【经典】数学初中知识点总结
总结是对取得的成绩、存在的问题及得到的经验和教训等方面情况进行评价与描述的一种书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,因此好好准备一份总结吧。我们该怎么去写总结呢?下面是小编为大家收集的数学初中知识点总结,欢迎阅读,希望大家能够喜欢。
数学初中知识点总结1
一、平移变换:
1。概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。
2。性质:(1)平移前后图形全等;
(2)对应点连线平行或在同一直线上且相等。
3。平移的作图步骤和方法:
(1)分清题目要求,确定平移的方向和平移的距离;
(2)分析所作的图形,找出构成图形的关健点;
(3)沿一定的方向,按一定的距离平移各个关健点;
(4)连接所作的各个关键点,并标上相应的'字母;
(5)写出结论。
二、旋转变换:
1。概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
说明:
(1)图形的旋转是由旋转中心和旋转的角度所决定的;
(2)旋转过程中旋转中心始终保持不动。
(3)旋转过程中旋转的方向是相同的。
(4)旋转过程静止时,图形上一个点的旋转角度是一样的。⑤旋转不改变图形的大小和形状。
2。性质:
(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等。
3。旋转作图的步骤和方法:
(1)确定旋转中心及旋转方向、旋转角;
(2)找出图形的关键点;
(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;
(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。
说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。
常见考法
(1)把平移旋转结合起来证明三角形全等;
(2)利用平移变换与旋转变换的性质,设计一些题目。
误区提醒
(1)弄反了坐标平移的上加下减,左减右加的规律;
(2)平移与旋转的性质没有掌握。
数学初中知识点总结2
1.常量和变量
在某变化过程中可以取不同数值的量,叫做变量.在某变化过程中保持同一数值的量或数,叫常量或常数.
2.函数
设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.
3.自变量的取值范围
(1)整式:自变量取一切实数.(2)分式:分母不为零.
(3)偶次方根:被开方数为非负数.
(4)零指数与负整数指数幂:底数不为零.
4.函数值
对于自变量在取值范围内的一个确定的值,如当x=a时,函数有唯一确定的对应值,这个对应值,叫做x=a时的函数值.
5.函数的表示法
(1)解析法;(2)列表法;(3)图象法.
6.函数的图象
把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个函数的图象.由函数解析式画函数图象的步骤:
(1)写出函数解析式及自变量的'取值范围;
(2)列表:列表给出自变量与函数的一些对应值;
(3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;
(4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来.
7.一次函数
(1)一次函数
如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.
特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数.
(2)一次函数的图象
一次函数y=kx+b的图象是一条经过(0,b)点和点的直线.特别地,正比例函数图象是一条经过原点的直线.需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象.
(3)一次函数的性质
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为.
(4)用函数观点看方程(组)与不等式
①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标.
②二元一次方程组对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.
③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围.
8.反比例函数(1)反比例函数
(1)如果(k是常数,k≠0),那么y叫做x的反比例函数.
(2)反比例函数的图象反比例函数的图象是双曲线.
(3)反比例函数的性质
①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小.
②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.
③反比例函数图象关于直线y=±x对称,关于原点对称.
(4)k的两种求法
①若点(x0,y0)在双曲线上,则k=x0y0.②k的几何意义:
若双曲线上任一点A(x,y),AB⊥x轴于B,则S△AOB
(5)正比例函数和反比例函数的交点问题
若正比例函数y=k1x(k1≠0),反比例函数,则当k1k2<0时,两函数图象无交点;
当k1k2>0时,两函数图象有两个交点,坐标分别为由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.
1.二次函数
如果y=ax2+bx+c(a,b,c为常数,a≠0),那么y叫做x的二次函数.
几种特殊的二次函数:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0).
2.二次函数的图象
二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线.由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的图象.
3.二次函数的性质
二次函数y=ax2+bx+c的性质对应在它的图象上,有如下性质:
(1)抛物线y=ax2+bx+c的顶点是,对称轴是直线,顶点必在对称轴上;
(2)若a>0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的任意一点(x,y),当x<时,y随x的增大而减小;当x>时,y随x的增大而增大;当x=,y有最小值;若a<0,抛物线y=ax2+bx+c的开口向下,因此,对于抛物线上的任意一点(x,y),当x<,y随x的增大而增大;当时,y随x的增大而减小;当x=时,y有最大值;
(3)抛物线y=ax2+bx+c与y轴的交点为(0,c);
(4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+bx+c与x轴交点的情况:
<0时,抛物线y=ax2+bx+c与x轴没有公共点.=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点;当=b2-4ac>0,抛物线y=ax2+bx+c与x轴有两个不同的公共点,它们的坐标分别是和,这两点的距离为;当当4.抛物线的平移
抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)、向左(右)平移,可以得到抛物线y=a(x-h)2+k.平移的方向、距离要根据h、k的值来决定.
数学初中知识点总结3
1、圆是定点的距离等于定长的点的集合
2、圆的内部可以看作是圆心的距离小于半径的点的集合3、圆的外部可以看作是圆心的距离大于半径的点的集合4、同圆或等圆的半径相等
5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆6、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线7、到已知角的两边距离相等的点的轨迹,是这个角的平分线
8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
9、定理不在同一直线上的三点确定一个圆。
10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧11、推论1:
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧12、推论2:圆的两条平行弦所夹的弧相等13、圆是以圆心为对称中心的中心对称图形
14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
15、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
16、定理:一条弧所对的圆周角等于它所对的圆心角的一半
17、推论:1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
18、推论:2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
19、推论:3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
20、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
21、①直线L和⊙O相交dr②直线L和⊙O相切d=r③直线L和⊙O相离dr
22、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线23、切线的性质定理圆的切线垂直于经过切点的半径24、推论1经过圆心且垂直于切线的直线必经过切点25、推论2经过切点且垂直于切线的直线必经过圆心
26、切线长定理:从圆外一点引圆的'两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角
27、圆的外切四边形的两组对边的和相等
28、弦切角定理:弦切角等于它所夹的弧对的圆周角
29、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等30、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等31、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
32、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
33、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
34、如果两个圆相切,那么切点一定在连心线上35、①两圆外离dR+r②两圆外切d=R+r
③两圆相交R-rdR+r(Rr)④两圆内切d=R-r(Rr)⑤两圆内含dR-r(Rr)
36、定理:相交两圆的连心线垂直平分两圆的公共弦37、定理:把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
38、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
39、正n边形的每个内角都等于(n-2)×180°/n40、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
41、正n边形的面积Sn=pnrn/2p表示正n边形的周长42、正三角形面积√3a/4a表示边长
43、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k(n-2)180°/n=360°化为(n-2)(k-2)=444、弧长计算公式:L=n兀R/180
45、扇形面积公式:S扇形=n兀R^2/360=LR/246、内公切线长=d-(R-r)外公切线长=d-(R+r)
数学初中知识点总结4
1、有理数的加法运算:
同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好、
2、合并同类项:
合并同类项,法则不能忘,只求系数和,字母、指数不变样、
3、去、添括号法则:
去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号、
4、一元一次方程:
已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒、
5、平方差公式:
平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆、
1、完全平方公式:
完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;
首±尾括号带平方,尾项符号随中央、
2、因式分解:
一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚、
3、单项式运算:
加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行、
4、一元一次不等式解题的一般步骤:
去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了、
5、一元一次不等式组的'解集:
大大取较大,小小取较小,小大、大小取中间,大小、小大无处找、
一元二次不等式、一元一次绝对值不等式的解集:
大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
数学初中知识点总结5
锐角三角函数定义
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin):对边比斜边,即sinA=a/c;
余弦(cos):邻边比斜边,即cosA=b/c;
正切(tan):对边比邻边,即tanA=a/b;
余切(cot):邻边比对边,即cotA=b/a;
正割(sec):斜边比邻边,即secA=c/b;
余割(csc):斜边比对边,即cscA=c/a。
三角函数关系
1、互余角的关系
sin(90°—α)=cosα,cos(90°—α)=sinα,tan(90°—α)=cotα,cot(90°—α)=tanα。
2、平方关系
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
3、积的关系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
4、倒数关系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
两角和差公式
sin(A+B)= sinAcosB+cosAsinB
sin(A—B)= sinAcosB—cosAsinB
cos(A+B)= cosAcosB—sinAsinB
cos(A—B)= cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1—tanAtanB)
tan(A—B)=(tanA—tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB—1)/(cotB+cotA)
cot(A—B)=(cotAcotB+1)/(cotB—cotA)
1、不在同一直线上的三点确定一个圆。
2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧。
3、圆是以圆心为对称中心的中心对称图形。
4、圆是定点的距离等于定长的点的集合
5、圆的内部可以看作是圆心的.距离小于半径的点的集合。
6、圆的外部可以看作是圆心的距离大于半径的点的集合。
7、同圆或等圆的半径相等。
8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
13、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
14、切线的性质定理圆的切线垂直于经过切点的半径。
15、推论1经过圆心且垂直于切线的直线必经过切点。
数学初中知识点总结6
字母表示数
代数式的概念:
用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;
②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;
③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
代数式的书写格式:
①代数式中出现乘号,通常省略不写,如vt;
②数字与字母相乘时,数字应写在字母前面,如4a;
③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如应写作;
④数字与数字相乘,一般仍用“×”号,即“×”号不省略;
⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米
代数式的系数:
代数式中的数字中的数字因数叫做代数式的系数。如3x,4y的系数分别为3,4。
注意:①单个字母的系数是1,如a的系数是1;
②只含字母因数的代数式的系数是1或-1,如-ab的系数是-1。a3b的系数是1
代数式的项:
代数式表示6x2、-2x、-7的和,6x2、-2x、-7是它的项,其中把不含字母的项叫做常数项
注意:在交待某一项时,应与前面的符号一起交待。
同类项:
所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。这两个条件缺一不可;
②同类项与系数无关,与字母的排列顺序无关;
③几个常数项也是同类项。
合差同类项:
把代数式中的同类项合并成一项,叫做合并同类项。
①合并同类项的理论根据是逆用乘法分配律;
②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
注意:
①如果两个同类项的系数互为相反数,合并同类项后结果为0;
②不是同类项的不能合并,不能合并的项,在每步运算中都要写上;
③只要不再有同类项,就是最后结果,结果还是代数式。
根据去括号法则去括号:
括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。
根据分配律去括号:
括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。
注意:
①去括号时,要连同括号前面的符号一起去掉;
②去括号时,首先要弄清楚括号前是“+”号还是“-”号;
③改变符号时,各项都变号;不改变符号时,各项都不变号。
北师大初中数学知识点
绝对值
⒈绝对值的几何定义
一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
2.绝对值的代数定义
⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.
可用字母表示为:
①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。
可归纳为①:a≥0,<═>|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)②a≤0,<═>|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)经典考题
如数轴所示,化简下列各数
|a|,|b|,|c|,|a-b|,|a-c|,|b+c|
解:由题知道,因为a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,
所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c
3.绝对值的性质
任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即⑴0的绝对值是0;绝对值是0的数是0.即:a=0<═>|a|=0;
⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;
⑶任何数的绝对值都不小于原数。即:|a|≥a;
⑷绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;
⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;
⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;
⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。
(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)
如何整理数学学科课堂笔记
一、内容提纲。老师讲课大多有提纲,并且讲课时老师会将一堂课的线索脉络、重点难点等,简明清晰地呈现在黑板上。同时,教师会使之富有条理性和直观性。记下这些内容提纲,便于课后复习回顾,整体把握知识框架,对所学知识做到胸有成竹、清晰完整。
二、疑难问题。将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。教师在组织课堂教学时,受到时空的限制,不可能做到顾及每一位同学。相应的,一些问题对部分学生来说,是属于疑难问题,由于课堂上来不及思考成熟,记下疑难问题,可在课后继续加以思考和探究,加以理解和掌握,不致出现知识的断层、方法的缺陷。
三、思路方法。对老师在课堂上介绍的解题方法和分析思路也应及时记下,课后加以消化,若有疑惑,先作独立分析,因为有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后及时与老师商榷和探讨。勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。在这基础上,若能主动钻研,另辟蹊径,则更难能可贵。
四、归纳总结。注意记下老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找规律,融会贯通课堂内容都很有作用。同时,很多有经验的老师在课后小结时,一方面是承上归纳所学内容,另一方面又是启下布置预习任务或点明后面所要学的内容,做好笔记可以把握学习的主动权,提前作准备,做到目标任务明确。
五、错误反思。学习过程中不可避免地会犯这样或那样的错误,记下自己所犯的错误,并用红笔醒目地加以标注,以警示自己,同时也应注明错误成因,正确思路及方法,在反思中成熟,在反思中提高。
数学常用解题技巧有哪些
第一,应坚持由易到难的做题顺序。近年来高考数学试题的设置是8道选择题、6道填空题、6到大题,通常称为866结构。在实体设置的结构中有三个小高峰,选择题是由易到难,最难的`题是第8题。填空题同样是这样设置的。也是第9题容易到第14题最难,大题从第15题到第20题,它们的设置也是这样的。根据这样的试题结构,应先做前面容易的,基础好一点的考生就先做前7个选择,前5个填空、前5个大题,称为是755结构。基础差的就是644,先把自己能做的、会做的拿到手。这是第一点。
第二,审题是关键。把题给看清楚了再动笔答题,看清楚题以后问什么、已知什么、让你做什么,把这些问题搞清楚了,自己制订了一个完整的解题策略,在开始写的时候,这个时候是很快就可以完成的。
第三,属于非智力因素导致想不起来。本来是很简单的题比如说是做到第三题、第四题的时候不是难题,但想不起来了,卡住了,这时候怎么办?虽然是简单题却不会做怎么办?应先跳过去,不是这道题不会做吗?后面还有很多的简单题呢,把后面的题做一做,不要在考场上愣神,先跳过去做其他的题,等稳定下来以后再回过头来看会顿悟,豁然开朗。
第四,做选择题的时候应运用最好的解题方法。因为选择题和填空题都是看结果不看过程,因此在这个过程中都应不择手段,只要是能把正确的结论找到就行。考生常用的方法是直接法,从已知的开始也不看它的四个选项,从头到尾写完了之后一看答案就写上去了。另外就是特质法(音),一些出现字母、特别是不等式,这时候给它赋一个值,代进去这时候速度会比较快,正确地找出结果来。再就是数形结合法。最后实在不行了,就将四个选项代入验证,看看哪个符合就是哪个了。填空题用上述的直接法、特质法、数形结合法三种方法都适合。做大题的时候要特别注意解题步骤,规范答题可以减少失分。简单地说,规范答题就是从上一步的原因到下一步的结论,这是一个必然的过程,让谁写、谁看都是这样的。因为什么所以什么是一个必然的过程,这是规范答题。
学霸分享的数学复习技巧
1、把答案盖住看例题
例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。
所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。
经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。
2、研究每题都考什么
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。
3、错一次反思一次
每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。
学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了.
4、分析试卷总结经验
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。
数学解题方法分别有哪些
1、配方法
所谓的公式是使用变换解析方程的同构方法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。通过配方解决数学问题的公式。其中,用的最多的是配成完全平方式。匹配方法是数学中不断变形的重要方法,其应用非常广泛,在分解,简化根,它通常用于求解方程,证明方程和不等式,找到函数的极值和解析表达式。
2、因式分解法
因式分解是将多项式转换为几个积分产品的乘积。分解是恒定变形的基础。除了引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有很多方法可以进行因式分解。还有一些项目,如拆除物品的使用,根分解,替换,未确定的系数等等。
3、换元法
替代方法是数学中一个非常重要和广泛使用的解决问题的方法。我们通常称未知或变元。用新的参数替换原始公式的一部分或重新构建原始公式可以更简单,更容易解决。
4、判别式法与韦达定理
一元二次方程 ax2+ bx+ c=0( a、 b、 c属于 R, a≠0)根的判别, = b2-4 ac,不仅用来确定根的性质,还作为一个问题解决方法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何以及三角函数都有非常广泛的应用。
韦达定理除了知道二次方程的根外,还找到另一根;考虑到两个数的和和乘积的简单应用并寻找这两个数,也可以找到根的对称函数并量化二次方程根的符号。求解对称方程并解决一些与二次曲线有关的问题等,具有非常广泛的应用。
5、待定系数法
在解决数学问题时,如果我们首先判断我们所寻找的结果具有一定的形式,其中包含某些未决的系数,然后根据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这些待定系数之间的关系。为了解决数学问题,这种问题解决方法被称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解决问题时,我们通常通过分析条件和结论来使用这些方法来构建辅助元素。它可以是一个图表,一个方程(组),一个方程,一个函数,一个等价的命题等,架起连接条件和结论的桥梁。为了解决这个问题,这种解决问题的数学方法,我们称之为构造方法。运用结构方法解决问题可以使代数,三角形,几何等数学知识相互渗透,有助于解决问题。
数学初中知识点总结7
1.相似三角形定义:
对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号"∽"表示,读作"相似于"。
3.相似三角形的相似比:
相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
从表中可以看出只要将全等三角形判定定理中的'"对应边相等"的条件改为"对应边
成比例"就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。
6.直角三角形相似:
(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
7.相似三角形的性质定理:
(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
8. 相似三角形的传递性
如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2
数学初中知识点总结8
初中数学知识点总结及解法
基本知识
数与代数A、数与式:
1、有理数
有理数:
①整数正整数/0/负整数
②分数正分数/负分数
数轴:
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:
①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:
加法:
①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:
①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:
①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数
无理数:无限不循环小数叫无理数
平方根:
①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:
①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:
①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:
①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:
① 同底数幂相乘:a^ma^n=a^(m+n)
② 幂的乘方:(a^m)n=a^mn
③ 积的乘方:(ab)^m=a^mb^m
④ 同底数幂相除:a^ma^n=a^(m-n) (a0)
这些公式也可以这样用:⑤a^(m+n)= a^ma^n
⑥a^mn=(a^m)n
⑦a^mb^m=(ab)^m
⑧ a^(m-n)= a^ma^n (a0)
整式的乘法:
①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:
①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:
①同分母分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:
①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。
方程与不等式
1、方程与方程组
一元一次方程:
①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的.项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程
1、一元二次方程的二次函数的关系
大家已经学过二次函数(即抛物线)了,对它也有很深的了解,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了。
2、一元二次方程的解法
大家知道,二次函数有顶点式(,),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解。
(1)配方法
利用配方,使方程变为完全平方公式,在用直接开平方法去求出解。
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解。
(3)公式法
这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+[b2-4ac)]}/2a,X2={-b-[b2-4ac)]}/2a
3、解一元二次方程的步骤:
(1)配方法的步骤:
先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式。
(2)分解因式法的步骤:
把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式。
(3)公式法
就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c。
4、韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=,二根之积=
也可以表示为x1+x2=,x1x2=。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。
5、一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为△,读作diao ta,而△=b2-4ac,这里可以分为3种情况:
I当△0时,一元二次方程有2个不相等的实数根;
II当△=0时,一元二次方程有2个相同的实数根;
III当△0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)。
2、不等式与不等式组
不等式:
①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
一元一次不等式组:
①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。
一元一次不等式的符号方向:
在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。
在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:AB,A+CB+C
在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:AB,A-CB-C
在不等式中,如果乘以同一个正数,不等号不改向;例如:AB,A*CB*C(C0)
在不等式中,如果乘以同一个负数,不等号改向;例如:AB,A*C
如果不等式乘以0,那么不等号改为等号
所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
函数
变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
一次函数:
①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。
②当B=0时,称Y是X的正比例函数。
一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数Y=KX的图象是经过原点的一条直线。③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。
空间与图形
图形的认识
1、点,线,面
点,线,面:
①图形是由点,线,面构成的。
②面与面相交得线,线与线相交得点。
③点动成线,线动成面,面动成体。
展开与折叠:
①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。
②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:
①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。
②圆可以分割成若干个扇形。
角
线:
①线段有两个端点。
②将线段向一个方向无限延长就形成了射线。射线只有一个端点。
③将线段的两端无限延长就形成了直线。直线没有端点。
④经过两点有且只有一条直线。
比较长短:
①两点之间的所有连线中,线段最短。
②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:
①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
②一度的1/60是一分,一分的1/60是一秒。
角的比较:
①角也可以看成是由一条射线绕着他的端点旋转而成的。
②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。
③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:
①同一平面内,不相交的两条直线叫做平行线。
②经过直线外一点,有且只有一条直线与这条直线平行。
③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:
①如果两条直线相交成直角,那么这两条直线互相垂直。
②互相垂直的两条直线的交点叫做垂足。
③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
正方形:一组邻边相等的矩形是正方形
性质:正方形具有平行四边形、菱形、矩形的一切性质
判定:
1、对角线相等的菱形
2、邻边相等的矩形
基本方法
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一个、一个也没有;至少有n个、至多有(n一1)个;至多有一个、至少有两个;唯一、至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个**的任一元素到同一**的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:
(1)平移;
(2)旋转;
(3)对称。
10、客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,为分析法。
数学初中知识点总结9
1、菱形的定义:有一组邻边相等的平行四边形叫做菱形。
2、菱形的性质:
⑴矩形具有平行四边形的一切性质;
⑵菱形的四条边都相等;
⑶菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
⑷菱形是轴对称图形。
提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的.平方和。
3、因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
4、因式分解要素:
①结果必须是整式
②结果必须是积的形式
③结果是等式
④因式分解与整式乘法的关系:m(a+b+c)
5、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
6、公因式确定方法:
①系数是整数时取各项最大公约数。
②相同字母取最低次幂
③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
7、提取公因式步骤:
①确定公因式。
②确定商式
③公因式与商式写成积的形式。
8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。a叫被开方数。
9、中被开方数的取值范围:被开方数a≥0
10、平方根性质:
①一个正数的平方根有两个,它们互为相反数。
②0的平方根是它本身0。
③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。
11、平方根与算术平方根区别:定义不同、表示方法不同、个数不同、取值范围不同。
12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是0
13、含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。
14、求正数a的算术平方根的方法;
完全平方数类型:
①想谁的平方是数a。
②所以a的平方根是多少。
③用式子表示。
求正数a的算术平方根,只需找出平方后等于a的正数。
数学初中知识点总结10
诱导公式的本质
所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。
常用的`诱导公式
公式一: 设为任意角,终边相同的角的同一三角函数的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 设为任意角,的三角函数值与的三角函数值之间的关系:
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
公式三: 任意角与 -的三角函数值之间的关系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到与的三角函数值之间的关系:
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
数学初中知识点总结11
初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心,旺盛的求知欲,都有把高中课程学好的愿望。但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥,泛味,抽象,晦涩,有些章节如听天书。在做习题,课外练习时,又是磕磕碰碰,跌跌撞撞,常常感到茫然一片,不知从何下手。造成这种现象的原因是多方面的,但最主要的根源还在于初,高中数学教学上的衔接问题。下面就这个问题进行分析,探讨其原因,寻找解决对策。
一、高一学生学习数学产生困难是造成数学成绩下降的主要原因
(一)教材的原因。
由于实行九年制义务教育和倡导全面提高学生素质,现行初中数学教材在内容上进行了较大幅度的调整,难度,深度和广度大大降低了,那些在高中学习中经常应用到的知识,如:对数,二次不等式,解斜三角形,分数指数幂等内容,都转移到高一阶段补充学习。这样初中教材就体现了"浅,少,易"的特点,但却加重了高一数学的份量。另外,初中数学教材中每一新知识的引入往往与学生日常生活实际很贴近,比较形象,并遵循从感性认识上升到理性认识的规律,学生一般都容易理解,接受和掌握。且目前初中教材叙述方法比较简单,语言通俗易懂,直观性,趣味性强,结论容易记忆,应试效果也比较理想。
相对而言,高中数学一开始,概念抽象,定理严谨,逻辑性强,教材叙述比较严谨,规范,抽象思维和空间想象明显提高,知识难度加大,且习题类型多,解题技巧灵活多变,计算繁冗复杂,体现了"起点高,难度大,容量多"的特点。
(二)教法的原因。
初中数学教学内容少,知识难度不大,教学要求较低,因而教学进度较慢,对于某些重点,难点,教师可以有充裕的时间反复讲解,多次演练,从而各个击破、另外,为了应付中考,初中教师大多数采用"满堂灌"填鸭式的教学模式,单纯地向学生传授知识,并让学生通过机械模仿式的重复练习以达到熟能生巧的程度,结果造成"重知识,轻能力","重局部,轻整体","重试卷(复习资料),轻书本"的不良倾向。这种封闭被动的传统教学方式严重束缚了学生思维的发展,影响了学生发现意识的`形成,创新思维受到了扼制。但是进入高中以后,教材内涵丰富,教学要求高,进度快,知识信息广泛,题目难度加深,知识的重点和难点也不可能象初中那样通过反复强调来排难释疑。而且高中教学往往通过设导,设问,设陷,设变,启发引导,开拓思路,然后由学生自己去思考,去解答,比较注意知识的发生过程,倾重对学生思想方法的渗透和思维品质的培养。这使得刚进入高中的学生不容易适应这种教学方法。听课时就存在思维障碍,不容易跟上教师的思维,从而产生学习障碍,影响数学的学习。
(三)学生自身的原因。
①被动学习
在初中,教师讲得细,类型归纳得全,反复练习。考试时,学生只要记忆概念,公式,及例题类型,一般都可以对号入座取得好成绩。因此,学生习惯于围着教师转,不需要独立思考和对规律进行归纳总结。学生满足于你讲我听,你放我录,缺乏学习主动性。表现在不定计划,坐等上课,课前没有预习,对老师上课的内容不了解,上课忙于记笔记,没听到"门道",没有真正理解所学内容。而到了高中,数学学习要求学生勤于思考,善于归纳总结规律,掌握数学思想方法,做到举一反三,触类旁通。所以,刚入学的高一新生,往往沿用初中学法,致使学习出现困难,完成当天作业都很困难,更没有预习,复习,总结等自我消化,自我调整的时间。这显然不利于良好学法的形成和学习质量的提高。造成高一学生数学学习的困难。
②学不得法
老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固,总结,寻找知识间的联系,只是赶做作业,乱套题型,对概念,法则,公式,定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
二、搞好初高中数学教学衔接,帮助学生渡过学习数学"困难期"的对策
(一)做好准备工作,为搞好衔接打好基础。
1、搞好入学教育。这是搞好衔接的基础工作,也是首要工作。
通过入学教育提高学生对初高中衔接重要性的认识,增强紧迫感,消除松懈情绪,初步了解高中数学学习的特点,为其它措施的落实奠定基础。这里主要做好四项工作:一是给学生讲清高一数学在整个中学数学中所占的位置和作用;二是结合实例,采取与初中对比的方法,给学生讲清高中数学内容体系特点和课堂教学特点;三是结合实例给学生讲明初高中数学在学法上存在的本质区别,并向学生介绍一些优秀学法,指出注意事项;四是请高年级学生谈体会讲感受,引导学生少走弯路,尽快适应高中学习。
2、摸清底数,规划教学。为了搞好初高中衔接,教师首先要摸清学生的学习基础,然后以此来规划自己的教学和落实教学要求,以提高教学的针对性。在教学实际中,一方面通过进行摸底测试和对入学成绩的分析,了解学生的基础;另一方面,认真学习和比较初高中教学大纲和教材,以全面了解初高中数学知识体系,找出初高中知识的衔接点,区别点和需要铺路搭桥的知识点,以使备课和讲课更符合学生实际,更具有针对性。
(二)优化课堂教学环节,搞好初高中数学知识衔接教学。
1、立足于大纲和教材,尊重学生实际,实行层次教学。
高一数学中有许多难理解和掌握的知识点,如集合,映射等,对高一新生来讲确实困难较大。因此,在教学中,应从高一学生实际出发,采用低起点,小梯度,多训练,分层次"的方法,将教学目标分解成若干递进层次逐层落实。在速度上,放慢起始进度,逐步加快教学节奏。在知识导入上,多由实例和已知引入。在知识落实上,先落实"死"课本,后变通延伸用活课本。在难点知识讲解上,从学生理解和掌握的实际出发,对教材作必要层次处理和知识铺垫,并对知识的理解要点和应用注意点作必要总结及举例说明。
2、重视新旧知识的联系与区别,建立知识网络。
初高中数学有很多衔接知识点,如函数概念,平面几何与立体几何相关知识等,到高中,它们有的加深了,有的研究范围扩大了,有些在初中成立的结论到高中可能不成立。因此,在讲授新知识时,应当有意引导学生联系旧知识,复习和区别旧知识,特别注重对那些易错易混的知识加以分析,比较和区别。这样可达到温故知新,温故而探新的效果。
3、重视展示知识的形成过程和方法探索过程,培养学生创造能力。
高中数学比初中数学抽象性强,应用灵活,这就要求学生对知识理解要透,应用要活,不能只停留在对知识结论的死记硬套上,这就要求教师应向学生展示新知识和新解法的产生背景,形成和探索过程,不仅使学生掌握知识和方法的本质,提高应用的灵活性,而且还使学生学会如何质疑和释疑的思想方法,促进创造性思维能力的提高。
4、重视培养学生自我反思自我总结的良好习惯,提高学习的自觉性。
高中数学概括性强,题目灵活多变,课上听懂是不够的,需要课后进行认真消化,认真总结归纳。这就要求学生应具备善于自我反思和自我总结的能力。因此,在教学中,应当抓住时机积极培养。在单元结束时,帮助学生进行自我章节小结,在解题后,积极引导学生反思:思解题思路和步骤,思一题多解和一题多变,思解题方法和解题规律的总结。由此培养学生善于进行自我反思的习惯,扩大知识和方法的应用范围,提高学习效率。
(三)加强学法指导,培养良好学习习惯
数学初中知识点总结12
初中数学总复习,是对初中三年来所学数学知识的回顾,巩固提高,查漏补缺,它不是对知识的简单重复,而是引导学生对所学知识进行系统归纳和升华,并用已学的知识解决新问题。进一步加深对数学概念的理解,弄清各部分知识的内在联系,熟练掌握重要的数学方法和数学思想,从而达到开发智力、培养能力的目的因此,初中数学总复习是非常重要的,复习的好坏将决定学生成绩的好坏、决定学生掌握知识的牢固程度。一直以来,如何有效提高复习效率,是广大教师多年来探求的重要课题之一。笔者从1999年以来,一直担任初中数学的教学任务,所教班级的数学中考考试成绩一直名列前茅。下面笔者根据对初中数学总复习的实践,总结出的一套较为实用的复习方法。
一、复习基础知识阶段
在初中数学复习中,第一阶段要紧扣课本,疏理教材,使学生在头脑中形成一个关于初中数学知识的前后相连、纵横交错、融会贯通的知识结构。在第一阶段中,一般按初中数学知识体系把初中数学知识分成九个单元,即:“数与式”“方程和不等式(组)”“函数及其图像”“统计与概率”“图形初步认识和三角形”“四边形”“相似和解直角三角形”“圆”“图形的变换、投影与视图”。按单元进行复习。每个单元按下面步骤进行。
1、疏理知识结构
首先,引导学生把本单元的知识用文字、图表等方式编织知识网络,用简表式的结构表示本单元的知识结构;其次,引导学生回顾基础知识;最后,以基本习题的形式再现知识的内容,即通过一些判断题、填空题、选择题、简单计算题的训练达到巩固基础知识的目的
2、训练基本技能和解题技巧
在理顺知识结构的基础上,把每个单元按知识点分成若干课时,然后按知识点精选例题和练习题,引导学生进行多方练习,多角度思考,正反求解,促进学生掌握基础知识和解题技巧。
精选的例题和练习题最好从课本上寻找,因为中考的命题原则是:“源于教材,高于教材。”所选例题、练习题力求典型,紧扣教材。另外,也可从近几年中考试题中改编新颖的题目进行训练。
每课时的教学可按“理顺知识――尝试做例题――讲解例题――练习――变式练习――作业”几个步骤进行。在“理解知识”阶段力求简单明了地揭示本节课所要复习的知识点,领会概念、定理、公理和数学思想方法。讲解的例题或作业一般可选择一部分题进行“一题多变”“一题多解”的题目。在分析、讲解例题时切不可就题论题,应注意揭示例题中所反映出的概念、原理和思想方法及解题技巧。
3、单元测试
在上述复习的基础上,复习完每一个单元后,必须出示至少4份试卷。第一份试卷,以引导学生系统地梳理教材、构建知识结构,归纳和总结各种概念、公理、定理、公式为主。第二份试卷,以归纳、总结本单元的常用结论、解题方法、一题多解、一题多变为主。对学生进行测试,以了解学生掌握知识的情况,及时查漏补缺。
测试题应以教学大纲、考标、教材为依据,要求内容覆盖面广,题目搭配合理、难易适中、题型俱全,富有启发性。通过测试,全面衡量复习效果,一般来说,测试题可从以下几个方面精选题目:(1)全面体现本单元的基础知识的填空题和选择题;(2)本单元所反映出的`基本技能和技巧的解答题;(3)综合运用本单元知识的综合题。
上面三方面试题的比例为6∶3∶1测试完后,教师进行讲评,对学生未弄懂的知识点及时进行补救。
二、综合训练,加强重点知识阶段
在完成第一阶段的基础上,根据初中数学知识的重点,选择一些较为典型的综合题,引导学生合作探索和研究,以培养学生综合运用知识来分析问题和解决问题的能力。选择的题目一般从本市及全省近5年的中考试题中去精选。
综合题,一般来说有代数综合题、几何综合题、代数和几何相结合的综合题。代数综合题的重点应是二次方程和二次函数;几何综合题的重点是三角形、四边形和图;代数与几何相结合的综合题则是方程、函数与图像相结合的题。
对于综合题的训练,一般采用“尝试练习――分析――讲解――归纳解题方法与技巧――练习”的方式进行。对重点问题进行一题多解、一题多变的训练。
三、综合测试,查漏补缺阶段
为了进一步巩固数学知识,全面考查复习效果,提高学生的心理素质,在第二阶段复习结束时,可进行模拟测试。测试题一般自拟几套和选择其他省市上届中考题和本省往届的中考题,模拟试题,力求全面再现初中数学知识和方法,既要有考查双基的基础题,又要有考查学生能力的综合题。有的知识还要与高中知识衔接并拓展。
考完一套,及时讲评,与学生一起分析,共同探讨,列出知识清单使得每个学生经历知识收集、整理的过程,把书学“薄”,有效地回顾了一章书所学的知识。
数学初中知识点总结13
1.有理数:
(1)凡能写成形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;p不是有理数;
(2)有理数的分类:① ②
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0?a+b=0?a、b互为相反数。
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:或;绝对值的问题经常分类讨论;
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数> 0,小数—大数< 0。
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
7.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数。
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a;(2)加法的`结合律:(a+b)+c=a+(b+c)。
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。
10.有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
11.有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac 。
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(—a)n=—an或(a —b)n=—(b—a)n,当n为正偶数时:(—a)n =an或(a—b)n=(b—a)n 。
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。
18.混合运算法则:先乘方,后乘除,最后加减。
本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题。
体验数学发展的一个重要原因是生活实际的需要。激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。
数学初中知识点总结14
第一章:勾股定理
1.如果直角三角形的两条直角边长分别是a和b,斜边长为c,那么a的平方加上b的平方等于c的平方。
2.如果直角三角形的两条直角边长分别是a和b,斜边长为c,那么a的平方加上b的平方等于c的平方。
3.如果直角三角形的两条直角边长分别是a和b,斜边长为c,那么两条直角边长的平方和等于斜边长的平方。
4.如果直角三角形的两条直角边长分别是a和b,斜边长为c,那么a、b、c三者之间的关系是a的平方加上b的平方等于c的平方。
第二章:四边形
1.平行四边形:两组对边分别平行的四边形叫做平行四边形。
2.菱形:有一组邻边相等的平行四边形叫做菱形。
3.矩形:有一个角是直角的平行四边形叫做矩形。
4.正方形:有一组邻边相等的矩形叫做正方形。
5.平行四边形的性质:对边平行且相等;对角相等,且互补;对角线互相平分。
6.菱形的性质:四边相等;对角线互相垂直,且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的'面积等于两条对角线长的积的一半。
7.矩形的性质:矩形的四个角都是直角;矩形的对角线相等。
8.正方形的性质:四个角都是直角,四条边都相等;对角线相等,且互相垂直平分,每条对角线平分一组对角;正方形被两条对角线分成四个全等的直角三角形;正方形是特殊的长方形,所以正方形具有矩形的一切性质。
第三章:一次函数
1.一次函数:如果所给函数表达式是正比例函数,那么它经过原点(0,0);如果所给函数表达式是一次函数(斜截式),那么它经过原点(0,0)。
2.正比例函数:如果y=kx(k是常数,且k≠0),那么y叫做x的正比例函数。
3.一次函数:如果正比例函数y=kx(k是常数,且k≠0)的图像经过第一、二、三象限,那么一次函数y=kx+b(k,b是常数,k≠0)的图像也经过第一、二、三象限。
4.一次函数:如果正比例函数y=kx(k是常数,且k≠0)的图像经过第一、二、三象限,那么一次函数y=kx+b(k,b是常数,k≠0)的图像也经过第一、二、三象限。
5.正比例函数:如果y=kx(k是常数,且k≠0),那么y叫做x的正比例函数。
6.一次函数:如果正比例函数y=kx(k是常数,且k≠0)的图像经过第一、二、三象限,那么一次函数y=kx+b(k,b是常数,k≠0)的图像也经过第一、二、三象限。
7.正比例函数:如果y=kx(k是常数,且k≠0),那么y叫做x的正比例函数。
8.一次函数:如果正比例函数y=kx(k是常数,且k≠0)的图像经过第一、二、三象限,那么一次函数y=kx+b(k,b是常数,k≠0)的图像也经过第一、二、三象限。
9.正比例函数:如果y=kx(k是常数,且k≠0),那么y叫做x的正比例函数。
10.一次函数:如果正比例函数y=kx(k是常数,且k≠0)的图像经过第一、二、三象限,那么一次函数y=kx+b(k,b是常数,k≠0)的图像也经过第一、二、三象限。
数学初中知识点总结15
一、在创新中培养学生的归纳意?R
在初中数学教学中,重点是对学生的创新精神和实践能力的培养,体现出现代素质教育。学生创新能力的培养在学习中占据非常重要的作用,在创新中学生可以巩固自身所学的知识,使数学知识在自己的头脑中根深蒂固,各类知识点在学生的头脑中形成清晰的框架,有助于学生归纳意识的培养。归纳意识的培养,可以减轻学生的学习负担,提升学生对知识的理解能力。
初中生在学习数学的环节中,常常会接触到大量的图像,在数学学习中,老师应该鼓励学生大胆创新,在创新环节中完成对知识点的归纳。数学学习并不死板,不仅仅学习教科书上的知识,还应该学习书本以外的知识,从而创新自己的思维。例如在进行函数的学习中,老师可以让学生绘制函数图像,对函数进行分类讨论,从而掌握递增函数和递减函数的定义,在分类讨论后,学生结合图像进行归纳。在数学教学中,老师不仅仅要重视书本上的逻辑内容,而且在把握逻辑内容的基础上,将图像和数学知识有机结合起来,使学生可以大胆创新。
很多学生在数学学习中存在困难,认为数学的学习就是解答大量的难题,他们在大量的题海战术后不善于归纳,导致数学学习的效率不高。
二、在交流中归纳知识点
在数学学习中,如果学生只是自己探究,那么在学习中不会得到灵感。数学学习不仅仅要求学生具有认真的钻研态度,而且也需要老师帮助学生养成归纳的'意识。沟通和交流不仅仅在语言的学习中发挥非常重要的作用,而且在数学学习中同样非常重要。学生在解答数学问题中,常常会遇到一些问题,学生自己探究会陷入到死胡同中,需要老师和同学的帮助才能进一步完成。
为了切实在初中数学教学中培养学生的归纳意识,老师可以将班级内的学生分成几个不同的小组,组内的同学可以通过合作的方式,对知识点进行归纳,在数学的学习中更加变通,将数学这门学科应用到生活中。
例如,在进行二次函数的学习中,老师可以将学生分成不同的小组,留给学生充足的时间,让他们互相帮助,在沟通中对知识点进行归纳。学生很快就能得到结论,如果函数有两个解,那么函数与数轴会有两个交点,如果方程只有一个解,那么函数与数轴只有一个交点,如果方程没有解,那么函数与数轴没有交点。学生通过分组讨论的方式得到结论,通过归纳,学生对二次函数知识点的印象非常深刻。
三、学会正确归纳
在数学学习中,归纳思想非常重要,数学这门学科的知识非常细碎,是一门系统性很强的学科。数学知识错综复杂,很多学生在学习数学中力不从心,掌握合理的归纳方式,可以切实提升学生的数学成绩。初中生的思维还不是特别完善,在进行数学学习环节中,对知识点进行合理的归纳,是每位老师应该采取的方法。如果学生不懂得归纳,那么在数学考试中,学生会将知识点混淆。为了提升学生的归纳能力,老师在课堂上应该将一些容易混淆和容易出现错误的习题让学生总结。
例如,在学习圆和直线这部分内容中,老师都会将重点内容,圆和圆的位置关系,直线和圆的位置关系进行重点分析。老师可以借助一些参考书目和资料,总结一些相似的题目,让学生在课堂上解答这些题目,使学生对这部分知识点进行总结,从而加深对这部分知识的理解。归纳思想在数学学习中应用非常多,在进行初中数学教学环节中,学生应该花更多的时间进行归纳。
在进行初中数学的学习中,学生归纳意识的养成可以完善学生的数学思维,学生学会归纳,在学习中就会如鱼得水,在考试中取得好成绩。
四、在反思中完成知识点的归纳
【数学初中知识点总结】相关文章:
初中数学圆的知识点总结12-05
数学初中知识点总结06-10
初中数学函数知识点总结06-14
初中数学必备知识点总结03-01
初中数学函数知识点总结11-24
初中数学几何知识点总结11-05
初中数学知识点总结(精选)06-16
初中数学知识点总结07-15
初中数学知识点归纳总结12-02
[精]初中数学知识点总结02-24