这种方式造成的效果令人感到不愉快,也显示教师本人是个十足的外行。教师在具体的教学实践中对于结尾艺术应该给予特别关照,充分利用课堂结尾,帮助学生巩固数学知识,加强对数学知识的理解与记忆,为下节课做好铺垫工作,从而提升学生的学习效率。

初中数学知识点总结15

  1、不在同一直线上的三点确定一个圆。

  2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1

  ①(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  推论2

  圆的两条平行弦所夹的弧相等

  3、圆是以圆心为对称中心的中心对称图形

  4、圆是定点的距离等于定长的点的集合

  5、圆的内部可以看作是圆心的距离小于半径的点的集合

  6、圆的外部可以看作是圆心的距离大于半径的点的集合

  7、同圆或等圆的半径相等

  8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的'弦心距相等

  10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

  12、①直线L和⊙O相交d

  ②直线L和⊙O相切d=r

  ③直线L和⊙O相离d>r

  13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

  14、切线的性质定理:圆的切线垂直于经过切点的半径

  15、推论1经过圆心且垂直于切线的直线必经过切点

  16、推论2经过切点且垂直于切线的直线必经过圆心

  17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

  18、圆的外切四边形的两组对边的和相等,外角等于内对角

  19、如果两个圆相切,那么切点一定在连心线上

  20、

  ①两圆外离d>R+r

  ②两圆外切d=R+r

  ③两圆相交R-rr)

  ④两圆内切d=R-r(R>r)

  ⑤两圆内含dr)

【初中数学知识点总结】相关文章:

初中数学必备知识点总结03-01

初中数学几何知识点总结11-05

初中数学函数知识点总结11-24

初中数学圆的知识点总结12-05

初中数学函数知识点总结06-14

数学初中知识点总结06-10

初中数学知识点总结07-14

初中数学知识点总结07-15

(优)初中数学知识点总结12-04

初中数学知识点总结(精)05-15