当前位置:育文网>初中>初中数学> 初中数学知识点总结

初中数学知识点总结

时间:2024-06-17 16:00:39 初中数学 我要投稿

初中数学知识点总结汇编15篇

  总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,他能够提升我们的书面表达能力,不妨坐下来好好写写总结吧。如何把总结做到重点突出呢?以下是小编为大家整理的初中数学知识点总结,仅供参考,希望能够帮助到大家。

初中数学知识点总结汇编15篇

初中数学知识点总结1

  第一章:勾股定理

  1.如果直角三角形的两条直角边长分别是a和b,斜边长为c,那么a的平方加上b的平方等于c的平方。

  2.如果直角三角形的两条直角边长分别是a和b,斜边长为c,那么a的平方加上b的平方等于c的平方。

  3.如果直角三角形的两条直角边长分别是a和b,斜边长为c,那么两条直角边长的平方和等于斜边长的平方。

  4.如果直角三角形的两条直角边长分别是a和b,斜边长为c,那么a、b、c三者之间的'关系是a的平方加上b的平方等于c的平方。

  第二章:四边形

  1.平行四边形:两组对边分别平行的四边形叫做平行四边形。

  2.菱形:有一组邻边相等的平行四边形叫做菱形。

  3.矩形:有一个角是直角的平行四边形叫做矩形。

  4.正方形:有一组邻边相等的矩形叫做正方形。

  5.平行四边形的性质:对边平行且相等;对角相等,且互补;对角线互相平分。

  6.菱形的性质:四边相等;对角线互相垂直,且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半。

  7.矩形的性质:矩形的四个角都是直角;矩形的对角线相等。

  8.正方形的性质:四个角都是直角,四条边都相等;对角线相等,且互相垂直平分,每条对角线平分一组对角;正方形被两条对角线分成四个全等的直角三角形;正方形是特殊的长方形,所以正方形具有矩形的一切性质。

  第三章:一次函数

  1.一次函数:如果所给函数表达式是正比例函数,那么它经过原点(0,0);如果所给函数表达式是一次函数(斜截式),那么它经过原点(0,0)。

  2.正比例函数:如果y=kx(k是常数,且k≠0),那么y叫做x的正比例函数。

  3.一次函数:如果正比例函数y=kx(k是常数,且k≠0)的图像经过第一、二、三象限,那么一次函数y=kx+b(k,b是常数,k≠0)的图像也经过第一、二、三象限。

  4.一次函数:如果正比例函数y=kx(k是常数,且k≠0)的图像经过第一、二、三象限,那么一次函数y=kx+b(k,b是常数,k≠0)的图像也经过第一、二、三象限。

  5.正比例函数:如果y=kx(k是常数,且k≠0),那么y叫做x的正比例函数。

  6.一次函数:如果正比例函数y=kx(k是常数,且k≠0)的图像经过第一、二、三象限,那么一次函数y=kx+b(k,b是常数,k≠0)的图像也经过第一、二、三象限。

  7.正比例函数:如果y=kx(k是常数,且k≠0),那么y叫做x的正比例函数。

  8.一次函数:如果正比例函数y=kx(k是常数,且k≠0)的图像经过第一、二、三象限,那么一次函数y=kx+b(k,b是常数,k≠0)的图像也经过第一、二、三象限。

  9.正比例函数:如果y=kx(k是常数,且k≠0),那么y叫做x的正比例函数。

  10.一次函数:如果正比例函数y=kx(k是常数,且k≠0)的图像经过第一、二、三象限,那么一次函数y=kx+b(k,b是常数,k≠0)的图像也经过第一、二、三象限。

初中数学知识点总结2

  1、菱形的定义:有一组邻边相等的平行四边形叫做菱形。

  2、菱形的性质:

  ⑴矩形具有平行四边形的一切性质;

  ⑵菱形的四条边都相等;

  ⑶菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

  ⑷菱形是轴对称图形。

  提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。

  3、因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  4、因式分解要素:

  ①结果必须是整式

  ②结果必须是积的形式

  ③结果是等式

  ④因式分解与整式乘法的关系:m(a+b+c)

  5、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  6、公因式确定方法:

  ①系数是整数时取各项最大公约数。

  ②相同字母取最低次幂

  ③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  7、提取公因式步骤:

  ①确定公因式。

  ②确定商式

  ③公因式与商式写成积的形式。

  8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。a叫被开方数。

  9、中被开方数的取值范围:被开方数a≥0

  10、平方根性质:

  ①一个正数的平方根有两个,它们互为相反数。

  ②0的平方根是它本身0。

  ③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。

  11、平方根与算术平方根区别:定义不同、表示方法不同、个数不同、取值范围不同。

  12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是0

  13、含根号式子的意义:表示a的平方根,表示a的.算术平方根,表示a的负的平方根。

  14、求正数a的算术平方根的方法;

  完全平方数类型:

  ①想谁的平方是数a。

  ②所以a的平方根是多少。

  ③用式子表示。

  求正数a的算术平方根,只需找出平方后等于a的正数。

初中数学知识点总结3

  一、平移变换:

  1、概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。

  2、性质:

  (1)平移前后图形全等;

  (2)对应点连线平行或在同一直线上且相等。

  3、平移的作图步骤和方法:

  (1)分清题目要求,确定平移的方向和平移的距离。

  (2)分析所作的图形,找出构成图形的关健点。

  (3)沿一定的方向,按一定的距离平移各个关健点。

  (4)连接所作的各个关键点,并标上相应的字母。

  (5)写出结论。

  二、旋转变换:

  1、概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

  说明:

  (1)图形的旋转是由旋转中心和旋转的角度所决定的;

  (2)旋转过程中旋转中心始终保持不动。

  (3)旋转过程中旋转的方向是相同的。

  (4)旋转过程静止时,图形上一个点的旋转角度是一样的。⑤旋转不改变图形的大小和形状。

  2、性质:

  (1)对应点到旋转中心的距离相等;

  (2)对应点与旋转中心所连线段的夹角等于旋转角;

  (3)旋转前、后的图形全等。

  3、旋转作图的.步骤和方法:

  (1)确定旋转中心及旋转方向、旋转角;

  (2)找出图形的关键点;

  (3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;

  (4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。

  说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。

  4、常见考法

  (1)把平移旋转结合起来证明三角形全等;

  (2)利用平移变换与旋转变换的性质,设计一些题目。

  误区提醒

  (1)弄反了坐标平移的上加下减,左减右加的规律;

  (2)平移与旋转的性质没有掌握。

初中数学知识点总结4

  一、基本知识

  ㈠、数与代数A、数与式:

  1、有理数

  有理数:

  ①整数→正整数/0/负整数

  ②分数→正分数/负分数

  数轴:

  ①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方

  向为正方向,就得到数轴。

  ②任何一个有理数都可以用数轴上的一个点来表示。

  ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

  ④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

  绝对值:

  ①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的

  绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

  有理数的运算:

  加法:

  ①同号相加,取相同的符号,把绝对值相加。

  ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

  ③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

  ②任何数与0相乘得0。

  ③乘积为1的两个有理数互为倒数。除法:①除以一个数等于乘以一个数的倒数。

  ②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。2、实数

  无理数:无限不循环小数叫无理数

  平方根:

  ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

  ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。

  ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:

  ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

  ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:

  ①实数分有理数和无理数。

  ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。3、代数式

  代数式:单独一个数或者一个字母也是代数式。

  合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

  ②把同类项合并成一项就叫做合并同类项。

  ③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

  4、整式与分式

  整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

  ②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。幂的运算:AM+AN=A(M+N)

  (AM)N=AMN

  (A/B)N=AN/BN除法一样。

  整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作

  为积的因式。

  ②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

  公式两条:平方差公式/完全平方公式

  整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则

  连同他的指数一起作为商的一个因式。

  ②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

  分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。方法:提公因式法、运用公式法、分组分解法、十字相乘法。

  分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

  ②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。分式的运算:

  乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。除法:除以一个分式等于乘以这个分式的倒数。

  加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。B、方程与不等式1、方程与方程组

  一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

  ②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

  解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

  二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的`方程叫做二元一次方程。二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消元法/加减消元法。

  一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系

  大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了2)一元二次方程的解法

  大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法

  利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的

  形式去解(3)公式法

  这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步骤:(1)配方法的步骤:

  先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式

  (2)分解因式法的步骤:

  把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法

  就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4)韦达定理

  利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a

  也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5)一元一次方程根的情况

  利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diaota”,而△=b2-4ac,这里可以分为3种情况:

  I当△>0时,一元二次方程有2个不相等的实数根;II当△=0时,一元二次方程有2个相同的实数根;

  III当△B,A+C>B+C在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数Y=KX的图象是经过原点的一条直线。

  ③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。

  ④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

  ㈡空间与图形A、图形的认识1、点,线,面

  点,线,面:①图形是由点,线,面构成的。

  ②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。

  展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相

  等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。

  截一个几何体:用一个平面去截一个图形,截出的面叫做截面。视图:主视图,左视图,俯视图。

  多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

  ②圆可以分割成若干个扇形。

  2、角

  线:①线段有两个端点。

  ②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。

  比较长短:①两点之间的所有连线中,线段最短。

  ②两点之间线段的长度,叫做这两点之间的距离。

  角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

  ②一度的1/60是一分,一分的1/60是一秒。

  角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。

  ②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。

  ③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  平行:①同一平面内,不相交的两条直线叫做平行线。

  ②经过直线外一点,有且只有一条直线与这条直线平行。

  ③如果两条直线都与第3条直线平行,那么这两条直线互相平行。垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。

  ②互相垂直的两条直线的交点叫做垂足。

  ③平面内,过一点有且只有一条直线与已知直线垂直。垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

  垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

  垂直平分线定理:

  性质定理:在垂直平分线上的点到该线段两端点的距离相等;判定定理:到线段2端点距离相等的点在这线段的垂直平分线上角平分线:把一个角平分的射线叫该角的角平分线。

  定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出

  现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

  性质定理:角平分线上的点到该角两边的距离相等

  判定定理:到角的两边距离相等的点在该角的角平分线上正方形:一组邻边相等的矩形是正方形

  性质:正方形具有平行四边形、菱形、矩形的一切性质判定:1、对角线相等的菱形2、邻边相等的矩形

  二、基本定理

  1、过两点有且只有一条直线2、两点之间线段最短

  3、同角或等角的补角相等4、同角或等角的余角相等

  5、过一点有且只有一条直线和已知直线垂直

  6、直线外一点与直线上各点连接的所有线段中,垂线段最短

  7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补

  15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边

  17、三角形内角和定理三角形三个内角的和等于180°18、推论1直角三角形的两个锐角互余

  19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等

  22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS)有三边对应相等的两个三角形全等

  26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27、定理1在角的平分线上的点到这个角的两边的距离相等

  28、定理2到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合

  30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边

  32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3等边三角形的各角都相等,并且每一个角都等于60°

  34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1三个角都相等的三角形是等边三角形

  36、推论2有一个角等于60°的等腰三角形是等边三角形

  37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半

  5

  39、定理线段垂直平分线上的点和这条线段两个端点的距离相等

  40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1关于某条直线对称的两个图形是全等形

  43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

  44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2

  47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°

  50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°

  52、平行四边形性质定理1平行四边形的对角相等53、平行四边形性质定理2平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等

  55、平行四边形性质定理3平行四边形的对角线互相平分

  56、平行四边形判定定理1两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3对角线互相平分的四边形是平行四边形59、平行四边形判定定理4一组对边平行相等的四边形是平行四边形60、矩形性质定理1矩形的四个角都是直角61、矩形性质定理2矩形的对角线相等

  62、矩形判定定理1有三个角是直角的四边形是矩形63、矩形判定定理2对角线相等的平行四边形是矩形64、菱形性质定理1菱形的四条边都相等

  65、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1四边都相等的四边形是菱形

  68、菱形判定定理2对角线互相垂直的平行四边形是菱形

  69、正方形性质定理1正方形的四个角都是直角,四条边都相等

  70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1关于中心对称的两个图形是全等的

  72、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

  73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等

  76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形

  78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

  80、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

  82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d==m/n(b+d++n≠0),

  那么(a+c++m)/(b+d++n)=a/b

  86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

  88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

  89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  96、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2相似三角形周长的比等于相似比

  98、性质定理3相似三角形面积的比等于相似比的平方

  99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合

  102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等

  105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线

  108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。

  110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1

  ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形

  114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  116、定理一条弧所对的圆周角等于它所对的圆心角的一半

  117、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

  119、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交dr②直线L和⊙O相切d=r③直线L和⊙O相离dr

  122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径

  124、推论1经过圆心且垂直于切线的直线必经过切点125、推论2经过切点且垂直于切线的直线必经过圆心

  126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等

  128、弦切角定理弦切角等于它所夹的弧对的圆周角

  129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

  131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

  132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上

  135、①两圆外离dR+r②两圆外切d=R+r③两圆相交R-rdR+r(Rr)

  ④两圆内切d=R-r(Rr)⑤两圆内含dR-r(Rr)136、定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):

  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形

  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n

  140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2p表示正n边形的周长142、正三角形面积√3a/4a表示边长

  143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

  144、弧长计算公式:L=n兀R/180

  145、扇形面积公式:S扇形=n兀R^2/360=LR/2146、内公切线长=d-(R-r)外公切线长=d-(R+r)

  一、常用数学公式

  公式分类公式表达式乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b|

  |a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

  根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式

  b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根

  b2-4ac归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。8、面积法

  平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

  用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。9、几何变换法

  在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。几何变换包括:(1)平移;(2)旋转;(3)对称。10、客观性题的解题方法

  选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。

  填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。

  (1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

  (2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。

  (3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。

  (4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

  (5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。

  (6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,为分析法。

初中数学知识点总结5

  1.不在同一直线上的三点确定一个圆。

  2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1: ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  推论2 :圆的两条平行弦所夹的弧相等

  3.圆是以圆心为对称中心的中心对称图形。

  4.圆是定点的距离等于定长的点的集合。

  5.圆的内部可以看作是圆心的距离小于半径的点的集合。

  6.圆的外部可以看作是圆心的距离大于半径的点的集合。

  7.同圆或等圆的半径相等。

  8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

  9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等。

  10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角。

  12.①直线L和⊙O相交 d  ②直线L和⊙O相切 d=r  ③直线L和⊙O相离 d>r

  13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线。

  14.切线的性质定理 圆的切线垂直于经过切点的半径。

  15.推论1 经过圆心且垂直于切线的直线必经过切点。

  16.推论2 经过切点且垂直于切线的直线必经过圆心。

  17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角。

  18.圆的外切四边形的两组对边的和相等 外角等于内对角。

  19.如果两个圆相切,那么切点一定在连心线上。

  20.①两圆外离 d>R+r ②两圆外切 d=R+r  ③.两圆相交 R-rr)  ④.两圆内切 d=R-r(R>r) ⑤两圆内含dr)

  21.定理 相交两圆的连心线垂直平分两圆的公共弦。

  22.定理 把圆分成n(n≥3):  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。

  23.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。

  24.正n边形的每个内角都等于(n-2)×180°/n。

  25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。

  26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长。

  27.正三角形面积√3a/4 a表示边长。

  28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4。

  29.弧长计算公式:L=n兀R/180。

  30.扇形面积公式:S扇形=n兀R^2/360=LR/2。

  31.内公切线长= d-(R-r) 外公切线长= d-(R+r)。

  32.定理 一条弧所对的圆周角等于它所对的圆心角的一半。

  33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

  34.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径。

  35.弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r。

  1.直接法:根据选择题的题设条件,通过计算、推理或判断,最后得到题目的所求。

  2.特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;

  在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。

  3.淘汰法:把题目所给的四个结论逐一代回原题的`题干中进行验证,把错误的淘汰掉,直至找到正确的答案。

  4.逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;

  每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。

  5.数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;

  使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。

  常用的数学思想方法

  1.数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;

  使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

  2.联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。

  在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

  如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

  3.分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;

  这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

  4.待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

  为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

  5.配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。

  配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

  6.换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。

  换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

  7.分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;

  则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”

  8.综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”

  9.演绎法:由一般到特殊的推理方法。

  10.归纳法:由一般到特殊的推理方法。

初中数学知识点总结6

  定义

  对应角相等,对应边成比例的两个三角形叫做相似三角形

  比值与比的概念

  比值是一个具体的数字如:AB/EF=2

  而比不是一个具体的数字如:AB/EF=2:1判定方法

  证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。

  方法一(预备定理)

  平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的.定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)

  方法二

  如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

  方法三

  如果两个三角形的两组对应边成比例,并且相应的夹角相等,

  那么这两个三角形相似

  方法四

  如果两个三角形的三组对应边成比例,那么这两个三角形相似

  方法五(定义)

  对应角相等,对应边成比例的两个三角形叫做相似三角形

  三个基本型

  Z型A型反A型

  方法六

  两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。一定相似的三角形

  1、两个全等的三角形

  (全等三角形是特殊的相似三角形,相似比为1:1)

  2、两个等腰三角形

  (两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。)

  3、两个等边三角形

  (两个等边三角形,三角都是60度,且边边相等,所以相似)

  4、直角三角形中由斜边的高形成的三个三角形(母子三角形)

  图形的学习需要大家对于知识的详细了解和渗透,而不是一带而过。

初中数学知识点总结7

  1.常量和变量

  在某变化过程中可以取不同数值的量,叫做变量.在某变化过程中保持同一数值的量或数,叫常量或常数.

  2.函数

  设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.

  3.自变量的取值范围

  (1)整式:自变量取一切实数.(2)分式:分母不为零.

  (3)偶次方根:被开方数为非负数.

  (4)零指数与负整数指数幂:底数不为零.

  4.函数值

  对于自变量在取值范围内的一个确定的值,如当x=a时,函数有唯一确定的对应值,这个对应值,叫做x=a时的函数值.

  5.函数的表示法

  (1)解析法;(2)列表法;(3)图象法.

  6.函数的图象

  把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个函数的图象.由函数解析式画函数图象的步骤:

  (1)写出函数解析式及自变量的取值范围;

  (2)列表:列表给出自变量与函数的一些对应值;

  (3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;

  (4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来.

  7.一次函数

  (1)一次函数

  如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.

  特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数.

  (2)一次函数的图象

  一次函数y=kx+b的图象是一条经过(0,b)点和点的直线.特别地,正比例函数图象是一条经过原点的直线.需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象.

  (3)一次函数的性质

  当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.直线y=kx+b与y轴的交点坐标为(0,b),与x轴的.交点坐标为.

  (4)用函数观点看方程(组)与不等式

  ①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标.

  ②二元一次方程组对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.

  ③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围.

  8.反比例函数(1)反比例函数

  (1)如果(k是常数,k≠0),那么y叫做x的反比例函数.

  (2)反比例函数的图象反比例函数的图象是双曲线.

  (3)反比例函数的性质

  ①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小.

  ②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.

  ③反比例函数图象关于直线y=±x对称,关于原点对称.

  (4)k的两种求法

  ①若点(x0,y0)在双曲线上,则k=x0y0.②k的几何意义:

  若双曲线上任一点A(x,y),AB⊥x轴于B,则S△AOB

  (5)正比例函数和反比例函数的交点问题

  若正比例函数y=k1x(k1≠0),反比例函数,则当k1k2<0时,两函数图象无交点;

  当k1k2>0时,两函数图象有两个交点,坐标分别为由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.

  1.二次函数

  如果y=ax2+bx+c(a,b,c为常数,a≠0),那么y叫做x的二次函数.

  几种特殊的二次函数:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0).

  2.二次函数的图象

  二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线.由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的图象.

  3.二次函数的性质

  二次函数y=ax2+bx+c的性质对应在它的图象上,有如下性质:

  (1)抛物线y=ax2+bx+c的顶点是,对称轴是直线,顶点必在对称轴上;

  (2)若a>0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的任意一点(x,y),当x<时,y随x的增大而减小;当x>时,y随x的增大而增大;当x=,y有最小值;若a<0,抛物线y=ax2+bx+c的开口向下,因此,对于抛物线上的任意一点(x,y),当x<,y随x的增大而增大;当时,y随x的增大而减小;当x=时,y有最大值;

  (3)抛物线y=ax2+bx+c与y轴的交点为(0,c);

  (4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+bx+c与x轴交点的情况:

  <0时,抛物线y=ax2+bx+c与x轴没有公共点.=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点;当=b2-4ac>0,抛物线y=ax2+bx+c与x轴有两个不同的公共点,它们的坐标分别是和,这两点的距离为;当当4.抛物线的平移

  抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)、向左(右)平移,可以得到抛物线y=a(x-h)2+k.平移的方向、距离要根据h、k的值来决定.

初中数学知识点总结8

  初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心,旺盛的求知欲,都有把高中课程学好的愿望。但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥,泛味,抽象,晦涩,有些章节如听天书。在做习题,课外练习时,又是磕磕碰碰,跌跌撞撞,常常感到茫然一片,不知从何下手。造成这种现象的原因是多方面的,但最主要的根源还在于初,高中数学教学上的衔接问题。下面就这个问题进行分析,探讨其原因,寻找解决对策。

  一、高一学生学习数学产生困难是造成数学成绩下降的主要原因

  (一)教材的原因。

  由于实行九年制义务教育和倡导全面提高学生素质,现行初中数学教材在内容上进行了较大幅度的调整,难度,深度和广度大大降低了,那些在高中学习中经常应用到的知识,如:对数,二次不等式,解斜三角形,分数指数幂等内容,都转移到高一阶段补充学习。这样初中教材就体现了"浅,少,易"的特点,但却加重了高一数学的份量。另外,初中数学教材中每一新知识的引入往往与学生日常生活实际很贴近,比较形象,并遵循从感性认识上升到理性认识的规律,学生一般都容易理解,接受和掌握。且目前初中教材叙述方法比较简单,语言通俗易懂,直观性,趣味性强,结论容易记忆,应试效果也比较理想。

  相对而言,高中数学一开始,概念抽象,定理严谨,逻辑性强,教材叙述比较严谨,规范,抽象思维和空间想象明显提高,知识难度加大,且习题类型多,解题技巧灵活多变,计算繁冗复杂,体现了"起点高,难度大,容量多"的特点。

  (二)教法的原因。

  初中数学教学内容少,知识难度不大,教学要求较低,因而教学进度较慢,对于某些重点,难点,教师可以有充裕的时间反复讲解,多次演练,从而各个击破、另外,为了应付中考,初中教师大多数采用"满堂灌"填鸭式的教学模式,单纯地向学生传授知识,并让学生通过机械模仿式的重复练习以达到熟能生巧的程度,结果造成"重知识,轻能力","重局部,轻整体","重试卷(复习资料),轻书本"的不良倾向。这种封闭被动的传统教学方式严重束缚了学生思维的发展,影响了学生发现意识的形成,创新思维受到了扼制。但是进入高中以后,教材内涵丰富,教学要求高,进度快,知识信息广泛,题目难度加深,知识的重点和难点也不可能象初中那样通过反复强调来排难释疑。而且高中教学往往通过设导,设问,设陷,设变,启发引导,开拓思路,然后由学生自己去思考,去解答,比较注意知识的发生过程,倾重对学生思想方法的渗透和思维品质的培养。这使得刚进入高中的学生不容易适应这种教学方法。听课时就存在思维障碍,不容易跟上教师的思维,从而产生学习障碍,影响数学的学习。

  (三)学生自身的原因。

  ①被动学习

  在初中,教师讲得细,类型归纳得全,反复练习。考试时,学生只要记忆概念,公式,及例题类型,一般都可以对号入座取得好成绩。因此,学生习惯于围着教师转,不需要独立思考和对规律进行归纳总结。学生满足于你讲我听,你放我录,缺乏学习主动性。表现在不定计划,坐等上课,课前没有预习,对老师上课的内容不了解,上课忙于记笔记,没听到"门道",没有真正理解所学内容。而到了高中,数学学习要求学生勤于思考,善于归纳总结规律,掌握数学思想方法,做到举一反三,触类旁通。所以,刚入学的高一新生,往往沿用初中学法,致使学习出现困难,完成当天作业都很困难,更没有预习,复习,总结等自我消化,自我调整的时间。这显然不利于良好学法的形成和学习质量的提高。造成高一学生数学学习的困难。

  ②学不得法

  老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固,总结,寻找知识间的联系,只是赶做作业,乱套题型,对概念,法则,公式,定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

  二、搞好初高中数学教学衔接,帮助学生渡过学习数学"困难期"的对策

  (一)做好准备工作,为搞好衔接打好基础。

  1、搞好入学教育。这是搞好衔接的基础工作,也是首要工作。

  通过入学教育提高学生对初高中衔接重要性的认识,增强紧迫感,消除松懈情绪,初步了解高中数学学习的特点,为其它措施的落实奠定基础。这里主要做好四项工作:一是给学生讲清高一数学在整个中学数学中所占的位置和作用;二是结合实例,采取与初中对比的方法,给学生讲清高中数学内容体系特点和课堂教学特点;三是结合实例给学生讲明初高中数学在学法上存在的本质区别,并向学生介绍一些优秀学法,指出注意事项;四是请高年级学生谈体会讲感受,引导学生少走弯路,尽快适应高中学习。

  2、摸清底数,规划教学。为了搞好初高中衔接,教师首先要摸清学生的学习基础,然后以此来规划自己的教学和落实教学要求,以提高教学的针对性。在教学实际中,一方面通过进行摸底测试和对入学成绩的分析,了解学生的基础;另一方面,认真学习和比较初高中教学大纲和教材,以全面了解初高中数学知识体系,找出初高中知识的衔接点,区别点和需要铺路搭桥的知识点,以使备课和讲课更符合学生实际,更具有针对性。

  (二)优化课堂教学环节,搞好初高中数学知识衔接教学。

  1、立足于大纲和教材,尊重学生实际,实行层次教学。

  高一数学中有许多难理解和掌握的知识点,如集合,映射等,对高一新生来讲确实困难较大。因此,在教学中,应从高一学生实际出发,采用低起点,小梯度,多训练,分层次"的'方法,将教学目标分解成若干递进层次逐层落实。在速度上,放慢起始进度,逐步加快教学节奏。在知识导入上,多由实例和已知引入。在知识落实上,先落实"死"课本,后变通延伸用活课本。在难点知识讲解上,从学生理解和掌握的实际出发,对教材作必要层次处理和知识铺垫,并对知识的理解要点和应用注意点作必要总结及举例说明。

  2、重视新旧知识的联系与区别,建立知识网络。

  初高中数学有很多衔接知识点,如函数概念,平面几何与立体几何相关知识等,到高中,它们有的加深了,有的研究范围扩大了,有些在初中成立的结论到高中可能不成立。因此,在讲授新知识时,应当有意引导学生联系旧知识,复习和区别旧知识,特别注重对那些易错易混的知识加以分析,比较和区别。这样可达到温故知新,温故而探新的效果。

  3、重视展示知识的形成过程和方法探索过程,培养学生创造能力。

  高中数学比初中数学抽象性强,应用灵活,这就要求学生对知识理解要透,应用要活,不能只停留在对知识结论的死记硬套上,这就要求教师应向学生展示新知识和新解法的产生背景,形成和探索过程,不仅使学生掌握知识和方法的本质,提高应用的灵活性,而且还使学生学会如何质疑和释疑的思想方法,促进创造性思维能力的提高。

  4、重视培养学生自我反思自我总结的良好习惯,提高学习的自觉性。

  高中数学概括性强,题目灵活多变,课上听懂是不够的,需要课后进行认真消化,认真总结归纳。这就要求学生应具备善于自我反思和自我总结的能力。因此,在教学中,应当抓住时机积极培养。在单元结束时,帮助学生进行自我章节小结,在解题后,积极引导学生反思:思解题思路和步骤,思一题多解和一题多变,思解题方法和解题规律的总结。由此培养学生善于进行自我反思的习惯,扩大知识和方法的应用范围,提高学习效率。

  (三)加强学法指导,培养良好学习习惯

初中数学知识点总结9

  1.相似三角形定义:

  对应角相等,对应边成比例的三角形,叫做相似三角形。

  2.相似三角形的表示方法:用符号"∽"表示,读作"相似于"。

  3.相似三角形的相似比:

  相似三角形的对应边的比叫做相似比。

  4.相似三角形的预备定理:

  平行于三角形一边的'直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

  从表中可以看出只要将全等三角形判定定理中的"对应边相等"的条件改为"对应边

  成比例"就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。

  6.直角三角形相似:

  (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

  (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

  7.相似三角形的性质定理:

  (1)相似三角形的对应角相等。

  (2)相似三角形的对应边成比例。

  (3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

  (4)相似三角形的周长比等于相似比。

  (5)相似三角形的面积比等于相似比的平方。

  8. 相似三角形的传递性

  如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2

初中数学知识点总结10

  1、乘法与因式分解

  a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)

  2、三角不等式

  |a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b|-|a|≤a≤|a|

  3、一元二次方程的解

  -b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a

  4、根与系数的关系

  X1+X2=-b/a X1*X2=c/a注:韦达定理

  5、判别式

  ①b2-4a=0注:方程有相等的两实根

  ②b2-4ac>0注:方程有一个实根

  ③b2-4ac<0注:方程有共轭复数根

  6、三角函数公式

  ①两角和公式

  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  ②倍角公式

  tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  ③半角公式

  sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

  ④和差化积

  2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

  ⑤某些数列前n项和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

  1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1)

  12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/4

  1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  ⑥正弦定理

  a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

  ⑦余弦定理

  b2=a2+c2-2accosB注:角B是边a和边c的夹角

  ⑧圆的方程

  圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

  圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

  ⑨立体体积与侧面积

  直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h

  正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'

  圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2

  圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l

  弧长公式l=a*r a是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

  锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h

  斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

  柱体体积公式V=s*h圆柱体V=pi*r2h

  二、初中几何公式

  1、平行线证明

  ①经过直线外一点,有且只有一条直线与这条直线平行

  ②如果两条直线都和第三条直线平行,这两条直线也互相平行

  ③同位角相等,两直线平行

  ④内错角相等,两直线平行

  ⑤同旁内角互补,两直线平行

  ⑥两直线平行,同位角相等

  ⑦两直线平行,内错角相等

  ⑧两直线平行,同旁内角互补

  2、全等三角形证明

  ①边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

  ②角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

  ③推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

  ④边边边公理(SSS)有三边对应相等的两个三角形全等

  ⑤斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

  3、三角形基本定理

  ①定理1在角的平分线上的点到这个角的两边的距离相等

  ②定理2到一个角的两边的距离相同的点,在这个角的平分线上

  ③角的平分线是到角的两边距离相等的所有点的集合

  ④等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

  ⑤推论1等腰三角形顶角的平分线平分底边并且垂直于底边

  ⑥等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

  ⑦推论3等边三角形的各角都相等,并且每一个角都等于60°

  ⑧等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

  ⑨直角三角形

  4、多边形定理

  ①定理四边形的内角和等于360°

  ②四边形的外角和等于360°

  ③多边形内角和定理n边形的内角的和等于(n-2)×180°

  ④推论任意多边的外角和等于360°

  5、平行四边形证明与等腰梯形证明

  ①平行四边形性质定理1平行四边形的对角相等

  ②平行四边形性质定理2平行四边形的对边相等

  ③平行四边形性质定理3平行四边形的对角线互相平分

  ……

  ④矩形性质定理1矩形的四个角都是直角

  ⑤矩形性质定理2矩形的对角线相等

  ……

  ⑥等腰梯形性质定理等腰梯形在同一底上的两个角相等

  ⑦等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

  ⑧推论1经过梯形一腰的`中点与底平行的直线,必平分另一腰

  ⑨推论2经过三角形一边的中点与另一边平行的直线,必平分第三边

  7、相似三角形证明

  ①相似三角形判定定理1两角对应相等,两三角形相似(ASA)

  ②判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)

  ③判定定理3三边对应成比例,两三角形相似(SSS)

  ④定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  ⑤性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

  ⑥性质定理2相似三角形周长的比等于相似比

  ⑦性质定理3相似三角形面积的比等于相似比的平方

  8、弦和圆的证明

  ①定理不在同一直线上的三点确定一个圆。

  ②垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  ③推论1

  平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  ④推论2圆的两条平行弦所夹的弧相等

  ⑤圆是以圆心为对称中心的中心对称图形

  ⑥定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦

  相等,所对的弦的弦心距相等

  ⑦线与圆的位置关系

  直线L和⊙O相交d

  直线L和⊙O相切d=r

  直线L和⊙O相离d>r

  ⑧圆与圆之间的位置关系

  两圆外离d>R+r②两圆外切d=R+r

  两圆相交R-r

  两圆内切d=R-r(R>r)

  两圆内含dr)

  QQ截图20150129173906.jpg

  三、数学学习方法

  1、突出一个“勤”字(克服一个“惰”字)

  数学家华罗庚曾经说过:“聪明在于学习,天才在于勤奋”,“勤能补拙是良训,一分辛劳一分才“:我们在学习的时候要突出一个勤字,克服一个“懒”字,怎么突出“勤”字,从这个字面上来看,要做到五勤:“耳勤”“眼勤”(耳朵听,眼睛看,接受信息)

  “口勤”(讨论,回答问题,而不是讲话,消化信息)“脑勤”(善于思考问题,积极思考问题——吸收、储存信息)那是不是做到以上四点就行了呢?不是。这个字还有缺陷,在聪下面加上“手”

  “手勤”(动手多实践,不仅光做题,做课件,做模型)

  这样的人聪明不聪明?

  最大的提高学习效率,首先要做到——上课认真听讲(这是根本)回家先复习再做题如果课听不好,就别想消化知识

  2、学好初中数学还有两个要点,要狠抓两个要点:

  学好数学,一要(动手),二要(动脑)。动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知想象之间有什么联系,多问几个为什么。动手就是多实践,多做题,要“拳不离手”(武术)“曲不离口”(唱歌)。同学就是“题不离手”,这两个要点大家要记住。“动脑又动手,才能最大地发挥大脑的效率”

  3、做到“三个一遍”

  大家听过“失败是成功之母”听过“重复是学习之母”吗?培根(18-19世纪英国的哲学家)——“知识就是力量”,“重复是学习之母”。如何重复,我给你们解释一下:

  “上课要认真听一遍,动手推一遍,想一遍”

  “下课看”

  “考试前”

  4、重视“四个依据”

  读好一本教科书——它是教学、中考的主要依据;

  记好一本笔记——它是教师多年经验的结晶;

  做好做净一本习题集——它是使知识拓宽;

  记好一本心得笔记,最好每人自己准备一本错题集

初中数学知识点总结11

  ∴当x1时函数取得最大值,且ymax(1)2(1)13例4、已知函数f(x)x22(a1)x2

  4],求实数a的取值(1)若函数f(x)的递减区间是(,4]上是减函数,求实数a的取值范围(2)若函数f(x)在区间(,分析:二次函数的单调区间是由其开口方向及对称轴决定的,要分清函数在区间A上是单调函数及单调区间是A的区别与联系

  解:(1)f(x)的'对称轴是x可得函数图像开口向上

  2(a1)21a,且二次项系数为1>0

  1a]∴f(x)的单调减区间为(,∴依题设条件可得1a4,解得a3

  4]上是减函数(2)∵f(x)在区间(,4]是递减区间(,1a]的子区间∴(,∴1a4,解得a3

  例5、函数f(x)x2bx2,满足:f(3x)f(3x)

  (1)求方程f(x)0的两根x1,x2的和(2)比较f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函数图像的对称轴为x(3x)(3x)23

  b3可得b62f(x)x26x2(x3)211

  而f(x)的图像与x轴交点(x1,0)、(x2,0)关于对称轴x3对称

  x1x223,可得x1x26

  第三章第32页由二次项系数为1>0,可知抛物线开口向上又134,132,431

  ∴依二次函数的对称性及单调性可f(4)f(1)f(1)(III)课后作业练习六

  (Ⅳ)教学后记:

  第三章第33页

  扩展阅读:初中数学函数知识点归纳

  学大教育

  初中数学函数板块的知识点总结与归类学习方法

  初中数学知识大纲中,函数知识占了很大的知识体系比例,学好了函数,掌握了函数的基本性质及其应用,真正精通了函数的每一个模块知识,会做每一类函数题型,就读于中考中数学成功了一大半,数学成绩自然上高峰,同时,函数的思想是学好其他理科类学科的基础。初中数学从性质上分,可以分为:一次函数、反比例函数、二次函数和锐角三角函数,下面介绍各类函数的定义、基本性质、函数图象及函数应用思维方式方法。

  一、一次函数

  1.定义:在定义中应注意的问题y=kx+b中,k、b为常数,且k≠0,x的指数一定为1。2.图象及其性质(1)形状、直线

初中数学知识点总结12

  三角形两边:

  定理三角形两边的和大于第三边。

  推论三角形两边的差小于第三边。

  三角形中位线定理:

  三角形的中位线平行于第三边,并且等于它的一半。

  三角形的重心:

  三角形的重心到顶点的距离是它到对边中点距离的2倍。

  在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线,三角形的三条中线交于一点,这一点叫做“三角形的重心”。

  与三角形有关的角:

  1、三角形的内角和定理:三角形的内角和为180°,与三角形的形状无关。

  2、直角三角形两个锐角的关系:直角三角形的两个锐角互余(相加为90°)。有两个角互余的`三角形是直角三角形。

  3、三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角之和;三角形的一个外角大于与它不相邻的任何一个内角;三角形三个外角和为360°。

  全等三角形的性质和判定:

  全等三角形共有5种判定方式:SSS、SAS、ASA、AAS、HL。特殊情况下平移、旋转、对折也会构成全等三角形。

  (边边边),即三边对应相等的两个三角形全等。

  (边角边),即三角形的其中两条边对应相等,且两条边的夹角也对应相等的两个三角形全等。

  (角边角),即三角形的其中两个角对应相等,且两个角夹的的边也对应相等的两个三角形全等。

  (角角边),即三角形的其中两个角对应相等,且对应相等的角所对应的边也对应相等的两个三角形全等。

  (斜边、直角边),即在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等。

  等边三角形的判定:

  1、三边相等的三角形是等边三角形(定义)。

  2、三个内角都相等的三角形是等边三角形。

  3、有一个角是60度的等腰三角形是等边三角形。

  4、有两个角等于60度的三角形是等边三角形。

初中数学知识点总结13

  一、特殊的平行四边形:

  1.矩形:

  (1)定义:有一个角是直角的平行四边形。

  (2)性质:矩形的四个角都是直角;矩形的对角线平分且相等。

  (3)判定定理:

  ①有一个角是直角的平行四边形叫做矩形。

  ②对角线相等的平行四边形是矩形。

  ③有三个角是直角的四边形是矩形。

  直角三角形的性质:直角三角形中所对的直角边等于斜边的一半。

  2.菱形:

  (1)定义:邻边相等的平行四边形。

  (2)性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

  (3)判定定理:

  ①一组邻边相等的平行四边形是菱形。

  ②对角线互相垂直的平行四边形是菱形。

  ③四条边相等的四边形是菱形。

  (4)面积:

  3.正方形:

  (1)定义:一个角是直角的菱形或邻边相等的'矩形。

  (2)性质:四条边都相等,四个角都是直角,对角线互相垂直平分。正方形既是矩形,又是菱形。

  (3)正方形判定定理:

  ①对角线互相垂直平分且相等的四边形是正方形;

  ②一组邻边相等,一个角为直角的平行四边形是正方形;

  ③对角线互相垂直的矩形是正方形;

  ④邻边相等的矩形是正方形

  ⑤有一个角是直角的菱形是正方形;

  ⑥对角线相等的菱形是正方形。

  二、矩形、菱形、正方形与平行四边形、四边形之间的联系:

  1.矩形、菱形和正方形都是特殊的平行四边形,其性质都是在平行四边形的基础上扩充来的。矩形是由平行四边形增加“一个角为90°”的条件得到的,它在角和对角线方面具有比平行四边形更多的特性;菱形是由平行四边形增加“一组邻边相等”的条件得到的,它在边和对角线方面具有比平行四边形更多的特性;正方形是由平行四边形增加“一组邻边相等”和“一个角为90°”两个条件得到的,它在边、角和对角线方面都具有比平行四边形更多的特性。

  2.矩形、菱形的判定可以根据出发点不同而分成两类:一类是以四边形为出发点进行判定,另一类是以平行四边形为出发点进行判定。而正方形除了上述两个出发点外,还可以从矩形和菱形出发进行判定。

  三、判定一个四边形是特殊四边形的步骤:

  常见考法

  (1)利用菱形、矩形、正方形的性质进行边、角以及面积等计算;

  (2)灵活运用判定定理证明一个四边形(或平行四边形)是菱形、矩形、正方形;

  (3)一些折叠问题;

  (4)矩形与直角三角形和等腰三角形有着密切联系、正方形与等腰直角三角形也有着密切联系。所以,以此为背景可以设置许多考题。

  误区提醒

  (1)平行四边形的所有性质矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性质平行四边形不一定具有,这点易出现混淆;

  (2)矩形、菱形具有的性质正方形都具有,而正方形具有的性质,矩形不一定具有,菱形也不一定具有,这点也易出现混淆;

  (3)不能正确的理解和运用判定定理进行证明,(如在证明菱形时,把四条边相等的四边形是菱形误解成两组邻边相等的四边形是菱形);

  (4)再利用对角线长度求菱形的面积时,忘记乘;

  (5)判定一个四边形是特殊的平行四边形的条件不充分。

初中数学知识点总结14

  1、相交线

  对顶角相等。

  过一点有且只有一条直线与已知直线垂直。

  连接直线外一点与直线上各点的'所有线段中,垂线段最短(简单说成:垂线段最短)。

  2、平行线

  经过直线外一点,有且只有一条直线与这条直线平行。

  如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

  直线平行的条件:

  两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

  两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

  两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

  3、平行线的性质

  两条平行线被第三条直线所截,同位角相等。

  两条平行线被第三条直线所截,内错角相等。

  两条平行线被第三条直线所截,同旁内角互补。

  判断一件事情的语句,叫做命题。

初中数学知识点总结15

  第一章图形的变换

  考点一、平移(3~5分)

  1、定义

  把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。

  2、性质

  (1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动

  (2)连接各组对应点的线段平行(或在同一直线上)且相等。

  考点二、轴对称(3~5分)

  1、定义

  把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。

  2、性质

  (1)关于某条直线对称的两个图形是全等形。

  (2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

  (3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

  3、判定

  如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

  4、轴对称图形

  把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

  考点三、旋转(3~8分)

  1、定义

  把一个图形绕某一点o转动一个角度的图形变换叫做旋转,其中o叫做旋转中心,转动的角叫做旋转角。

  2、性质

  (1)对应点到旋转中心的距离相等。

  (2)对应点与旋转中心所连线段的夹角等于旋转角。

  考点四、中心对称(3分)

  1、定义

  把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

  2、性质

  (1)关于中心对称的两个图形是全等形。

  (2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

  (3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

  3、判定

  如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

  4、中心对称图形

  把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

  考点五、坐标系中对称点的特征(3分)

  1、关于原点对称的点的特征

  两个点关于原点对称时,它们的坐标的符号相反,即点p(x,y)关于原点的对称点为p’(-x,-y)

  2、关于x轴对称的点的特征

  两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点p(x,y)关于x轴的对称点为p’(x,-y)

  3、关于y轴对称的点的特征

  两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点p(x,y)关于y轴的对称点为p’(-x,y)

  第二章图形的相似

  考点一、比例线段(3分)

  1、比例线段的相关概念

  如果选用同一长度单位量得两条线段a,b的长度分别为m,n,那么就说这两条线段的比是,或写成a:b=m:n

  在两条线段的比a:b中,a叫做比的前项,b叫做比的后项。

  在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段

  若四条a,b,c,d满足或a:b=c:d,那么a,b,c,d叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项,线段的d叫做a,b,c的第四比例项。

  如果作为比例内项的是两条相同的线段,即或a:b=b:c,那么线段b叫做线段a,c的比例中项。

  2、比例的性质

  (1)基本性质

  ①a:b=c:dad=bc

  ②a:b=b:c

  (2)更比性质(交换比例的内项或外项)

  (交换内项)

  (交换外项)

  (同时交换内项和外项)

  (3)反比性质(交换比的前项、后项):

  (4)合比性质:

  (5)等比性质:

  3、黄金分割

  把线段ab分成两条线段ac,bc(ac>bc),并且使ac是ab和bc的比例中项,叫做把线段ab黄金分割,点c叫做线段ab的黄金分割点,其中ac=ab0.618ab

  考点二、平行线分线段成比例定理(3~5分)

  三条平行线截两条直线,所得的对应线段成比例。

  推论:

  (1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

  逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的`第三边。

  (2)平行于三角形一边且和其他两边相交的直线截得的三角形的三边与原三角形的三边对应成比例。

  考点三、相似三角形(3~8分)

  1、相似三角形的概念

  对应角相等,对应边成比例的三角形叫做相似三角形。相似用符号“∽”来表示,读作“相似于”。相似三角形对应边的比叫做相似比(或相似系数)。

  2、相似三角形的基本定理

  平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

  用数学语言表述如下:

  ∵de∥bc,∴△ade∽△abc

  相似三角形的等价关系:

  (1)反身性:对于任一△abc,都有△abc∽△abc;

  (2)对称性:若△abc∽△a’b’c’,则△a’b’c’∽△abc

  (3)传递性:若△abc∽△a’b’c’,并且△a’b’c’∽△a’’b’’c’’,则△abc∽△a’’b’’c’’。

  3、三角形相似的判定

  (1)三角形相似的判定方法

  ①定义法:对应角相等,对应边成比例的两个三角形相似

  ②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

  ③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

  ④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

  ⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似

  (2)直角三角形相似的判定方法

  ①以上各种判定方法均适用

  ②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  ③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

  4、相似三角形的性质

  (1)相似三角形的对应角相等,对应边成比例

  (2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比

  (3)相似三角形周长的比等于相似比

  (4)相似三角形面积的比等于相似比的平方。

  5、相似多边形

  (1)如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形。相似多边形对应边的比叫做相似比(或相似系数)

  (2)相似多边形的性质

  ①相似多边形的对应角相等,对应边成比例

  ②相似多边形周长的比、对应对角线的比都等于相似比

  ③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比

  ④相似多边形面积的比等于相似比的平方

  6、位似图形

  如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比。

  性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比。

  由一个图形得到它的位似图形的变换叫做位似变换。利用位似变换可以把一个图形放大或缩小。

【初中数学知识点总结】相关文章:

初中数学必备知识点总结03-01

初中数学几何知识点总结11-05

初中数学函数知识点总结11-24

初中数学圆的知识点总结12-05

初中数学函数知识点总结06-14

数学初中知识点总结06-10

初中数学知识点总结07-14

初中数学知识点总结07-15

初中数学知识点总结(精选)06-16

(优)初中数学知识点总结12-04