当前位置:育文网>初中>初中数学> 数学初中知识点总结

数学初中知识点总结

时间:2024-07-17 16:01:06 初中数学 我要投稿

数学初中知识点总结优秀[15篇]

  总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,因此,让我们写一份总结吧。你想知道总结怎么写吗?以下是小编整理的数学初中知识点总结,仅供参考,大家一起来看看吧。

数学初中知识点总结优秀[15篇]

数学初中知识点总结1

  一、角的定义

  “静态”概念:有公共端点的两条射线组成的图形叫做角。

  “动态”概念:角可以看作是一条射线绕其端点从一个位置旋转到另一个位置所形成的图形。

  如果一个角的两边成一条直线,那么这个角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做钝角;大于0小于直角的角叫做锐角。

  二、角的换算:1周角=2平角=4直角=360°;

  1平角=2直角=180°;

  1直角=90°;

  1度=60分=3600秒(即:1°=60′=3600″);

  1分=60秒(即:1′=60″).

  三、余角、补角的概念和性质:

  概念:如果两个角的和是一个平角,那么这两个角叫做互为补角。

  如果两个角的和是一个直角,那么这两个角叫做互为余角。

  说明:互补、互余是指两个角的数量关系,没有位置关系。

  性质:同角(或等角)的余角相等;

  同角(或等角)的补角相等。

  四、角的比较方法:

  角的大小比较,有两种方法:

  (1)度量法(利用量角器);

  (2)叠合法(利用圆规和直尺)。

  五、角平分线:从一个角的顶点引出的一条射线。把这个角分成相等的两部分,这条射线叫做这个角的平分线。

  常见考法

  (1)考查与时钟有关的问题;(2)角的计算与度量。

  误区提醒

  角的度、分、秒单位的换算是60进制,而不是10进制,换算时易受10进制影响而出错。

  初中数学知识点梳理

  1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的.系数不是零的整式方程是一元一次方程。

  2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

  3.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1 ……(检验方程的解)。

  4.列一元一次方程解应用题:

  (1)读题分析法:多用于“和,差,倍,分问题”

  仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套—————”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。

  (2)画图分析法:多用于“行程问题”

  利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

  11.列方程解应用题的常用公式:

  (1)行程问题:距离=速度·时间;

  (2)工程问题:工作量=工效·工时;

  (3)比率问题:部分=全体·比率;

  (4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度—水流速度;

  (5)商品价格问题:售价=定价·折·,利润=售价—成本,;

  (6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,S正方形=a2,S环形=π(R2—r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥= πR2h。

  本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。

数学初中知识点总结2

  整式的加减

  2、1整式

  1、单项式:由数字和字母乘积组成的式子。系数,单项式的次数、单项式指的是数或字母的积的代数式、单独一个数或一个字母也是单项式、因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式、

  2、单项式的系数:是指单项式中的数字因数;

  3、单项数的次数:是指单项式中所有字母的指数的和、

  4、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式、每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式、特别注意多项式的`项包括它前面的性质符号、

  5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

  6、单项式和多项式统称为整式。

  2、2整式的加减

  1、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

  2、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可、同类项与系数大小、字母的排列顺序无关

  3、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

  4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

  5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。

  6、整式加减的一般步骤:

  一去、二找、三合

  (1)如果遇到括号按去括号法则先去括号、(2)结合同类项、(3)合并同类项葫芦岛

  初中数学知识点归纳

  三角和的公式

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  倍角公式

  tan2A = 2tanA/(1-tan2 A)

  Sin2A=2SinA?CosA

  Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

  三倍角公式

  sin3A = 3sinA-4(sinA)3;

  cos3A = 4(cosA)3 -3cosA

  tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

  三角函数特殊值

  α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

  α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

  a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

  α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

  α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

  α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

  α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

  α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

  α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

  α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

  α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  三角函数记忆顺口溜

  1三角函数记忆口诀

  “奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。

  以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。

  2符号判断口诀

  全,S,T,C,正。这五个字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。

  也可以这样理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是对应象限三角函数为正值的名称。口诀中未提及的都是负值。

  “ASTC”反Z。意即为“all(全部)”、“sin”、“tan”、“cos”按照将字母Z反过来写所占的象限对应的三角函数为正值。

  3三角函数顺口溜

  三角函数是函数,象限符号坐标注。函数图像单位圆,周期奇偶增减现。

  同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

  中心记上数字一,连结顶点三角形。向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

  计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

  逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

  万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

  一加余弦想余弦,一减余弦想正弦,幂升一次角减半,升幂降次它为范;

  三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

  利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。

  初中数学知识点大全

  诱导公式的本质

  所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。

  常用的诱导公式

  公式一: 设为任意角,终边相同的角的同一三角函数的值相等:

  sin(2k)=sin kz

  cos(2k)=cos kz

  tan(2k)=tan kz

  cot(2k)=cot kz

  公式二: 设为任意角,的三角函数值与的三角函数值之间的关系:

  sin( )=-sin

  cos( )=-cos

  tan( )=tan

  cot( )=cot

  公式三: 任意角与 -的三角函数值之间的关系:

  sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  公式四: 利用公式二和公式三可以得到与的三角函数值之间的关系:

  sin( )=sin

  cos( )=-cos

  tan( )=-tan

  cot( )=-cot

数学初中知识点总结3

  一、实数

  1.平方根性质:

  (1)一个正数有两个平方根,它们互为相反数;

  (2)零的平方根是零;

  (3)负数没有平方根。

  2.算术平方根性质:

  (1)一个正数的正的平方根叫做它的算术平方根;

  (2)零的算术平方根是零;

  (3)负数没有算术平方根。

  3.立方根性质:

  (1)正数的立方根是正数;

  (2)零的立方根是零;

  (3)负数的立方根是负数。

  4.实数的性质:

  (1)零是唯一没有平方根的数;

  (2)正数和负数可以没有算术平方根;

  (3)任何实数的立方根只有唯一的一个;

  (4)正数的立方根与它本身和零同类。

  二、整式的运算

  1.整式范围:

  (1)整式可以化为分数或整数;

  (2)整式可以化为负数或非负数;

  (3)整式可以化为奇数或偶数;

  (4)整式可以化简为分数指数幂。

  2.单项式:

  (1)单项式的系数是数字因数;

  (2)一个单项式中所有字母的`指数的和叫做单项式的次数。

  3.多项式:

  (1)多项式的每一项都是一个单项式;

  (2)一个多项式的项数与多项式中含有几个单项式有关。

  4.同底数幂的乘法:

  (1)同底数幂相乘,底数不变,指数相加;

  (2)同底数幂相除,底数不变,指数相减。

  5.幂的乘方:

  幂的乘方,底数不变,指数相乘。

  6.积的乘方:

  (1)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;

  (2)1的乘方等于1。

  7.同底数幂的除法:

  (1)同底数幂相除,底数不变,指数相减;

  (2)0的任何正整数次幂都是0。

  8.分式:

  (1)分式是整式的一种,在整式中区别于整式,分式的分母中必须含有字母;

  (2)分式的值等于分子除以分母。

  9.分式的运算:

  (1)分式的乘方:分式与分式相乘,再把被乘式的分子、分母分别与乘式的分子、分母相乘,即分子相乘的积做积的分子,分母相乘的积做积的分母;

  (2)分式的除法:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即分子相除的商做被除式的分子,分母相除的商做被除式的分母;

  (3)分式的加减:异分母分式的加减运算,为了使不同分母的分数直接相加减不便,因此常把不同分母的分数分别化成与原来的分母相同的分母后再相加减。

  三、方程与方程组

  1.方程:

  (1)含有未知数的等式叫方程;

  (2)使方程左右两边相等的未知数的值,叫做方程的解;

  (3)求方程的解的过程叫做解方程。

  2.方程的解:

  (1)能使方程左右两边相等的未知数的值;

  (2)一个数(它不一定是数,也可以是符号和运算)是某一等式(含有未知数的等式)的解,那么这个数就叫做该等式的解。

  3.一元一次方程:

  (1)只有一个未知数;

  (2)未知数的最高次数为1;

  (3)整式方程。

  4.方程的解法:

  (1)去分母:在方程两端同乘各分母的最小公倍数;

  (2)去括号:去括号要变号;

  (3)移项:把含有未知数的项移到等号的一边,其他项移到另一边;

  (4)合并同类项:化未知数为已知数;

  (5)系数化成1:在方程两端同除以未知数的系数。

  5.列方程解应用题

数学初中知识点总结4

  三角形两边:

  定理三角形两边的和大于第三边。

  推论三角形两边的差小于第三边。

  三角形中位线定理:

  三角形的中位线平行于第三边,并且等于它的一半。

  三角形的重心:

  三角形的重心到顶点的距离是它到对边中点距离的2倍。

  在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线,三角形的三条中线交于一点,这一点叫做“三角形的重心”。

  与三角形有关的角:

  1、三角形的内角和定理:三角形的内角和为180°,与三角形的形状无关。

  2、直角三角形两个锐角的关系:直角三角形的两个锐角互余(相加为90°)。有两个角互余的三角形是直角三角形。

  3、三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角之和;三角形的一个外角大于与它不相邻的任何一个内角;三角形三个外角和为360°。

  全等三角形的性质和判定:

  全等三角形共有5种判定方式:SSS、SAS、ASA、AAS、HL。特殊情况下平移、旋转、对折也会构成全等三角形。

  (边边边),即三边对应相等的两个三角形全等。

  (边角边),即三角形的其中两条边对应相等,且两条边的夹角也对应相等的两个三角形全等。

  (角边角),即三角形的其中两个角对应相等,且两个角夹的的边也对应相等的两个三角形全等。

  (角角边),即三角形的其中两个角对应相等,且对应相等的'角所对应的边也对应相等的两个三角形全等。

  (斜边、直角边),即在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等。

  等边三角形的判定:

  1、三边相等的三角形是等边三角形(定义)。

  2、三个内角都相等的三角形是等边三角形。

  3、有一个角是60度的等腰三角形是等边三角形。

  4、有两个角等于60度的三角形是等边三角形。

数学初中知识点总结5

  1、有理数的加法运算:

  同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好、

  2、合并同类项:

  合并同类项,法则不能忘,只求系数和,字母、指数不变样、

  3、去、添括号法则:

  去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号、

  4、一元一次方程:

  已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒、

  5、平方差公式:

  平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆、

  1、完全平方公式:

  完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;

  首±尾括号带平方,尾项符号随中央、

  2、因式分解:

  一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚、

  3、单项式运算:

  加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行、

  4、一元一次不等式解题的'一般步骤:

  去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了、

  5、一元一次不等式组的解集:

  大大取较大,小小取较小,小大、大小取中间,大小、小大无处找、

  一元二次不等式、一元一次绝对值不等式的解集:

  大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

数学初中知识点总结6

  一、投影

  1、投影:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。

  2、平行投影:由平行光线形成的投影是平行投影。(光源特别远)

  3、中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影

  4、正投影:投影线垂直于投影面产生的投影叫做正投影。物体正投影的形状、大小与它相对于投影面的位置有关。

  5、当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同。当物体的某个面顶斜于投影面时,这个面的正投影变小。当物体的某个面垂直于投影面时,这个面的.正投影成为一条直线。

  二、三视图

  1、三视图:是观测者从三个不同位置(正面、水平面、侧面)观察同一个空间几何体而画出的图形。三视图就是主视图、俯视图、左视图的总称。另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

  2、主视图:在正面内得到的由前向后观察物体的视图。

  3、俯视图:在水平面内得到的由上向下观察物体的视图。

  4、左视图:在侧面内得到的由左向右观察物体的视图。

  5、三个视图的位置关系:

  ①主视图在上、俯视图在下、左视图在右;

  ②主视、俯视表示物体的长,主视、左视表示物体的高,左视、俯视表示物体的宽。

  ③主视、俯视长对正,主视、左视高平齐,左视、俯视宽相等。

  6、画法:看得见的部分的轮廓线画成实线,因被其它部分遮档而看不见的部分的轮廓线画成虚线。

  邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

  对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

  垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

  平行线:在同一平面内,不相交的两条直线叫做平行线。

  同位角、内错角、同旁内角:

  同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

  内错角:∠2与∠6像这样的一对角叫做内错角。

  同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

  命题:判断一件事情的语句叫命题。

  平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

  对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

数学初中知识点总结7

  1.相似三角形定义:

  对应角相等,对应边成比例的三角形,叫做相似三角形。

  2.相似三角形的表示方法:用符号"∽"表示,读作"相似于"。

  3.相似三角形的相似比:

  相似三角形的对应边的比叫做相似比。

  4.相似三角形的'预备定理:

  平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

  从表中可以看出只要将全等三角形判定定理中的"对应边相等"的条件改为"对应边

  成比例"就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。

  6.直角三角形相似:

  (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

  (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

  7.相似三角形的性质定理:

  (1)相似三角形的对应角相等。

  (2)相似三角形的对应边成比例。

  (3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

  (4)相似三角形的周长比等于相似比。

  (5)相似三角形的面积比等于相似比的平方。

  8. 相似三角形的传递性

  如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2

数学初中知识点总结8

  知识要点:数列中的项必须是数,它可以是实数,也可以是复数。

  数列表示方法

  如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。如an=(-1)^(n+1)+1。

  数列通项公式的特点:(1)有些数列的通项公式可以有不同形式,即不唯一。(2)有些数列没有通项公式

  如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。如an=2a(n-1)+1 (n>;1)

  数列递推公式的特点:(1)有些数列的递推公式可以有不同形式,即不唯一。(2)有些数列没有递推公式

  有递推公式不一定有通项公式

  知识要领总结:数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为_轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做_轴或横轴,铅直的数轴叫做y轴或纵轴,_轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的`掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

  通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

数学初中知识点总结9

  一次函数:一次函数图像与性质是中考必考的内容之一。中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。甚至有存在探究题目出现。

  主要考察内容:

  ①会画一次函数的图像,并掌握其性质。

  ②会根据已知条件,利用待定系数法确定一次函数的解析式。

  ③能用一次函数解决实际问题。

  ④考察一ic函数与二元一次方程组,一元一次不等式的关系。

  突破方法:

  ①正确理解掌握一次函数的概念,图像和性质。

  ②运用数学结合的思想解与一次函数图像有关的问题。

  ③掌握用待定系数法球一次函数解析式。

  ④做一些综合题的训练,提高分析问题的能力。

  函数性质:

  1.y的变化值与对应的x的变化值成正比例,比值为k.即:y=kx+b(k,b为常数,k≠0),∵当x增加m,k(x+m)+b=y+km,km/m=k。

  2.当x=0时,b为函数在y轴上的'点,坐标为(0,b)。

  3当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。

  4.在两个一次函数表达式中:

  当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。若两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0)则称y是x的一次函数图像性质

  1、作法与图形:通过如下3个步骤:

  (1)列表.

  (2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。

  正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。(3)连线,可以作出一次函数的图象一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b).

  2、性质:

  (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

  (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。

  3、函数不是数,它是指某一变化过程中两个变量之间的关系。

  4、k,b与函数图像所在象限:

  y=kx时(即b等于0,y与x成正比例):

  当k>0时,直线必通过第一、三象限,y随x的增大而增大;当k0,b>0,这时此函数的图象经过第一、二、三象限;当k>0,b

数学初中知识点总结10

  1.圆是以圆心为对称中心的中心对称图形;同圆或等圆的半径相等。

  2.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

  3.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

  4.圆是定点的距离等于定长的点的集合。

  5.圆的内部可以看作是圆心的距离小于半径的点的集合;圆的外部可以看作是圆心的距离大于半径的'点的集合。

  6.不在同一直线上的三点确定一个圆。

  7.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧。

  推论1:

  ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

  推论2:圆的两条平行弦所夹的弧相等。

  8.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  9.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

  10.经过切点且垂直于切线的直线必经过圆心。

  11.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

  12.切线的性质定理圆的切线垂直于经过切点的半径。

  13.经过圆心且垂直于切线的直线必经过切点

  14.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

  15.圆的外切四边形的两组对边的和相等外角等于内对角。

  16.如果两个圆相切,那么切点一定在连心线上。

  17.

  ①两圆外离d>R+r

  ②两圆外切d=R+r

  ③两圆相交d>R-r)

  ④两圆内切d=R-r(R>r)

  ⑤两圆内含d=r)

  18.定理把圆分成n(n≥3):

  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形

  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。

  19.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。

  20.弧长计算公式:L=n兀R/180;扇形面积公式:S扇形=n兀R^2/360=LR/2。

  21.内公切线长= d-(R-r)外公切线长= d-(R+r)。

  22.定理一条弧所对的圆周角等于它所对的圆心角的一半。

  23.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

  24.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

数学初中知识点总结11

  20xx年的工作临近尾声,回首本年度真是忙碌而充实,本年度我即担任教导处主任一职又担任班主任工作,经常是忙的喝口水的时间都没有。虽然在教导处主任的岗位上我只有不到一年的工作经验,但是在李校长的关心和培养下,在全体领导、老师、家长的热情支持和帮助下,各项工作得以顺利开展并在一些方面有了较为明显的进步。现对自己一年来所做工作加以梳理和反思,力求在总结中发现不足,在反思中缩中差距,在创新中不断提升。

  一、思想品德方面

  我热爱教育事业,始初不忘人民教师职责,爱学校、爱学生。作为一名名师,我从自身严格要求自己,通过政治思想、学识水平、教育教学能力等方面的不断提高来塑造自己的行为,使自己在教育行业中不断成长,为社会培养出优秀的人才,打下坚实的基础。

  二、主要成绩

  今年是我到工作的第五个年头,几年来我一直担任班主任和年级的组长,同时又负责学校教导处工作,一直以来,我始初牢记"踏实工作、真心待人"的原则,在工作中严格要求自己,刻苦钻研业务,不断提高业务水平,不断学习新知识,探索教育教学规律,改进教育教学方法,努力使自己成为专家型教师。

  1、在班主任工作方面:我投入了极强的责任心,关注每一名学生,及时发现他们的各种心理或行为动态,还有学习的心态与学习情况,用爱心与耐心浇灌每一个孩子,并且及时与家长、科任老师进行沟通,使孩子在各个方面得到发展,几年来,与学生形成了亦师亦友的和谐师生关系,在18年被评为省级师德先进个人,19年被评为省级优秀教师。加强学习,努力提升自身修为。

  2、在教学方面:我严格要求自己,用心备课上课,每一节课都精心准备课件,仔细研究每一道习题,真正做到讲练结合,学以致用,形成了趣实活新的教学风格,同时,在教研方面,我积极去听课评课,认真学习别人上课的长处,为己所用。在17年被评为市级名师工作室主持人,18年被评为省级学科带头人。

  3、在教导方面:在做好班主任工作的同时,我作为校长助理、教导主任,我能正确定位,努力做好校长的助手,协调各种工作。

  一直以来我总是以饱满的热情对待本职工作,兢兢业业,忠于职守,凡是要求老师们做到的,自己首先做到。我始初认真落实学校制定的教学教研常规,不断规范教师教学行为。从学期初开始,认真执行教学教研工作计划和工作记录,严格按照学校修订的规章制度去要求师生,定期检查教师教案及作业批改情况,发现问题及时反馈及时做好总结并进行跟踪检查,期末对教案进行归纳整理。规范日常巡课制度,定时巡课与不定时巡课相结合,不定时跟班听课,与执教教师共同切磋存在的问题,加强对教学工作的监控,促进教学质量的提高。

  学校要发展、要生存必须有一批高素质的教师队伍,同样教师今后要生存要发展必须具有过硬的本领。我清楚的认识到必须加强骨干教师、青年教师的培养力度,也借助各种机遇,为教师搭建自我展示的平台。加大新教师的培养力度,开展“师徒结对子”活动,通过推门听课,领导听课、一课三研、师傅引领课、新教师展示课等,鼓励教师参加各级各类比赛、培训活动等形式,促进新教师的迅速成长。我精心制定了以人为本的校本培训计划,每学期开展十多次骨干培训活动,并进行读书交流活动,活动做到人人有准备,人人有发言,人人有反思,老师们一同感悟,一起分享,在探索和交流中,不断提升教学水准。

  通过开展语、数集体备课—上课—听课——评课研讨这样的教研活动观摩,让更多的教师参与到校本教研活动中来,增强了教研活动的实效性,提高了教师的课堂教学水平。新教师展示课活动,“中荷才露尖尖角”,新教师在历练中成长;常态化的研讨课,“万紫千红总是春”,老师们取长补短,共同促进;名师、骨干教师的精品课,“万绿丛中一点红”,起了引领示范的作用。

  教科研是教学的源泉,是教改的先导,我十分重视课题研究、管理。18年独立承担了省级重点课题研究已经结题,并被评为科研课题先进个人,19年又独立承担了中课题的'研究,已经接近尾声。

  4、自身提高方面:我能利用课余时间阅读一些教育名著及教育教学刊物,并及时做好读书笔记,建立个人博客,发表自己原创的教学感想、教案设计、学习心得、教育理念等文章。一份耕耘,一份收获”,一年来,我积极参加各级各类比赛,多次获奖,还被评为县级学科带头人。

  三、存在的不足

  回顾一年来的工作,我虽然取得了一些成绩,积累了一些经验,但是,实事求是地说,与领导的要求和自己的期待还有差距,主要表现在:

  1、对教导处管理工作还须脚踏实地地去做,谦虚认真地去学,以使自己取得更好的成绩。

  2、教学方面对差生主要是采取开中灶、严要求的方式进行强化管理,对其心理攻坚尚不到位,所以见效慢,容易激化师生间的矛盾,还得在实践中多摸索。课堂教学水平有待提高,要与同事们多切磋,多学习。

  3、教研方面,仍需强化、深化、细化地系统学习相关理论知识,所写随感不能仅仅停留在表面现象,还应善于总结提升,以形成有一定深度的,并具有自我指导意义的理论型文字。

  另外,意志仍不够坚强,坚持还不够彻底,实是欠缺“铁杵磨成针”的精神。总之,回顾取得的成绩,固然可喜,值得欣慰,但面对未来,仍感任重道远、不敢懈怠。

  最后,用一句话作为本年度的工作总结,下一年度的开始,也就是:既然选择了远方,必然风雨兼程。我将某某,继续前行!

  关于数学常见误区有哪些

  1、被动学习

  许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。

  2、学不得法

  老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

  3、不重视基础

  一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。

  4、进一步学习条件不具备

  高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。

  如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。

数学初中知识点总结12

  一次函数的图象与性质的口诀:

  一次函数是直线,图象经过三象限;

  正比例函数更简单,经过原点一直线;

  两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;

  k为负来左下展,变化规律正相反;

  k的绝对值越大,线离横轴就越远。

  拓展阅读:一次函数的解题方法

  理解一次函数和其它知识的联系

  一次函数和代数式以及方程有着密不可分的联系。如一次函数和正比例函数仍然是函数,同时,等号的两边又都是代数式。需要注意的是,与一般代数式有很大区别。首先,一次函数和正比例函数都只能存在两个变量,而代数式可以是多个变量;其次,一次函数中的变量指数只能是1,而代数式中变量指数还可以是1以外的数。另外,一次函数解析式也可以理解为二元一次方程。

  掌握一次函数的解析式的特征

  一次函数解析式的结构特征:kx+b是关于x的一次二项式,其中常数b可以是任意实数,一次项系数k必须是非零数,k≠0,因为当k = 0时,y = b(b是常数),由于没有一次项,这样的函数不是一次函数;而当b = 0,k≠0,y = kx既是正比例函数,也是一次函数。

  应用一次函数解决实际问题

  1、分清哪些是已知量,哪些是未知量,尤其要弄清哪两种量是相关联的量,且其中一种量因另一种量的变化而变化;

  2、找出具有相关联的两种量的等量关系之后,明确哪种量是另一种量的函数;

  3、在实际问题中,一般存在着三种量,如距离、时间、速度等等,在这三种量中,当且仅当其中一种量时间(或速度)不变时,距离与速度(或时间)才成正比例,也就是说,距离(s)是时间(t)或速度( )的正比例函数;

  4、求一次函数与正比例函数的关系式,一般采取待定系数法。

  数形结合

  方程,不等式,不等式组,方程组我们都可以用一次函数的观点来理解。一元一次不等式实际上就看两条直线上下方的关系,求出端点后可以很容易把握解集,至于一元一次方程可以把左右两边看为两条直线来认识,直线交点的横坐标就是方程的解,至于二元一次方程组就是对应2条直线,方程组的解就是直线的交点,结合图形可以认识两直线的位置关系也可以把握交点个数。

  如果一个交点时候两条直线的k不同,如果无穷个交点就是k,b都一样,如果平行无交点就是k相同,b不一样。至于函数平移的问题可以化归为对应点平移。k反正不变然后用待定系数法得到平移后的方程。这就是化一般为特殊的解题方法。

  数学解题方法分别有哪些

  1、配方法

  所谓的公式是使用变换解析方程的同构方法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。通过配方解决数学问题的公式。其中,用的最多的是配成完全平方式。匹配方法是数学中不断变形的重要方法,其应用非常广泛,在分解,简化根,它通常用于求解方程,证明方程和不等式,找到函数的极值和解析表达式。

  2、因式分解法

  因式分解是将多项式转换为几个积分产品的乘积。分解是恒定变形的基础。除了引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有很多方法可以进行因式分解。还有一些项目,如拆除物品的使用,根分解,替换,未确定的系数等等。

  3、换元法

  替代方法是数学中一个非常重要和广泛使用的解决问题的方法。我们通常称未知或变元。用新的参数替换原始公式的一部分或重新构建原始公式可以更简单,更容易解决。

  4、判别式法与韦达定理

  一元二次方程 ax2+ bx+ c=0( a、 b、 c属于 R, a≠0)根的判别, = b2-4 ac,不仅用来确定根的性质,还作为一个问题解决方法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何以及三角函数都有非常广泛的应用。

  韦达定理除了知道二次方程的根外,还找到另一根;考虑到两个数的和和乘积的简单应用并寻找这两个数,也可以找到根的对称函数并量化二次方程根的符号。求解对称方程并解决一些与二次曲线有关的问题等,具有非常广泛的应用。

  5、待定系数法

  在解决数学问题时,如果我们首先判断我们所寻找的结果具有一定的形式,其中包含某些未决的系数,然后根据问题的`条件列出未确定系数的方程,最后找到未确定系数的值或这些待定系数之间的关系。为了解决数学问题,这种问题解决方法被称为待定系数法。它是中学数学中常用的方法之一。

  6、构造法

  在解决问题时,我们通常通过分析条件和结论来使用这些方法来构建辅助元素。它可以是一个图表,一个方程(组),一个方程,一个函数,一个等价的命题等,架起连接条件和结论的桥梁。为了解决这个问题,这种解决问题的数学方法,我们称之为构造方法。运用结构方法解决问题可以使代数,三角形,几何等数学知识相互渗透,有助于解决问题。

  数学经常遇到的问题解答

  1、要提高数学成绩首先要做什么?

  这一点,是很多学生所关注的,要提高数学成绩,首先就应该从基础知识学起。不少同学觉得基础知识过于简单,看两遍基本上就都会了。这种“自我感觉良好”其实是一种错觉,而真正考试时又觉得无从下手,这还是基础不牢的表现,因此要提高数学成绩先要把基础夯实。

  2、基础不好怎么学好数学?

  对于基础差的同学来说,课本是就是学好数学的秘籍,把课本上的定义、公式、定理全部弄懂,力争在理解的基础上全部背熟,每一道例题、每一道课后题都要掌握。我们知道只有把公式、定理烂熟于心,才能举一反三、活学活用,把课本的知识学透有两个好处,第一,强化基础;第二,提高得分能力。

  3、是否要采用题海战术?

  方法君曾不止一次提到了“题海战术”,题海战术究竟可不可取呢?“题海战术”其实也是一种学习方法,但很多学生只知道做题,不懂得总结,体现不出任何的学习效果。因此在做题后要总结至关重要,只有认真总结才能不断积累做题经验,这样才能取得理想成绩。

  4、做题总是粗心怎么办?

  很多学生成绩不好,会说自己是因为粗心导致的,其实“粗心”只是借口,真正的原因就是题做得少、基础知识不牢、没有清晰的解题思路、计算能力不强。因此在平时的学习中,一定要注重熟练度和精准度的练习。如果总是给自己找“粗心”的借口,也就变相否定了自己的学习弱点,所以,要告诉自己,高中数学没有“粗心”只有“不用心”。

  为什么要学习数学

  作为一门普及度极广的学科,数学在人类文明的发展史上一直占据着重要的地位。虽然很多人可能会对数学产生排斥,认为它枯燥无味,但事实上,数学是所有学科的基石之一,对我们日常生活以及未来的职业发展有着重大影响。下面我将详细阐述学习数学的重要性。

  首先,数学可以帮助我们提高逻辑思维能力。数学的学科性质使我们在学习的过程中时时刻刻面临着思考、推理、证明等诸多问题,而这些问题正是锻炼我们逻辑思维的好机会。通过长期的学习和练习,我们的思维能力得到提升,可以更加清晰地分析问题,更快速地找到正确的答案。这对我们在工作和生活中都非常有帮助,尤其是在解决复杂问题时更能得心应手。

  其次,数学在现代科技中起着至关重要的作用。在计算机科学、物理学、经济学、工程学等领域,数学可以帮助我们建立模型、分析数据、预测趋势,并且可以在实际应用中优化和改进。例如,在人工智能领域,深度学习技术所涉及的数学概念包括线性代数、微积分和概率论等,如果没有深厚的数学基础,很难理解和应用这些技术。同时,在工程学领域,许多机械、电子、化工等产品的设计和制造过程,也需要运用到数学知识,因此学习数学可以使我们更好地参与到现代科技的发展中。

  除此之外,数学也是一种普遍使用的语言,许多学科和领域都使用数学语言进行表达和交流。例如,在自然科学领域,生物学、化学、物理学等学科都使用数学语言来描述自然世界的规律和现象。在社会科学和商科领域,经济学和金融学运用的数学概念,如微积分、线性代数和统计学等,使得我们能够更好地理解经济和财务数据,并进行决策。因此,学习数学可以让我们更好地理解、沟通和交流各个领域的知识。

  最后,学习数学也可以为我们的职业发展带来广泛的机遇和发展空间。在许多领域,数学专业的毕业生都有很广泛的就业机会,如金融界、数据科学、研究机构、教育等。数学专业的人才,不只会提供理论支持,同时也能够解决现实中具体的问题,使其在各自领域脱颖而出。

数学初中知识点总结13

  关键词:初一数学;基础知识;教学策略

  初中数学是一个整体,相对而言,初一数学知识点很多,注重基础,初一数学是对学数学的适当深入,也为后续的学习打下良好的基础。在初一数学的教学中,注重学生基础知识的掌握是非常必要的。如今的现状是,刚入初中的学生并没有对打好数学基础有足够的重视。一些学生刚进入初中,在数学学习中感受不到压力,没有投入足够的精力,因而渐渐地就积累了很多关于基础知识的小问题,这些小问题在学生进入后续的学习中,慢慢就越来越多,形成大问题,大问题渐渐就会凸显出来,学生渐渐就会感到力不从心。下面就针对初一学生学习中的问题,具体谈谈如何打好初一数学的基础。

  一、打好初一数学基础的重要性

  进入中学,学生的科目增加,内容拓展,知识深入,数学这门学科由具体到抽象,从文字发展成了符号,从静态逐渐发展成了动态。初一数学学习是很重要的一年,能够让学生感受到初中数学与小学的不同,并能感受到数学学习带来的快乐,然而,一些学生对数学产生厌恶情绪也大都是从初中开始的,由于基础没打好对数学产生厌恶是很多学生的通病。基础知识是进行深入学习的根基,它为数学学习的深入做铺垫,然而基础知识却并没有得到初一学生应有的足够重视。初中的数学知识相对小学来说,已有了很大的深入,如果初一的基础知识没有打好,学生会渐渐感到吃力,从而跟不上教学步伐,导致产生厌学情绪。不利于学生的发展。因此,教师在教学中必须注重初一学生基础知识的培养,并使学生认识到打好基础知识的重要性。

  二、初一数学学习中常出现的问题

  1、知识点理解不透彻

  初一学生刚入初中,依然保留着小学生的一些习惯,爱玩并且厌烦课本上的基础知识点。对知识点的理解停留在一知半解的层次上。并且,学生并没有对基础知识有足够的重视,没有认识到基础知识的重要性,从而导致基础知识越来越差,产生对数学的厌烦,进入恶性循环。

  2、解答题目小错误多,无法完整地解决问题

  学生由于不重视基础,导致一些题目无法完整地进行解决,无论简单的题型还是难的题型,都是建立在基础知识点上的。学生的问题是无法把握其中的基础技巧,忽视基础知识,始终不能完整地解决问题。

  3、没有养成归纳总结的好习惯

  学生在平时的练习中会有许多解错的题型和忽视了的知识点,然而大都都是错了就错了,并没有进行归纳总结,导致对错误的题型没有进行反思,从而一错再错。对一些基础知识点,也没有进行很好的归纳,脑海里没有一个系统的基础知识网。

  三、打好学生数学基础的策略

  1、明确教学目标,突出重点

  每一堂课的教学,都有它的重点内容,每一堂课,作为教师,首先都需要明确这堂课的教学目标,并要突出重点,让学生对这堂课所学的知识点有一个清晰的轮廓。教师可以在黑板的一角把重点内容简短地写出来,并保持一节课,引起学生的关注和重视。教师要通过不断强调和引用,使学生对重点知识点留下深刻的印象,并可以出一个引用了重点知识的题目让学生解答。例如,学习《数轴》这一节时,教师可先对重点基础知识点进行讲解,让学生了解数轴的基本定义,在脑海里留下一个概念,再让学生上讲台到黑板上按要求画下来。画完后,让学生自己做必要的讲解,比如画数轴的三要素原点、正方向、单位长度。这样,学生对数轴的基础知识点就会有一个深刻的印象。

  2、精讲例题,多做课堂练习

  针对基础知识,教师可在课堂上多设置一些例题,使学生能够把基础知识应用到题目中去解答,从而认识到基础知识的重要性。教师要精选例题,按照这节课的重点基础内容进行选题,从结构特征、思维方式等各个方面进行对题型的剖析,从而让学生在解题的基础之上掌握基础知识的关键。知识点讲得再多也是抽象空洞的,只有与题目进行结合,让学生灵活运用,才能够使学生对知识点有一个深刻的理解。课堂上需根据实际情况布置课堂练习,练习量针对知识点的'难易程度可多可少,重要的是要让学生有一个思考解答的过程。教师可让学生自主进行解答,若解答不出教师则做必要的指点进行帮助,并且要鼓励学生不懂就要问。还可以让学生共同讨论一些难点问题,促进学生勤学好问的习惯培养。

  3、形象教学,变抽象为具体

  教师在实际课堂教学中,可以运用很多种教学方式,每一堂课都有其教学目标,教学需根据教学内容的变化选择适当的教学方式,形象教学是很重要并且很有效的教学方式。例如,进行几何的教学,教师可以进行具体演示,向学生展示几何模型,运用几何模型来验证几何结论。

  4、让学生收集题目,制作错题集

  基础是在无数次练习的基础之上总结出来的,做题如同挖金矿,对待错题就如同对待发掘冶炼金矿一样。学生在做题时,会遇到很多难题和易错题,对于做错了的题目,学生看看就丢到一边,是没有起到练习应有的效果的。教师要促使学生制作一个错题集,专门收集自己做错或者不会做的题目,让学生自己分析做错的原因,为什么会做错,下次如何避免,学生在总结反思的过程中,自然而然就对知识进行了一次梳理。例如,用科学计数法计数是学生经常容易犯错的知识点,学生的粗心导致很简单的问题经常犯错,通过错题集,学生收集表示错的科学计数法,不断总结、强化,从而做到更细心。

  初一数学学习对刚进入初中的学生来说是非常重要的,其既是对小学数学知识的必要深入,也为后续更深层次的学习打下关键的基础。然而,初一学生往往并没有认识到进入初中打好数学基础的重要性。本文针对学好初一数学的重要性和初一数学学习面临的一些问题进行了具体讨论,最后总结出提高学生数学基础知识的几条教学策略,给以后的数学教学提供参考。

  参考文献:

  [1]吴远,学生数学自主能力的培养[J]。巨人教学资源,20xx。

数学初中知识点总结14

  字母表示数

  代数式的概念:

  用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

  注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;

  ②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

  ③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

  代数式的书写格式:

  ①代数式中出现乘号,通常省略不写,如vt;

  ②数字与字母相乘时,数字应写在字母前面,如4a;

  ③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如应写作;

  ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

  ⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。

  ⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米

  代数式的系数:

  代数式中的数字中的数字因数叫做代数式的系数。如3x,4y的系数分别为3,4。

  注意:①单个字母的系数是1,如a的系数是1;

  ②只含字母因数的代数式的系数是1或-1,如-ab的系数是-1。a3b的系数是1

  代数式的项:

  代数式表示6x2、-2x、-7的和,6x2、-2x、-7是它的项,其中把不含字母的项叫做常数项

  注意:在交待某一项时,应与前面的符号一起交待。

  同类项:

  所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。这两个条件缺一不可;

  ②同类项与系数无关,与字母的排列顺序无关;

  ③几个常数项也是同类项。

  合差同类项:

  把代数式中的同类项合并成一项,叫做合并同类项。

  ①合并同类项的理论根据是逆用乘法分配律;

  ②合并同类项的法则是把同类项的.系数相加,所得结果作为系数,字母和字母的指数不变。

  注意:

  ①如果两个同类项的系数互为相反数,合并同类项后结果为0;

  ②不是同类项的不能合并,不能合并的项,在每步运算中都要写上;

  ③只要不再有同类项,就是最后结果,结果还是代数式。

  根据去括号法则去括号:

  括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。

  根据分配律去括号:

  括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。

  注意:

  ①去括号时,要连同括号前面的符号一起去掉;

  ②去括号时,首先要弄清楚括号前是“+”号还是“-”号;

  ③改变符号时,各项都变号;不改变符号时,各项都不变号。

  北师大初中数学知识点

  绝对值

  ⒈绝对值的几何定义

  一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。

  2.绝对值的代数定义

  ⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.

  可用字母表示为:

  ①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

  可归纳为①:a≥0,<═>|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)②a≤0,<═>|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)经典考题

  如数轴所示,化简下列各数

  |a|,|b|,|c|,|a-b|,|a-c|,|b+c|

  解:由题知道,因为a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,

  所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c

  3.绝对值的性质

  任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即⑴0的绝对值是0;绝对值是0的数是0.即:a=0<═>|a|=0;

  ⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;

  ⑶任何数的绝对值都不小于原数。即:|a|≥a;

  ⑷绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;

  ⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;

  ⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;

  ⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。

  (非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)

  如何整理数学学科课堂笔记

  一、内容提纲。老师讲课大多有提纲,并且讲课时老师会将一堂课的线索脉络、重点难点等,简明清晰地呈现在黑板上。同时,教师会使之富有条理性和直观性。记下这些内容提纲,便于课后复习回顾,整体把握知识框架,对所学知识做到胸有成竹、清晰完整。

  二、疑难问题。将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。教师在组织课堂教学时,受到时空的限制,不可能做到顾及每一位同学。相应的,一些问题对部分学生来说,是属于疑难问题,由于课堂上来不及思考成熟,记下疑难问题,可在课后继续加以思考和探究,加以理解和掌握,不致出现知识的断层、方法的缺陷。

  三、思路方法。对老师在课堂上介绍的解题方法和分析思路也应及时记下,课后加以消化,若有疑惑,先作独立分析,因为有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后及时与老师商榷和探讨。勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。在这基础上,若能主动钻研,另辟蹊径,则更难能可贵。

  四、归纳总结。注意记下老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找规律,融会贯通课堂内容都很有作用。同时,很多有经验的老师在课后小结时,一方面是承上归纳所学内容,另一方面又是启下布置预习任务或点明后面所要学的内容,做好笔记可以把握学习的主动权,提前作准备,做到目标任务明确。

  五、错误反思。学习过程中不可避免地会犯这样或那样的错误,记下自己所犯的错误,并用红笔醒目地加以标注,以警示自己,同时也应注明错误成因,正确思路及方法,在反思中成熟,在反思中提高。

  数学常用解题技巧有哪些

  第一,应坚持由易到难的做题顺序。近年来高考数学试题的设置是8道选择题、6道填空题、6到大题,通常称为866结构。在实体设置的结构中有三个小高峰,选择题是由易到难,最难的题是第8题。填空题同样是这样设置的。也是第9题容易到第14题最难,大题从第15题到第20题,它们的设置也是这样的。根据这样的试题结构,应先做前面容易的,基础好一点的考生就先做前7个选择,前5个填空、前5个大题,称为是755结构。基础差的就是644,先把自己能做的、会做的拿到手。这是第一点。

  第二,审题是关键。把题给看清楚了再动笔答题,看清楚题以后问什么、已知什么、让你做什么,把这些问题搞清楚了,自己制订了一个完整的解题策略,在开始写的时候,这个时候是很快就可以完成的。

  第三,属于非智力因素导致想不起来。本来是很简单的题比如说是做到第三题、第四题的时候不是难题,但想不起来了,卡住了,这时候怎么办?虽然是简单题却不会做怎么办?应先跳过去,不是这道题不会做吗?后面还有很多的简单题呢,把后面的题做一做,不要在考场上愣神,先跳过去做其他的题,等稳定下来以后再回过头来看会顿悟,豁然开朗。

  第四,做选择题的时候应运用最好的解题方法。因为选择题和填空题都是看结果不看过程,因此在这个过程中都应不择手段,只要是能把正确的结论找到就行。考生常用的方法是直接法,从已知的开始也不看它的四个选项,从头到尾写完了之后一看答案就写上去了。另外就是特质法(音),一些出现字母、特别是不等式,这时候给它赋一个值,代进去这时候速度会比较快,正确地找出结果来。再就是数形结合法。最后实在不行了,就将四个选项代入验证,看看哪个符合就是哪个了。填空题用上述的直接法、特质法、数形结合法三种方法都适合。做大题的时候要特别注意解题步骤,规范答题可以减少失分。简单地说,规范答题就是从上一步的原因到下一步的结论,这是一个必然的过程,让谁写、谁看都是这样的。因为什么所以什么是一个必然的过程,这是规范答题。

  学霸分享的数学复习技巧

  1、把答案盖住看例题

  例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。

  所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。

  经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。

  2、研究每题都考什么

  数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。

  3、错一次反思一次

  每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。

  学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了.

  4、分析试卷总结经验

  每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。

  数学解题方法分别有哪些

  1、配方法

  所谓的公式是使用变换解析方程的同构方法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。通过配方解决数学问题的公式。其中,用的最多的是配成完全平方式。匹配方法是数学中不断变形的重要方法,其应用非常广泛,在分解,简化根,它通常用于求解方程,证明方程和不等式,找到函数的极值和解析表达式。

  2、因式分解法

  因式分解是将多项式转换为几个积分产品的乘积。分解是恒定变形的基础。除了引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有很多方法可以进行因式分解。还有一些项目,如拆除物品的使用,根分解,替换,未确定的系数等等。

  3、换元法

  替代方法是数学中一个非常重要和广泛使用的解决问题的方法。我们通常称未知或变元。用新的参数替换原始公式的一部分或重新构建原始公式可以更简单,更容易解决。

  4、判别式法与韦达定理

  一元二次方程 ax2+ bx+ c=0( a、 b、 c属于 R, a≠0)根的判别, = b2-4 ac,不仅用来确定根的性质,还作为一个问题解决方法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何以及三角函数都有非常广泛的应用。

  韦达定理除了知道二次方程的根外,还找到另一根;考虑到两个数的和和乘积的简单应用并寻找这两个数,也可以找到根的对称函数并量化二次方程根的符号。求解对称方程并解决一些与二次曲线有关的问题等,具有非常广泛的应用。

  5、待定系数法

  在解决数学问题时,如果我们首先判断我们所寻找的结果具有一定的形式,其中包含某些未决的系数,然后根据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这些待定系数之间的关系。为了解决数学问题,这种问题解决方法被称为待定系数法。它是中学数学中常用的方法之一。

  6、构造法

  在解决问题时,我们通常通过分析条件和结论来使用这些方法来构建辅助元素。它可以是一个图表,一个方程(组),一个方程,一个函数,一个等价的命题等,架起连接条件和结论的桥梁。为了解决这个问题,这种解决问题的数学方法,我们称之为构造方法。运用结构方法解决问题可以使代数,三角形,几何等数学知识相互渗透,有助于解决问题。

数学初中知识点总结15

  一、重要概念

  1.总体:考察对象的全体。

  2.个体:总体中每一个考察对象。

  3.样本:从总体中抽出的一部分个体。

  4.样本容量:样本中个体的数目。

  5.众数:一组数据中,出现次数最多的数据。

  6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)

  二、计算方法

  1.样本平均数:⑴;⑵若,…,,则(a—常数,…,接近较整的常数a);⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。

  2.样本方差:⑴;⑵若,,…,,则(a—接近、、…、的平均数的较“整”的常数);若、、…、较“小”较“整”,则;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。

  3.样本标准差:

  三、应用举例(略)

  初三数学知识点:第四章直线形

  ★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。

  ☆内容提要☆

  一、直线、相交线、平行线

  1.线段、射线、直线三者的区别与联系

  从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。

  2.线段的中点及表示

  3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)

  4.两点间的距离(三个距离:点-点;点-线;线-线)

  5.角(平角、周角、直角、锐角、钝角)

  6.互为余角、互为补角及表示方法

  7.角的平分线及其表示

  8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)

  9.对顶角及性质

  10.平行线及判定与性质(互逆)(二者的区别与联系)

  11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。

  12.定义、命题、命题的组成

  13.公理、定理

  14.逆命题

  二、三角形

  分类:⑴按边分;

  ⑵按角分

  1.定义(包括内、外角)

  2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中

  3.三角形的主要线段

  讨论:①定义②x线的交点—三角形的×心③性质

  ①高线②中线③角平分线④中垂线⑤中位线

  ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形

  4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的`判定与性质

  5.全等三角形

  ⑴一般三角形全等的判定(sas、asa、aas、sss)

  ⑵特殊三角形全等的判定:①一般方法②专用方法

  6.三角形的面积

  ⑴一般计算公式⑵性质:等底等高的三角形面积相等。

  7.重要辅助线

  ⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线

  8.证明方法

  ⑴直接证法:综合法、分析法

  ⑵间接证法—反证法:①反设②归谬③结论

  ⑶证线段相等、角相等常通过证三角形全等

  ⑷证线段倍分关系:加倍法、折半法

  ⑸证线段和差关系:延结法、截余法

  ⑹证面积关系:将面积表示出来

  三、四边形

  分类表:

  1.一般性质(角)

  ⑴内角和:360°

  ⑵顺次连结各边中点得平行四边形。

  推论1:顺次连结对角线相等的四边形各边中点得菱形。

  推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。

  ⑶外角和:360°

  2.特殊四边形

  ⑴研究它们的一般方法:

  ⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定

  ⑶判定步骤:四边形→平行四边形→矩形→正方形

  ┗→菱形——↑

  ⑷对角线的纽带作用:

  3.对称图形

  ⑴轴对称(定义及性质);⑵中心对称(定义及性质)

  4.有关定理:①平行线等分线段定理及其推论1、2

  ②三角形、梯形的中位线定理

  ③平行线间的距离处处相等。(如,找下图中面积相等的三角形)

  5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。

  6.作图:任意等分线段。

【数学初中知识点总结】相关文章:

初中数学圆的知识点总结12-05

数学初中知识点总结06-10

初中数学函数知识点总结06-14

【经典】数学初中知识点总结07-16

初中数学必备知识点总结03-01

初中数学函数知识点总结11-24

初中数学几何知识点总结11-05

初中数学知识点总结(精选)06-16

初中数学知识点总结07-15

初中数学知识点归纳总结12-02