【精品】初中数学知识点总结
总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,写总结有利于我们学习和工作能力的提高,是时候写一份总结了。但是却发现不知道该写些什么,以下是小编收集整理的初中数学知识点总结,仅供参考,希望能够帮助到大家。
初中数学知识点总结1
一、投影
1、投影:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。
2、平行投影:由平行光线形成的投影是平行投影。(光源特别远)
3、中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影
4、正投影:投影线垂直于投影面产生的投影叫做正投影。物体正投影的形状、大小与它相对于投影面的位置有关。
5、当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同。当物体的某个面顶斜于投影面时,这个面的正投影变小。当物体的某个面垂直于投影面时,这个面的正投影成为一条直线。
二、三视图
1、三视图:是观测者从三个不同位置(正面、水平面、侧面)观察同一个空间几何体而画出的图形。三视图就是主视图、俯视图、左视图的总称。另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
2、主视图:在正面内得到的由前向后观察物体的视图。
3、俯视图:在水平面内得到的由上向下观察物体的视图。
4、左视图:在侧面内得到的由左向右观察物体的视图。
5、三个视图的位置关系:
①主视图在上、俯视图在下、左视图在右;
②主视、俯视表示物体的长,主视、左视表示物体的高,左视、俯视表示物体的宽。
③主视、俯视长对正,主视、左视高平齐,左视、俯视宽相等。
6、画法:看得见的部分的轮廓线画成实线,因被其它部分遮档而看不见的部分的轮廓线画成虚线。
邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的'两条直线叫做平行线。
同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
命题:判断一件事情的语句叫命题。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
初中数学知识点总结2
知识要点:数列中的项必须是数,它可以是实数,也可以是复数。
数列表示方法
如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。如an=(-1)^(n+1)+1。
数列通项公式的特点:(1)有些数列的通项公式可以有不同形式,即不唯一。(2)有些数列没有通项公式
如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。如an=2a(n-1)+1 (n>;1)
数列递推公式的特点:(1)有些数列的递推公式可以有不同形式,即不唯一。(2)有些数列没有递推公式
有递推公式不一定有通项公式
知识要领总结:数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为_轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的'数轴叫做_轴或横轴,铅直的数轴叫做y轴或纵轴,_轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质
下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的一般步骤
关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。
初中数学知识点总结3
一、“三步六环”复习课型范式构建的背景分析
(一)初三数学总复习的低效教学影响了中考教学质量的提高
初三数学的复习教学,注重“四基”(基础知识、基本技能、基本思想和基本活动经验)的巩固和“四能”(发现问题、提出问题、分析问题、解决问题的能力)的提升。由于受复习教学方法传统、时间不足等因素的限制,往往不能处理好知识巩固与能力提升之间的关系,导致复习教学实效不强。尤其是在初三下学期的复习教学中,大多数教师采用“一基础二专题三综合”的复习方式,使得复习教学“高耗低效”,不能大大提高学生发现问题、提出问题、分析问题和解决问题的能力。同时在复习教学中,往往采用市面上的'教辅资料,内容超标,试题偏难,不符合复习教学的要求,制约着初三中考数学教学质量的提高。
(二)“三步六环”复习课型范式是课改实验教学的时代产物
目前,基础教育课程改革深入推进,虽然带来了许多可喜的变化,但许多一线初三教师在实践中看到了许多隐藏的教学危机。如何利用小组合作学习提高初三中考的教学质量,是许多课改实验学校面临的重大课题。笔者对任教学校班级的学生进行了抽样访谈,访谈分析反映出初三学生数学总复习阶段的四个问题:一是不熟悉中考数学考纲的考试要求和考试目标,没有明确的初三数学总复习的方向;二是数学基础知识掌握不够全面,没有完整的认知结构,对初中数学知识的逻辑关系不清晰;三是数学基本解题技能掌握不足,对初中数学知识的应用把握不清;四是数学基本思想和基本活动经验欠缺,不能灵活地运用所学知识和技能。
“三步六环”复习课型范式的实践研究,能转变教师复习课的教学理念,建立更加适合本地区教学实际情况的初三数学“三步六环”复习课型的范式,掌握更加科学有效的复习方法,形成优质的初三数学复习教学资源,提升初三教师的数学专业能力,转变学生的数学学习方式,提升学生的课堂参与度,变被动的枯燥复习为主动的兴趣探究,从而提高初三数学的教学质量。
二、“三步六环”复习课型范式构建的策略分析
(一)关键词的概念界定
1、复习课型。复习课型是根据学生的认知特点和规律,在学习的某一阶段,以巩固、疏理已学知识、技能,促进知识系统化,提高学生运用所学知识解决问题的能力为主要任务的一种课型。开展数学复习课的目的是温故知新,查漏补缺,完善认知结构,促进学生解题思想方法的形成,发展数学能力,增强学生运用数学知识解决问题的能力。
2、“三步六环”。这是一种适合初三数学总复习教学的高效课堂模式,其基本框架如下:
主要包括:
(1)“三步”:第一步“先做后讲”,体现在三点:①学生提前1~2天完成下发的复习导学案;②老师及时批改了解学生的预习情况;③老师根据考纲、课标,结合学生的预习反馈进行二次备课。
第二步“反思诊断”,体现在四点:①有反思――作业讲评;②有跟进――针对内容的重难点和学生的易错点;③有变式――针对内容的重难点和学生的易错点;④有系统――二次订正整理。
第三步“滚动测试”,体现在两点:①滚动及时――重点考查近期重难点、易错点知识;②反馈评价――关注师徒、小组捆绑评价。
(2)“六环”:指初三数学复习课堂教学的六个步骤:自主复习、合作交流、展示质疑、典例精讲、训练达标、总结评价。这六环环h递进、相辅相成。只有保持复习课堂高效的可持续性,才能保障中考教学质量的提升,这里很关键的两点因素应务必关注:其一,教师要精心研读课标考纲,悉心研究中考试题,用心编制总复习导学案,为学生高效进行总复习指明方向;其二,课堂教学中的发展性评价应及时跟进,让学生学会反思归纳,分享复习的快乐。
初中数学知识点总结4
∴当x1时函数取得最大值,且ymax(1)2(1)13例4、已知函数f(x)x22(a1)x2
4],求实数a的取值(1)若函数f(x)的递减区间是(,4]上是减函数,求实数a的取值范围(2)若函数f(x)在区间(,分析:二次函数的单调区间是由其开口方向及对称轴决定的,要分清函数在区间A上是单调函数及单调区间是A的区别与联系
解:(1)f(x)的对称轴是x可得函数图像开口向上
2(a1)21a,且二次项系数为1>0
1a]∴f(x)的单调减区间为(,∴依题设条件可得1a4,解得a3
4]上是减函数(2)∵f(x)在区间(,4]是递减区间(,1a]的子区间∴(,∴1a4,解得a3
例5、函数f(x)x2bx2,满足:f(3x)f(3x)
(1)求方程f(x)0的两根x1,x2的和(2)比较f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函数图像的对称轴为x(3x)(3x)23
b3可得b62f(x)x26x2(x3)211
而f(x)的图像与x轴交点(x1,0)、(x2,0)关于对称轴x3对称
x1x223,可得x1x26
第三章第32页由二次项系数为1>0,可知抛物线开口向上又134,132,431
∴依二次函数的对称性及单调性可f(4)f(1)f(1)(III)课后作业练习六
(Ⅳ)教学后记:
第三章第33页
扩展阅读:初中数学函数知识点归纳
学大教育
初中数学函数板块的知识点总结与归类学习方法
初中数学知识大纲中,函数知识占了很大的知识体系比例,学好了函数,掌握了函数的基本性质及其应用,真正精通了函数的每一个模块知识,会做每一类函数题型,就读于中考中数学成功了一大半,数学成绩自然上高峰,同时,函数的'思想是学好其他理科类学科的基础。初中数学从性质上分,可以分为:一次函数、反比例函数、二次函数和锐角三角函数,下面介绍各类函数的定义、基本性质、函数图象及函数应用思维方式方法。
一、一次函数
1.定义:在定义中应注意的问题y=kx+b中,k、b为常数,且k≠0,x的指数一定为1。2.图象及其性质(1)形状、直线
初中数学知识点总结5
关键词:初一数学;基础知识;教学策略
初中数学是一个整体,相对而言,初一数学知识点很多,注重基础,初一数学是对学数学的适当深入,也为后续的学习打下良好的基础。在初一数学的教学中,注重学生基础知识的掌握是非常必要的。如今的现状是,刚入初中的学生并没有对打好数学基础有足够的重视。一些学生刚进入初中,在数学学习中感受不到压力,没有投入足够的精力,因而渐渐地就积累了很多关于基础知识的小问题,这些小问题在学生进入后续的学习中,慢慢就越来越多,形成大问题,大问题渐渐就会凸显出来,学生渐渐就会感到力不从心。下面就针对初一学生学习中的问题,具体谈谈如何打好初一数学的基础。
一、打好初一数学基础的重要性
进入中学,学生的科目增加,内容拓展,知识深入,数学这门学科由具体到抽象,从文字发展成了符号,从静态逐渐发展成了动态。初一数学学习是很重要的一年,能够让学生感受到初中数学与小学的不同,并能感受到数学学习带来的快乐,然而,一些学生对数学产生厌恶情绪也大都是从初中开始的,由于基础没打好对数学产生厌恶是很多学生的通病。基础知识是进行深入学习的根基,它为数学学习的深入做铺垫,然而基础知识却并没有得到初一学生应有的足够重视。初中的数学知识相对小学来说,已有了很大的深入,如果初一的基础知识没有打好,学生会渐渐感到吃力,从而跟不上教学步伐,导致产生厌学情绪。不利于学生的发展。因此,教师在教学中必须注重初一学生基础知识的培养,并使学生认识到打好基础知识的重要性。
二、初一数学学习中常出现的问题
1、知识点理解不透彻
初一学生刚入初中,依然保留着小学生的一些习惯,爱玩并且厌烦课本上的.基础知识点。对知识点的理解停留在一知半解的层次上。并且,学生并没有对基础知识有足够的重视,没有认识到基础知识的重要性,从而导致基础知识越来越差,产生对数学的厌烦,进入恶性循环。
2、解答题目小错误多,无法完整地解决问题
学生由于不重视基础,导致一些题目无法完整地进行解决,无论简单的题型还是难的题型,都是建立在基础知识点上的。学生的问题是无法把握其中的基础技巧,忽视基础知识,始终不能完整地解决问题。
3、没有养成归纳总结的好习惯
学生在平时的练习中会有许多解错的题型和忽视了的知识点,然而大都都是错了就错了,并没有进行归纳总结,导致对错误的题型没有进行反思,从而一错再错。对一些基础知识点,也没有进行很好的归纳,脑海里没有一个系统的基础知识网。
三、打好学生数学基础的策略
1、明确教学目标,突出重点
每一堂课的教学,都有它的重点内容,每一堂课,作为教师,首先都需要明确这堂课的教学目标,并要突出重点,让学生对这堂课所学的知识点有一个清晰的轮廓。教师可以在黑板的一角把重点内容简短地写出来,并保持一节课,引起学生的关注和重视。教师要通过不断强调和引用,使学生对重点知识点留下深刻的印象,并可以出一个引用了重点知识的题目让学生解答。例如,学习《数轴》这一节时,教师可先对重点基础知识点进行讲解,让学生了解数轴的基本定义,在脑海里留下一个概念,再让学生上讲台到黑板上按要求画下来。画完后,让学生自己做必要的讲解,比如画数轴的三要素原点、正方向、单位长度。这样,学生对数轴的基础知识点就会有一个深刻的印象。
2、精讲例题,多做课堂练习
针对基础知识,教师可在课堂上多设置一些例题,使学生能够把基础知识应用到题目中去解答,从而认识到基础知识的重要性。教师要精选例题,按照这节课的重点基础内容进行选题,从结构特征、思维方式等各个方面进行对题型的剖析,从而让学生在解题的基础之上掌握基础知识的关键。知识点讲得再多也是抽象空洞的,只有与题目进行结合,让学生灵活运用,才能够使学生对知识点有一个深刻的理解。课堂上需根据实际情况布置课堂练习,练习量针对知识点的难易程度可多可少,重要的是要让学生有一个思考解答的过程。教师可让学生自主进行解答,若解答不出教师则做必要的指点进行帮助,并且要鼓励学生不懂就要问。还可以让学生共同讨论一些难点问题,促进学生勤学好问的习惯培养。
3、形象教学,变抽象为具体
教师在实际课堂教学中,可以运用很多种教学方式,每一堂课都有其教学目标,教学需根据教学内容的变化选择适当的教学方式,形象教学是很重要并且很有效的教学方式。例如,进行几何的教学,教师可以进行具体演示,向学生展示几何模型,运用几何模型来验证几何结论。
4、让学生收集题目,制作错题集
基础是在无数次练习的基础之上总结出来的,做题如同挖金矿,对待错题就如同对待发掘冶炼金矿一样。学生在做题时,会遇到很多难题和易错题,对于做错了的题目,学生看看就丢到一边,是没有起到练习应有的效果的。教师要促使学生制作一个错题集,专门收集自己做错或者不会做的题目,让学生自己分析做错的原因,为什么会做错,下次如何避免,学生在总结反思的过程中,自然而然就对知识进行了一次梳理。例如,用科学计数法计数是学生经常容易犯错的知识点,学生的粗心导致很简单的问题经常犯错,通过错题集,学生收集表示错的科学计数法,不断总结、强化,从而做到更细心。
初一数学学习对刚进入初中的学生来说是非常重要的,其既是对小学数学知识的必要深入,也为后续更深层次的学习打下关键的基础。然而,初一学生往往并没有认识到进入初中打好数学基础的重要性。本文针对学好初一数学的重要性和初一数学学习面临的一些问题进行了具体讨论,最后总结出提高学生数学基础知识的几条教学策略,给以后的数学教学提供参考。
参考文献:
[1]吴远,学生数学自主能力的培养[J]。巨人教学资源,20xx。
初中数学知识点总结6
平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系:
在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的'性质
下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的一般步骤
关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
因式分解定义:
把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:
①结果必须是整式
②结果必须是积的形式
③结果是等式
④因式分解与整式乘法的关系:m(a+b+c)
公因式:
一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:
①系数是整数时取各项最大公约数。
②相同字母取最低次幂
③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。
②确定商式
③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。
初中数学知识点总结7
课题
3.5正比例函数、反比例函数、一次函数和二次函数
教学目标
1、掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质2、会用待定系数法确定函数的解析式
教学重点
掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质
教学难点
掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质
教学方法
讲练结合法
教学过程
(I)知识要点(见下表:)
第三章第29页函数名称解析式图像正比例函数ykx(k0)0x反比例函数一次函数ykxb(k0)0x二次函数yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0图像过点(0,0)及(1,k)的`直线双曲线,x轴、y轴是它的渐近线与直线ykx平行且过点(0,b)的直线抛物线定义域RxxR且xoyyR且yoRR4acb2a0时,y,4aR值域R4acb2a0时,y,4aba0时,在-,上为增2a函数,在,-单调性k0时,在,0,k0时为增函数0,上为减函数k0时,为增函数b上为减函数2ak0时为减函数k0时,在,0,k0时,为减函数0,上为增函数ba0时,在-,上为减2a函数,在,-b上为增函数2a奇偶性奇函数奇函数b=0时奇函数b=0时偶函数a0且x-ymin最值无无无b时,2a24acb4ab时,2a24acb4aa0且x-ymax
第三章第30页b24acb2注:二次函数yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2对称轴x,顶点(,)
2a2a4a2抛物线与x轴交点坐标(m,0),(n,0)(II)例题讲解
例1、求满足下列条件的二次函数的解析式:(1)抛物线过点A(1,1),B(2,2),C(4,2)(2)抛物线的顶点为P(1,5)且过点Q(3,3)
(3)抛物线对称轴是x2,它在x轴上截出的线段AB长为2且抛物线过点(1,7)。2,
解:(1)设yax2bxc(a0),将A、B、C三点坐标分别代入,可得方程组为
abc1a1解得b4yx24x24a2bc216a4bc2c2(2)设二次函数为ya(x1)25,将Q点坐标代入,即a(31)253,得
a2,故y2(x1)252x24x3
(3)∵抛物线对称轴为x2;
∴抛物线与x轴的两个交点A、B应关于x2对称;∴由题设条件可得两个交点坐标分别为A(2∴可设函数解析式为:ya(x2代入方程可得a1
∴所求二次函数为yx24x2,
2,0)、B(222,0)
2)(x22)a(x2)22a,将(1,7)
5),例2:二次函数的图像过点(0,8),(1,(4,0)
(1)求函数图像的顶点坐标、对称轴、最值及单调区间(2)当x取何值时,①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4
例3:求函数f(x)x2x1,x[1,1]的最值及相应的x值
113x1(x)2,知函数的图像开口向上,对称轴为x
224111]上是增函数。∴依题设条件可得f(x)在[1,]上是减函数,在[,22131]时,函数取得最小值,且ymin∴当x[1,24131又∵11
初中数学知识点总结8
1、乘法与因式分解
a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)
2、三角不等式
|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
如数轴所示,化简下列各数
|a|,|b|,|c|,|a-b|,|a-c|,|b+c|
解:由题知道,因为a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,
所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c
3.绝对值的性质
任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即⑴0的绝对值是0;绝对值是0的数是0.即:a=0<═>|a|=0;
⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;
⑶任何数的绝对值都不小于原数。即:|a|≥a;
⑷绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;
⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;
⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;
⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。
(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)
如何整理数学学科课堂笔记
一、内容提纲。老师讲课大多有提纲,并且讲课时老师会将一堂课的线索脉络、重点难点等,简明清晰地呈现在黑板上。同时,教师会使之富有条理性和直观性。记下这些内容提纲,便于课后复习回顾,整体把握知识框架,对所学知识做到胸有成竹、清晰完整。
二、疑难问题。将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。教师在组织课堂教学时,受到时空的限制,不可能做到顾及每一位同学。相应的,一些问题对部分学生来说,是属于疑难问题,由于课堂上来不及思考成熟,记下疑难问题,可在课后继续加以思考和探究,加以理解和掌握,不致出现知识的断层、方法的缺陷。
三、思路方法。对老师在课堂上介绍的解题方法和分析思路也应及时记下,课后加以消化,若有疑惑,先作独立分析,因为有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后及时与老师商榷和探讨。勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。在这基础上,若能主动钻研,另辟蹊径,则更难能可贵。
四、归纳总结。注意记下老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找规律,融会贯通课堂内容都很有作用。同时,很多有经验的老师在课后小结时,一方面是承上归纳所学内容,另一方面又是启下布置预习任务或点明后面所要学的内容,做好笔记可以把握学习的主动权,提前作准备,做到目标任务明确。
五、错误反思。学习过程中不可避免地会犯这样或那样的错误,记下自己所犯的错误,并用红笔醒目地加以标注,以警示自己,同时也应注明错误成因,正确思路及方法,在反思中成熟,在反思中提高。
数学常用解题技巧有哪些
第一,应坚持由易到难的做题顺序。近年来高考数学试题的设置是8道选择题、6道填空题、6到大题,通常称为866结构。在实体设置的结构中有三个小高峰,选择题是由易到难,最难的.题是第8题。填空题同样是这样设置的。也是第9题容易到第14题最难,大题从第15题到第20题,它们的设置也是这样的。根据这样的试题结构,应先做前面容易的,基础好一点的考生就先做前7个选择,前5个填空、前5个大题,称为是755结构。基础差的就是644,先把自己能做的、会做的拿到手。这是第一点。
第二,审题是关键。把题给看清楚了再动笔答题,看清楚题以后问什么、已知什么、让你做什么,把这些问题搞清楚了,自己制订了一个完整的解题策略,在开始写的时候,这个时候是很快就可以完成的。
第三,属于非智力因素导致想不起来。本来是很简单的题比如说是做到第三题、第四题的时候不是难题,但想不起来了,卡住了,这时候怎么办?虽然是简单题却不会做怎么办?应先跳过去,不是这道题不会做吗?后面还有很多的简单题呢,把后面的题做一做,不要在考场上愣神,先跳过去做其他的题,等稳定下来以后再回过头来看会顿悟,豁然开朗。
第四,做选择题的时候应运用最好的解题方法。因为选择题和填空题都是看结果不看过程,因此在这个过程中都应不择手段,只要是能把正确的结论找到就行。考生常用的方法是直接法,从已知的开始也不看它的四个选项,从头到尾写完了之后一看答案就写上去了。另外就是特质法(音),一些出现字母、特别是不等式,这时候给它赋一个值,代进去这时候速度会比较快,正确地找出结果来。再就是数形结合法。最后实在不行了,就将四个选项代入验证,看看哪个符合就是哪个了。填空题用上述的直接法、特质法、数形结合法三种方法都适合。做大题的时候要特别注意解题步骤,规范答题可以减少失分。简单地说,规范答题就是从上一步的原因到下一步的结论,这是一个必然的过程,让谁写、谁看都是这样的。因为什么所以什么是一个必然的过程,这是规范答题。
学霸分享的数学复习技巧
1、把答案盖住看例题
例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。
所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。
经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。
2、研究每题都考什么
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。
3、错一次反思一次
每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。
学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了.
4、分析试卷总结经验
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。
数学解题方法分别有哪些
1、配方法
所谓的公式是使用变换解析方程的同构方法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。通过配方解决数学问题的公式。其中,用的最多的是配成完全平方式。匹配方法是数学中不断变形的重要方法,其应用非常广泛,在分解,简化根,它通常用于求解方程,证明方程和不等式,找到函数的极值和解析表达式。
2、因式分解法
因式分解是将多项式转换为几个积分产品的乘积。分解是恒定变形的基础。除了引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有很多方法可以进行因式分解。还有一些项目,如拆除物品的使用,根分解,替换,未确定的系数等等。
3、换元法
替代方法是数学中一个非常重要和广泛使用的解决问题的方法。我们通常称未知或变元。用新的参数替换原始公式的一部分或重新构建原始公式可以更简单,更容易解决。
4、判别式法与韦达定理
一元二次方程 ax2+ bx+ c=0( a、 b、 c属于 R, a≠0)根的判别, = b2-4 ac,不仅用来确定根的性质,还作为一个问题解决方法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何以及三角函数都有非常广泛的应用。
韦达定理除了知道二次方程的根外,还找到另一根;考虑到两个数的和和乘积的简单应用并寻找这两个数,也可以找到根的对称函数并量化二次方程根的符号。求解对称方程并解决一些与二次曲线有关的问题等,具有非常广泛的应用。
5、待定系数法
在解决数学问题时,如果我们首先判断我们所寻找的结果具有一定的形式,其中包含某些未决的系数,然后根据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这些待定系数之间的关系。为了解决数学问题,这种问题解决方法被称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解决问题时,我们通常通过分析条件和结论来使用这些方法来构建辅助元素。它可以是一个图表,一个方程(组),一个方程,一个函数,一个等价的命题等,架起连接条件和结论的桥梁。为了解决这个问题,这种解决问题的数学方法,我们称之为构造方法。运用结构方法解决问题可以使代数,三角形,几何等数学知识相互渗透,有助于解决问题。
初中数学知识点总结10
一、数与代数
1.有理数
有理数:
①整数→正整数/0/负整数
②分数→正分数/负分数
数轴:
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
2.实数
无理数:无限不循环小数叫无理数
平方根:如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟);一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
算术平方根:正数的正的平方根和零的平方根统称为主根,用符号“√a”表示,a为“被开方数”。
立方根:如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根);一个正数的立方根是正数、零的立方根是零、负数的立方根是负数;
二、方程
1.代数式:单独一个数字或一个字母也是代数式。
2.一元一次方程:含有一个未知数,并且未知数的次数是1,并且含有一个未知数,并且未知数的次数是1的所有整式方程是一元一次方程。
3.一元二次方程:含有一个未知数,并且未知数的次数是2的所有整式方程是一元二次方程。
4.二元一次方程:含有两个未知数,并且含有一个未知数的次数是1的所有整式方程叫二元一次方程。
5.二元二次方程:含有两个未知数,并且含有一个未知数的次数是2的所有整式方程叫二元二次方程。
三、三角形
1.几何图形:学过的立体图形有圆柱、圆锥和球以及长方体、正方体、棱柱、棱锥、棱台。
2.图形的三视图:俯视图、主视图、左视图。
3.三角形的稳定性。
4.三角形的分类:锐角三角形、直角三角形、钝角三角形。
5.三角形的内角和定理:三角形三个内角的和等于180度。
6.解直角三角形:解直角三角形需要运用勾股定理及锐角三角函数的定义。锐角三角函数的定义:在直角三角形中,一锐角的正切等于锐角A对边与邻边的比值;一锐角的余切等于锐角A的邻边与对边的比值;一锐角的正弦等于锐角A的对边与斜边的比值;一锐角的余弦等于锐角A的邻边与斜边的比值。
7.全等三角形:全等三角形的对应边相等;全等三角形的`对应角相等。
8.等腰三角形的性质定理:等腰三角形的两个底角相等;(简称:等边对等角)以及等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。(简称:三线合一)
9.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(简称:等角对等边)
10.等边三角形:三条边都相等的三角形是等腰三角形;三个角都相等的三角形是等边三角形。
11.相似的三角形:相似三角形的对应边成比例;对应角相等。
12.反证法:在证明一个命题的论证中,假设命题的结论不成立,从这个假设出发,经过推理论证,得出与定义、公理或已经证明过的命题或已经掌握的事实相矛盾,从而使这个假设成为一个不成立的命题,这种推证方法叫做反证法。证明两条线段相等时常常用反证法。
四、四边形
1.平行四边形及特殊平行四边形的重心:平行四边形及特殊平行四边形的重心是它的两条对角线的交点。
2.矩形、菱形、正方形的重心:矩形、菱形、正方形的重心是它们的对角线的交点。
3.梯形问题
初中数学知识点总结11
1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等
5过一点有且只有一条直线和已知直线垂直
6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边
17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余
19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等
22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等
26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合
30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°
34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形
37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半
39定理线段垂直平分线上的点和这条线段两个端点的距离相等
40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形
43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理直角三角形两直角边a、b的.平方和、等于斜边c的平方,即a2+b2=c2
47勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形
48定理四边形的内角和等于360°49四边形的外角和等于360°
50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°
52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等
55平行四边形性质定理3平行四边形的对角线互相平分
56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等
62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等
65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1关于中心对称的两个图形是全等的
72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等
76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形
78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半
L=(a+b)÷2S=L×h
83(1)比例的基本性质如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例
87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91相似三角形判定定理1两角对应相等,两三角形相似(ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94判定定理3三边对应成比例,两三角形相似(SSS)
95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方
99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形
114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理一条弧所对的圆周角等于它所对的圆心角的一半
117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心
126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角
129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等
131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r
②两圆外切d=R+r
③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)
136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
(n2)180139正n边形的每个内角都等于
n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
pnrn141正n边形的面积Sn=p表示正n边形的周长
2142正三角形面积
32aa表示边长4143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,
k(n2)180360化为(n-2)(k-2)=4因此
n144弧长计算公式:L=
nR180nR2LR145扇形面积公式:S扇形==
3602146内公切线长=d-(R-r)外公切线长=d-(R+r)
公式分类及公式表达式
乘法与因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
bb24ac2a
根与系数的关系:X1+X2=-b/aX1*X2=c/a注:韦达定理判别式
b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac
初中数学知识点总结12
一、重要概念
1.总体:考察对象的全体。
2.个体:总体中每一个考察对象。
3.样本:从总体中抽出的一部分个体。
4.样本容量:样本中个体的数目。
5.众数:一组数据中,出现次数最多的数据。
6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)
二、计算方法
1.样本平均数:⑴;⑵若,…,,则(a—常数,…,接近较整的常数a);⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
2.样本方差:⑴;⑵若,,…,,则(a—接近、、…、的平均数的较“整”的常数);若、、…、较“小”较“整”,则;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
3.样本标准差:
三、应用举例(略)
初三数学知识点:第四章直线形
★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。
☆内容提要☆
一、直线、相交线、平行线
1.线段、射线、直线三者的区别与联系
从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。
2.线段的中点及表示
3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)
4.两点间的距离(三个距离:点-点;点-线;线-线)
5.角(平角、周角、直角、锐角、钝角)
6.互为余角、互为补角及表示方法
7.角的平分线及其表示
8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)
9.对顶角及性质
10.平行线及判定与性质(互逆)(二者的区别与联系)
11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。
12.定义、命题、命题的组成
13.公理、定理
14.逆命题
二、三角形
分类:⑴按边分;
⑵按角分
1.定义(包括内、外角)
2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中
3.三角形的主要线段
讨论:①定义②x线的交点—三角形的×心③性质
①高线②中线③角平分线④中垂线⑤中位线
⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形
4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质
5.全等三角形
⑴一般三角形全等的判定(sas、asa、aas、sss)
⑵特殊三角形全等的判定:①一般方法②专用方法
6.三角形的面积
⑴一般计算公式⑵性质:等底等高的.三角形面积相等。
7.重要辅助线
⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线
8.证明方法
⑴直接证法:综合法、分析法
⑵间接证法—反证法:①反设②归谬③结论
⑶证线段相等、角相等常通过证三角形全等
⑷证线段倍分关系:加倍法、折半法
⑸证线段和差关系:延结法、截余法
⑹证面积关系:将面积表示出来
三、四边形
分类表:
1.一般性质(角)
⑴内角和:360°
⑵顺次连结各边中点得平行四边形。
推论1:顺次连结对角线相等的四边形各边中点得菱形。
推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。
⑶外角和:360°
2.特殊四边形
⑴研究它们的一般方法:
⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定
⑶判定步骤:四边形→平行四边形→矩形→正方形
┗→菱形——↑
⑷对角线的纽带作用:
3.对称图形
⑴轴对称(定义及性质);⑵中心对称(定义及性质)
4.有关定理:①平行线等分线段定理及其推论1、2
②三角形、梯形的中位线定理
③平行线间的距离处处相等。(如,找下图中面积相等的三角形)
5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。
6.作图:任意等分线段。
初中数学知识点总结13
一、初中数学基本概念
1.方程:含有未知数的等式叫做方程。
2.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
3.二元一次方程:含有两个未知数,并且未知数的次数是1的二元一次方程。
4.二元一次方程组:由两个二元一次方程组成的方程组。
5.一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程。
6.一元二次方程的解:使一元二次方程左右两边相等的未知数的值。
7.一元二次方程的根:一元二次方程的解。
8.一元二次方程的判别式:当a是正数时,如果一元二次方程左右两边相等时,那么这个一元二次方程有两个不相等的实数根;当a是负数时,如果一元二次方程左右两边相等时,那么这个一元二次方程没有实数根;当a是零时,如果一元二次方程左右两边相等时,那么这个一元二次方程有两个相等的实数根。
9.函数:在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫做自变量。
10.一次函数:在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的一次函数。
11.正比例函数:在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,并且这个数值在比例上成正比,那么称y是x的比例函数。
12.反比例函数:在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,并且这个数值在比例上成反比,那么称y是x的反比例函数。
13.平行四边形:在同一个平面内两组对角分别平行的四边形叫做平行四边形。
14.矩形:有一个内角是直角的平行四边形叫做矩形。
15.菱形:有两组邻边相等的平行四边形叫做菱形。
16.正方形:四边相等的矩形叫做正方形。
17.等腰梯形:两条腰相等的梯形叫做等腰梯形。
18.三角形:在同一个平面内由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
19.中线:连接一个顶点和它对边的中点的.线段叫做中线。
20.高线:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做高线。
21.角平分线:三角形的一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做角平分线。
22.中位线:连接三角形两边中点的线段叫做中位线。
23.轴对称图形:一条物体沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
24.直接开平方法:形如x2=p或者(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程的方法。
25.配方法:把一元二次方程的常数项移到方程的右边,两边加上一次项系数的一半的平方,再用右边的式子除以左边的式子,得到一个平方的形式,再用直接开平方的方法求解一元二次方程的方法。
26.公式法:用求根公式解一元二次方程的方法。
27.因式分解法:将一元二次方程分解成两个一次因式的积等于0的一元二次方程,然后将各个因式分解,得到一元一次方程,再用直接开方法求解一元一次方程的方法。
二、初中数学基本运算
1.整式:单项式和多项式的统称。
2.单项式:由数字和字母的积组成的代数式叫做单项式。单独的一个数字或字母也叫做单项式。
3.多项式:几个单项式的和叫做多项式。每个单项式叫做多项式的项。其中不含字母的项叫做常数
初中数学知识点总结14
一、圆
1、圆的有关性质
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。
由圆的意义可知:
圆上各点到定点(圆心O)的距离等于定长的点都在圆上。
就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。
圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。
圆心相同,半径不相等的两个圆叫同心圆。
能够重合的两个圆叫等圆。
同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的弧叫等弧。
二、过三点的圆
l、过三点的圆
过三点的圆的作法:利用中垂线找圆心
定理不在同一直线上的三个点确定一个圆。
经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。
2、反证法
反证法的三个步骤:
①假设命题的结论不成立;
②从这个假设出发,经过推理论证,得出矛盾;
③由矛盾得出假设不正确,从而肯定命题的结论正确。
例如:求证三角形中最多只有一个角是钝角。
证明:设有两个以上是钝角
则两个钝角之和>180°
与三角形内角和等于180°矛盾。
∴不可能有二个以上是钝角。
即最多只能有一个是钝角。
三、垂直于弦的直径
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。
弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。
推理2:圆两条平行弦所夹的弧相等。
四、圆心角、弧、弦、弦心距之间的关系
圆是以圆心为对称中心的中心对称图形。
实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。
顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。
定理:在同圆或等圆中,相等的`圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。
推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。
五、圆周角
顶点在圆上,并且两边都和圆相交的角叫圆周角。
推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。
六、圆的判定性质
1.不在同一直线上的三点确定一个圆。
2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的集合
5.圆的内部可以看作是圆心的距离小于半径的点的集合
6.圆的外部可以看作是圆心的距离大于半径的点的集合
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等
10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角
12.①直线L和⊙O相交 d
②直线L和⊙O相切 d=r
③直线L和⊙O相离 dr
13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理 圆的切线垂直于经过切点的半径
15.推论1 经过圆心且垂直于切线的直线必经过切点
16.推论2 经过切点且垂直于切线的直线必经过圆心
17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等 外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离 dR+r ②两圆外切 d=R+r
③.两圆相交 R-rr)
④.两圆内切 d=R-r(Rr) ⑤两圆内含dr)
初中数学知识点总结15
一、函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
二、相交线与平行线
1、知识网络结构
2、知识要点
(1)在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。
(2)在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。
(3)两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是
邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,
与互为邻补角。+=180°;+=180°;+=180°;+=180°。
3、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=; =。
4、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,
其中一条叫做另一条的垂线。如图2所示,当=90°时,⊥。
垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
性质3:如图2所示,当a⊥b时,====90°。
点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
5、同位角、内错角、同旁内角基本特征:
在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样的两个角叫同位角。图3中,共有对同位角:与是同位角;与是同位角;与是同位角;与是同位角。
在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的.两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。
在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。
三、实数
1、实数的分类
(1)按定义分类:
(2)按性质符号分类:
注:0既不是正数也不是负数.
2、实数的相关概念
(1)相反数
①代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.
②几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.
③互为相反数的两个数之和等于0.a、b互为相反数a+b=0.
(2)绝对值|a|≥0.
(3)倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.
(4)平方根
①如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.
②一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.
(5)立方根
如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.
3、实数与数轴
数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.
4、实数大小的比较
(1)对于数轴上的任意两个点,靠右边的点所表示的数较大.
(2)正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.
(3)无理数的比较大小:
【初中数学知识点总结】相关文章:
初中数学必备知识点总结03-01
初中数学几何知识点总结11-05
初中数学函数知识点总结11-24
初中数学圆的知识点总结12-05
初中数学函数知识点总结06-14
数学初中知识点总结06-10
初中数学知识点总结07-14
初中数学知识点总结07-15
初中数学知识点总结(精选)06-16
(优)初中数学知识点总结12-04