初中数学知识点总结
在我们平凡无奇的学生时代,大家都没少背知识点吧?知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。为了帮助大家掌握重要知识点,以下是小编收集整理的初中数学知识点总结,仅供参考,欢迎大家阅读。
初中数学知识点总结 1
1、圆是定点的距离等于定长的点的集合
2、圆的内部可以看作是圆心的距离小于半径的点的集合3、圆的外部可以看作是圆心的距离大于半径的点的集合4、同圆或等圆的半径相等
5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆6、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线7、到已知角的两边距离相等的点的轨迹,是这个角的平分线
8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
9、定理不在同一直线上的三点确定一个圆。
10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧11、推论1:
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的'一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧12、推论2:圆的两条平行弦所夹的弧相等13、圆是以圆心为对称中心的中心对称图形
14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
15、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
16、定理:一条弧所对的圆周角等于它所对的圆心角的一半
17、推论:1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
18、推论:2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
19、推论:3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
20、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
21、①直线L和⊙O相交dr②直线L和⊙O相切d=r③直线L和⊙O相离dr
22、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线23、切线的性质定理圆的切线垂直于经过切点的半径24、推论1经过圆心且垂直于切线的直线必经过切点25、推论2经过切点且垂直于切线的直线必经过圆心
26、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角
27、圆的外切四边形的两组对边的和相等
28、弦切角定理:弦切角等于它所夹的弧对的圆周角
29、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等30、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等31、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
32、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
33、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
34、如果两个圆相切,那么切点一定在连心线上35、①两圆外离dR+r②两圆外切d=R+r
③两圆相交R-rdR+r(Rr)④两圆内切d=R-r(Rr)⑤两圆内含dR-r(Rr)
36、定理:相交两圆的连心线垂直平分两圆的公共弦37、定理:把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
38、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
39、正n边形的每个内角都等于(n-2)×180°/n40、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
41、正n边形的面积Sn=pnrn/2p表示正n边形的周长42、正三角形面积√3a/4a表示边长
43、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k(n-2)180°/n=360°化为(n-2)(k-2)=444、弧长计算公式:L=n兀R/180
45、扇形面积公式:S扇形=n兀R^2/360=LR/246、内公切线长=d-(R-r)外公切线长=d-(R+r)
初中数学知识点总结 2
一、旋转
1、定义
把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质
(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
二、中心对称
1、定义
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质
(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形
把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点五、坐标系中对称点的特征(3分)
1、关于原点对称的点的特征
两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(—x,—y)
2、关于x轴对称的点的特征
两个点关于x轴对称时,它们的坐标中,x相等,y的.符号相反,即点P(x,y)关于x轴的对称点为P’(x,—y)
3、关于y轴对称的点的特征
两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(—x,y)
数学学习中常见问题分析
大部分学生在学习中或多或少的都会积累一些问题,这些问题平时我们可能不是很在意,那么到了初二后就会突显出来。首先新生在学习数学的时候常遇到的就是对于知识点的理解不到位,还停留在一知半解的层次上面。有的学生在解答数学题的时候始终不能把握解题技巧,也就是说学生缺乏对待数学的举一反三能力。
还有的学生在解答数学题时效率太低,无法再规定的时间内完成解题,对于初中的考试节奏还没办法适应。一些学生还没有养成一个总结归纳的习惯,不会归纳知识点,不会归纳错题。这些都是导致学生学不好数学的原因。
常见面积定理
1、一个图形的面积等于它的各部分面积的和;
2、两个全等图形的面积相等;
3、等底等高的三角形、平行四边形、梯形(梯形等底应理解为两底的和相等)的面积相等;
4、等底(或等高)的三角形、平行四边形、梯形的面积比等于其所对应的高(或底)的比;
5、相似三角形的面积比等于相似比的平方;
6、等角或补角的三角形面积的比,等于夹等角或补角的两边的乘积的比;等角的平行四边形面积比等于夹等角的两边乘积的比;
7、任何一条曲线都可以用一个函数y=f(x)来表示,那么,这条曲线所围成的面积就是对X求积分。
初中数学知识点总结 3
一、平移变换:
1、概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。
2、性质:(1)平移前后图形全等;
(2)对应点连线平行或在同一直线上且相等。
3、平移的作图步骤和方法:
(1)分清题目要求,确定平移的方向和平移的距离;
(2)分析所作的图形,找出构成图形的关健点;
(3)沿一定的方向,按一定的距离平移各个关健点;
(4)连接所作的各个关键点,并标上相应的字母;
(5)写出结论。
二、旋转变换:
1、概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
说明:
(1)图形的旋转是由旋转中心和旋转的角度所决定的;
(2)旋转过程中旋转中心始终保持不动。
(3)旋转过程中旋转的方向是相同的。
(4)旋转过程静止时,图形上一个点的旋转角度是一样的。⑤旋转不改变图形的'大小和形状。
2、性质:
(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等。
3、旋转作图的步骤和方法:
(1)确定旋转中心及旋转方向、旋转角;
(2)找出图形的关键点;
(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;
(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。
说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。
常见考法
(1)把平移旋转结合起来证明三角形全等;
(2)利用平移变换与旋转变换的性质,设计一些题目。
误区提醒
(1)弄反了坐标平移的上加下减,左减右加的规律;
(2)平移与旋转的性质没有掌握。
初中数学知识点总结 4
1、相交线
对顶角相等。
过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。
2、平行线
经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
直线平行的条件:
两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
3、平行线的性质
两条平行线被第三条直线所截,同位角相等。
两条平行线被第三条直线所截,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。
判断一件事情的.语句,叫做命题。
初中数学知识点总结 5
相关的角:
1、对顶角:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
2、互为补角:如果两个角的和是一个平角,这两个角做互为补角。
3、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。
4、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。
注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的'位置关系。
角的性质
1、对顶角相等。
2、同角或等角的余角相等。
3、同角或等角的补角相等。
初中数学知识点总结 6
第一章分式
1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2、分式的运算
(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的.分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减
3、整数指数幂的加减乘除法
4、分式方程及其解法
第二章反比例函数
1、反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2、反比例函数在实际问题中的应用
第三章勾股定理
1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形
1、平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形
(1)矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;
推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3、梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。
第五章数据的分析
加权平均数、中位数、众数、极差、方差
初中数学知识点总结 7
一、勾股定理
1、勾股定理
直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。
2、勾股定理的逆定理
如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。
3、勾股数
满足的三个正整数,称为勾股数。
常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。
二、证明
1、对事情作出判断的句子,就叫做命题。即:命题是判断一件事情的句子。
2、三角形内角和定理:三角形三个内角的和等于180度。
(1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。一般需要作辅助。
(2)三角形的外角与它相邻的内角是互为补角。
3、三角形的外角与它不相邻的内角关系
(1)三角形的一个外角等于和它不相邻的两个内角的和。
(2)三角形的一个外角大于任何一个和它不相邻的内角。
4、证明一个命题是真命题的基本步骤
(1)根据题意,画出图形。
(2)根据条件、结论,结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。在证明时需注意:①在一般情况下,分析的过程不要求写出来。②证明中的每一步推理都要有根据。如果两条直线都和第三条直线平行,那么这两条直线也相互平行。
三、数据的分析
1、平均数
①一般地,对于n个数x1x2......xn,我们把(x1+x2+?+xn)叫做这n个数的算数平均数,简称平均数记为。
②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。
2、中位数与众数
①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
②一组数据中出现次数最多的`那个数据叫做这组数据的众数。
③平均数、中位数和众数都是描述数据集中趋势的统计量。
④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。
⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。
⑥各个数据重复次数大致相等时,众数往往没有特别意义。
3、从统计图分析数据的集中趋势
4、数据的离散程度
①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。
②数学上,数据的离散程度还可以用方差或标准差刻画。
③方差是各个数据与平均数差的平方的平均数。
④其中是x1,x2......xn平均数,s2是方差,而标准差就是方差的算术平方根。
⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。
初中数学知识点总结 8
有理数:
①整数→正整数/0/负整数
②分数→正分数/负分数
数轴:
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:
①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:
加法:
①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的.绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:
①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:
①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
实数
无理数:无限不循环小数叫无理数
平方根:
①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:
①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:
①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:
①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
整式与分式
整式:
①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:
加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:
AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN除法一样。
整式的乘法:
①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:
平方差公式/完全平方公式
整式的除法:
①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:
把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:
①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:
①同分母分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:
①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。
初中数学知识点总结 9
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的.自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
初中数学知识点总结 10
动点与函数图象问题常见的四种类型:
1、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
2、四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
3、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。
4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。
图形运动与函数图象问题常见的三种类型:
1、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
2、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的`常量与变量之间的关系,进行分段,判断函数图象。
3、多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
动点问题常见的四种类型:
1、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。
2、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系。
3、圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系。
4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题。
总结反思:
本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,三角形全等的判定和性质,等腰直角三角形的性质,平行线的性质等,数形结合思想的应用是解题的关键。
解答动态性问题通常是对几何图形运动过程有一个完整、清晰的认识,发掘“动”与“静”的内在联系,寻求变化规律,从变中求不变,从而达到解题目的。
解答函数的图象问题一般遵循的步骤:
1、根据自变量的取值范围对函数进行分段。
2、求出每段的解析式。
3、由每段的解析式确定每段图象的形状。
对于用图象描述分段函数的实际问题,要抓住以下几点:
1、自变量变化而函数值不变化的图象用水平线段表示。
2、自变量变化函数值也变化的增减变化情况。
3、函数图象的最低点和最高点。
初中数学知识点总结 11
在初中数学课堂教学中,小结一般作为总结本课,开启下一课的钥匙。但是在具体执行过程中,受到时间、学生心态、教师课堂设计水平等因素的限制,初中数学课堂小结在运用的过程中呈现出多种问题。究其原因是多方面的,而其最主要的原因则来源于教师对学生心理的把握力度不够。心理学专家在当代少年儿童的大脑结构分析基础上所做出的研究表明,在初中阶段的学生对课程的关注度主要集中在前15分钟,个别注意力比较好的学生能坚持到15~25分钟,随着时间的推移,从25分钟到45分钟之间学生的记忆力和注意力则出现了逐渐下滑的趋势。由此可见,教师在做初中数学课程设计时,仅仅按照传统习惯将课堂小结作为课末总结的方式并不科学,对学生的课堂学习和课下探索延伸起不到推动作用。
由此,在新的知识环节讲解和学习的过程中,对课堂小结的设计,教师应该通过巧妙的规划,实现温故知新,而这又是对本堂课程的总结和反思的过程,具有极强的逻辑性和渐进性,环环相扣,同时要为学生的思考和课下探索的延伸留出独立的空间。因此,按照具体的操作,本文以浙教版初中数学“探索多边形的内角和”的课堂学习为例,对课堂小结的运用从以下两个方面进行阐述。
一、拨迷梳“理”,温故知新
七年级“探索多边形的内角和”一课的教学重点是让学生了解什么是多边形、什么是内角、如何求内角和、如何在现实生活中利用此种计算方法。新课标要求,学生作为教学主体,对课程重点内容的了解和领悟主要是以他们自身的动手操作为主,这也是教师在教案设计时的主要切入点之一。在明确本堂课的教学重点之后,教师需要对以往学习过的知识点进行梳理,并找出与本堂课有关联性的知识点,在课程初始时作为引导,通过对以往知识点的回顾,如三角形、相交线等已学知识点引出本堂课的重点。而后面即将学习的课程,如“多姿多彩几何图形”等的相应测试,也可以作为学生课堂及课后的延伸知识点,在教师的课程讲解过程中予以贯穿。当然,在课程设计初期,教师要尤为注意的'是,应根据本堂课知识点的重点排序,由主到辅、由简入深地安排好具有节奏感的讲解内容及小结,而作为延伸思考的知识点在每个小结部分可以按照其相关性和重要性进行穿插安排。
二、动手操作,注重反思
“探索多边形的内角和”中,多边形的概念是本课各个难点展开的基础,按照多边形的概念,教师可以让学生用线、卡纸、铁丝等工具自行制作凹多边形或凸多变形,以体验多边形的曲线美。引导学生尝试以拉伸和缩小的方式构架出凹多边形和凸多变形后,教师可以让学生按照体验来描述二者的区别和相同点,并以此作为小结。当学生做完归纳后,根据本课“多边形的内角和主要以凸多边形为主”的教学目标要求,教师可提问:“同学们目前已经了解了二者的区别,本堂课要讲解的‘多边形内角和’主要以凸多边形为基础,但是为什么我们不以凹多边形为基础呢?请同学们仔细想想原因。”教师的这种讲解模式既可以为下面对“内角和”的重点讲解作铺垫,又可以让学生深入思考之前对凹凸多边形的描述是否恰当,是否符合多边形的数学性规律。
在此种引导方法下,学生会按照下一个知识点的内容来反思之前的小结是否具有全面性。在反复的思考和对比过程中,学生的逻辑思维可以得到充分的训练。这对培养学生的数学思维,以及对知识点的重复性推敲和反思能力的提升具有促进作用。一旦学生在思考和探讨的过程中,摸索到数学本身的规律,并从复杂多样的数学知识点中找到其原本的架构,自然会在头脑中建立起一个符合自身记忆和领悟需要的数学知识体系。
三、大道从简,循环渐进
大道从简,按照初中数学的知识点架构来看,每堂课的每个知识点都可以在被重点提炼之后作为节点来布置课堂小结。以数学的逻辑思维传承性为基础,课堂上的下一个知识点就可以作为反思和推敲上一个小结的试金石,如此循环往复后,课末的最终知识点总结则对本课所有知识点小结进行有效的补充和完善,进而延伸出下堂课以及与本堂课重点内容相关的其他数学知识点的探索和思考。
当然,这种教学方法也同样可以运用到其他学科的教学中。借助教师的渐进式诱导,学生会自主加入到课堂探索中,通过由简到难、由浅入深的逐层递进式反思和讨论提升在课堂中的兴趣度和专注度。
初中数学知识点总结 12
一、平行四边形的定义、性质及判定
1、两组对边平行的四边形是平行四边形。
2、性质:
(1)平行四边形的对边相等且平行
(2)平行四边形的对角相等,邻角互补
(3)平行四边形的对角线互相平分
3、判定:
(1)两组对边分别平行的四边形是平行四边形
(2)两组对边分别相等的四边形是平行四边形
(3)一组对边平行且相等的四边形是平行四边形
(4)两组对角分别相等的四边形是平行四边形
(5)对角线互相平分的四边形是平行四边形
4、对称性:平行四边形是中心对称图形
二、矩形的定义、性质及判定
1、定义:有一个角是直角的平行四边形叫做矩形
2、性质:矩形的四个角都是直角,矩形的.对角线相等
3、判定:
(1)有一个角是直角的平行四边形叫做矩形
(2)有三个角是直角的四边形是矩形
(3)两条对角线相等的平行四边形是矩形
4、对称性:矩形是轴对称图形也是中心对称图形。
三、菱形的定义、性质及判定
1、定义:有一组邻边相等的平行四边形叫做菱形
(1)菱形的四条边都相等
(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角
(3)菱形被两条对角线分成四个全等的直角三角形
(4)菱形的面积等于两条对角线长的积的一半
2、s菱=争6(n、6分别为对角线长)
3、判定:
(1)有一组邻边相等的平行四边形叫做菱形
(2)四条边都相等的四边形是菱形
(3)对角线互相垂直的平行四边形是菱形
4、对称性:菱形是轴对称图形也是中心对称图形
初中数学知识点总结 13
锐角三角函数定义
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin):对边比斜边,即sinA=a/c;
余弦(cos):邻边比斜边,即cosA=b/c;
正切(tan):对边比邻边,即tanA=a/b;
余切(cot):邻边比对边,即cotA=b/a;
正割(sec):斜边比邻边,即secA=c/b;
余割(csc):斜边比对边,即cscA=c/a。
三角函数关系
1、互余角的关系
sin(90°—α)=cosα,cos(90°—α)=sinα,tan(90°—α)=cotα,cot(90°—α)=tanα。
2、平方关系
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
3、积的关系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
4、倒数关系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
两角和差公式
sin(A+B)= sinAcosB+cosAsinB
sin(A—B)= sinAcosB—cosAsinB
cos(A+B)= cosAcosB—sinAsinB
cos(A—B)= cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1—tanAtanB)
tan(A—B)=(tanA—tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB—1)/(cotB+cotA)
cot(A—B)=(cotAcotB+1)/(cotB—cotA)
1、不在同一直线上的三点确定一个圆。
2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧。
3、圆是以圆心为对称中心的中心对称图形。
4、圆是定点的距离等于定长的点的集合
5、圆的内部可以看作是圆心的距离小于半径的点的集合。
6、圆的外部可以看作是圆心的距离大于半径的`点的集合。
7、同圆或等圆的半径相等。
8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
13、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
14、切线的性质定理圆的切线垂直于经过切点的半径。
15、推论1经过圆心且垂直于切线的直线必经过切点。
初中数学知识点总结 14
一.圆的定义
1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。
2.平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
二.圆心
1.定义1中的定点为圆心。
2.定义2中绕的那一端的端点为圆心。
3.圆任意两条对称轴的交点为圆心。
4.垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O表示
5.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
6.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。
7.圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。
8.圆的`半径或直径决定圆的大小,圆心决定圆的位置。
三.圆的基本性质
1.圆的对称性
(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2.垂径定理
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:
平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3.圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4.在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5.夹在平行线间的两条弧相等。
(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角三角形的外心就是斜边的中点。)
6.直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。
四.圆和圆
1.两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。
2.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。
3.两个圆有两个交点,叫做两个圆的相交。
4.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。
5.两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。
五.正多边形和圆
1.正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。
2.正多边形与圆的关系:
(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。
(2)这个圆是这个正多边形的外接圆。
初中数学知识点总结 15
1、乘法与因式分解
a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)
2、三角不等式
|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
3、一元二次方程的解
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
4、根与系数的关系
X1+X2=-b/a X1*X2=c/a注:韦达定理
5、判别式
①b2-4a=0注:方程有相等的两实根
②b2-4ac>0注:方程有一个实根
③b2-4ac<0注:方程有共轭复数根
6、三角函数公式
①两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
②倍角公式
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
③半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
④和差化积
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
⑤某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
⑥正弦定理
a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
⑦余弦定理
b2=a2+c2-2accosB注:角B是边a和边c的夹角
⑧圆的方程
圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
⑨立体体积与侧面积
直棱柱侧面积S=c*h斜棱柱侧面积S=c*h
正棱锥侧面积S=1/2c*h正棱台侧面积S=1/2(c+c)h
圆台侧面积S=1/2(c+c)l=pi(R+r)l球的表面积S=4pi*r2
圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l
弧长公式l=a*r a是圆心角的弧度数r>0扇形面积公式s=1/2*l*r
锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h
斜棱柱体积V=SL注:其中,S是直截面面积,L是侧棱长
柱体体积公式V=s*h圆柱体V=pi*r2h
二、初中几何公式
1、平行线证明
①经过直线外一点,有且只有一条直线与这条直线平行
②如果两条直线都和第三条直线平行,这两条直线也互相平行
③同位角相等,两直线平行
④内错角相等,两直线平行
⑤同旁内角互补,两直线平行
⑥两直线平行,同位角相等
⑦两直线平行,内错角相等
⑧两直线平行,同旁内角互补
2、全等三角形证明
①边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
②角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
③推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
④边边边公理(SSS)有三边对应相等的两个三角形全等
⑤斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
3、三角形基本定理
①定理1在角的平分线上的点到这个角的两边的距离相等
②定理2到一个角的两边的距离相同的点,在这个角的平分线上
③角的平分线是到角的两边距离相等的所有点的集合
④等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
⑤推论1等腰三角形顶角的平分线平分底边并且垂直于底边
⑥等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
⑦推论3等边三角形的各角都相等,并且每一个角都等于60°
⑧等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
⑨直角三角形
4、多边形定理
①定理四边形的内角和等于360°
②四边形的外角和等于360°
③多边形内角和定理n边形的内角的和等于(n-2)×180°
④推论任意多边的外角和等于360°
5、平行四边形证明与等腰梯形证明
①平行四边形性质定理1平行四边形的对角相等
②平行四边形性质定理2平行四边形的对边相等
③平行四边形性质定理3平行四边形的对角线互相平分
……
④矩形性质定理1矩形的四个角都是直角
⑤矩形性质定理2矩形的对角线相等
……
⑥等腰梯形性质定理等腰梯形在同一底上的两个角相等
⑦等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
⑧推论1经过梯形一腰的'中点与底平行的直线,必平分另一腰
⑨推论2经过三角形一边的中点与另一边平行的直线,必平分第三边
7、相似三角形证明
①相似三角形判定定理1两角对应相等,两三角形相似(ASA)
②判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
③判定定理3三边对应成比例,两三角形相似(SSS)
④定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
⑤性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
⑥性质定理2相似三角形周长的比等于相似比
⑦性质定理3相似三角形面积的比等于相似比的平方
8、弦和圆的证明
①定理不在同一直线上的三点确定一个圆。
②垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
③推论1
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
弦的垂直平分线经过圆心,并且平分弦所对的两条弧
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
④推论2圆的两条平行弦所夹的弧相等
⑤圆是以圆心为对称中心的中心对称图形
⑥定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
⑦线与圆的位置关系
直线L和⊙O相交d 直线L和⊙O相切d=r 直线L和⊙O相离d>r ⑧圆与圆之间的位置关系 两圆外离d>R+r②两圆外切d=R+r 两圆相交R-r 两圆内切d=R-r(R>r) 两圆内含dr) QQ截图20150129173906.jpg 三、数学学习方法 1、突出一个“勤”字(克服一个“惰”字) 数学家华罗庚曾经说过:“聪明在于学习,天才在于勤奋”,“勤能补拙是良训,一分辛劳一分才“:我们在学习的时候要突出一个勤字,克服一个“懒”字,怎么突出“勤”字,从这个字面上来看,要做到五勤:“耳勤”“眼勤”(耳朵听,眼睛看,接受信息) “口勤”(讨论,回答问题,而不是讲话,消化信息)“脑勤”(善于思考问题,积极思考问题——吸收、储存信息)那是不是做到以上四点就行了呢?不是。这个字还有缺陷,在聪下面加上“手” “手勤”(动手多实践,不仅光做题,做课件,做模型) 这样的人聪明不聪明? 最大的提高学习效率,首先要做到——上课认真听讲(这是根本)回家先复习再做题如果课听不好,就别想消化知识 2、学好初中数学还有两个要点,要狠抓两个要点: 学好数学,一要(动手),二要(动脑)。动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知想象之间有什么联系,多问几个为什么。动手就是多实践,多做题,要“拳不离手”(武术)“曲不离口”(唱歌)。同学就是“题不离手”,这两个要点大家要记住。“动脑又动手,才能最大地发挥大脑的效率” 3、做到“三个一遍” 大家听过“失败是成功之母”听过“重复是学习之母”吗?培根(18-19世纪英国的哲学家)——“知识就是力量”,“重复是学习之母”。如何重复,我给你们解释一下: “上课要认真听一遍,动手推一遍,想一遍” “下课看” “考试前” 4、重视“四个依据” 读好一本教科书——它是教学、中考的主要依据; 记好一本笔记——它是教师多年经验的结晶; 做好做净一本习题集——它是使知识拓宽; 记好一本心得笔记,最好每人自己准备一本错题集 1、重心的定义: 平面图形中,几何图形的重心是当支撑或悬挂时图形能在水平面处于平衡状态,此时的支撑点或者悬挂点叫做平衡点,也叫做重心。 2、几种几何图形的重心: ⑴线段的重心就是线段的中点; ⑵平行四边形及特殊平行四边形的重心是它的两条对角线的交点; ⑶三角形的三条中线交于一点,这一点就是三角形的重心; ⑷任意多边形都有重心,以多边形的任意两个顶点作为悬挂点,把多边形悬挂时,过这两点铅垂线的交点就是这个多边形的重心。 提示:⑴无论几何图形的形状如何,重心都有且只有一个; ⑵从物理学角度看,几何图形在悬挂或支撑时,位于重心两边的力矩相同。 3、常见图形重心的性质: ⑴线段的重心把线段分为两等份; ⑵平行四边形的重心把对角线分为两等份; ⑶三角形的重心把中线分为1:2两部分(重心到顶点距离占2份,重心到对边中点距离占1份)。 上面对重心知识点的`巩固学习,同学们都能熟练的掌握了吧,希望同学们很好的复习学习数学知识。 ①直线和圆无公共点,称相离。 AB与圆O相离,d>r。 ②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d ③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离) 平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是: 1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程 如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。 如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。 如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。 2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1 当x=-C/Ax2时,直线与圆相离; 一、实数 1.平方根性质: (1)一个正数有两个平方根,它们互为相反数; (2)零的平方根是零; (3)负数没有平方根。 2.算术平方根性质: (1)一个正数的正的平方根叫做它的算术平方根; (2)零的算术平方根是零; (3)负数没有算术平方根。 3.立方根性质: (1)正数的立方根是正数; (2)零的立方根是零; (3)负数的立方根是负数。 4.实数的性质: (1)零是唯一没有平方根的数; (2)正数和负数可以没有算术平方根; (3)任何实数的立方根只有唯一的一个; (4)正数的立方根与它本身和零同类。 二、整式的运算 1.整式范围: (1)整式可以化为分数或整数; (2)整式可以化为负数或非负数; (3)整式可以化为奇数或偶数; (4)整式可以化简为分数指数幂。 2.单项式: (1)单项式的系数是数字因数; (2)一个单项式中所有字母的指数的和叫做单项式的次数。 3.多项式: (1)多项式的每一项都是一个单项式; (2)一个多项式的项数与多项式中含有几个单项式有关。 4.同底数幂的`乘法: (1)同底数幂相乘,底数不变,指数相加; (2)同底数幂相除,底数不变,指数相减。 5.幂的乘方: 幂的乘方,底数不变,指数相乘。 6.积的乘方: (1)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘; (2)1的乘方等于1。 7.同底数幂的除法: (1)同底数幂相除,底数不变,指数相减; (2)0的任何正整数次幂都是0。 8.分式: (1)分式是整式的一种,在整式中区别于整式,分式的分母中必须含有字母; (2)分式的值等于分子除以分母。 9.分式的运算: (1)分式的乘方:分式与分式相乘,再把被乘式的分子、分母分别与乘式的分子、分母相乘,即分子相乘的积做积的分子,分母相乘的积做积的分母; (2)分式的除法:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即分子相除的商做被除式的分子,分母相除的商做被除式的分母; (3)分式的加减:异分母分式的加减运算,为了使不同分母的分数直接相加减不便,因此常把不同分母的分数分别化成与原来的分母相同的分母后再相加减。 三、方程与方程组 1.方程: (1)含有未知数的等式叫方程; (2)使方程左右两边相等的未知数的值,叫做方程的解; (3)求方程的解的过程叫做解方程。 2.方程的解: (1)能使方程左右两边相等的未知数的值; (2)一个数(它不一定是数,也可以是符号和运算)是某一等式(含有未知数的等式)的解,那么这个数就叫做该等式的解。 3.一元一次方程: (1)只有一个未知数; (2)未知数的最高次数为1; (3)整式方程。 4.方程的解法: (1)去分母:在方程两端同乘各分母的最小公倍数; (2)去括号:去括号要变号; (3)移项:把含有未知数的项移到等号的一边,其他项移到另一边; (4)合并同类项:化未知数为已知数; (5)系数化成1:在方程两端同除以未知数的系数。 【初中数学知识点总结】相关文章: 初中数学函数知识点总结06-14 数学初中知识点总结06-10 初中数学必备知识点总结03-01 初中数学知识点总结07-15 初中数学知识点总结07-22 初中数学几何知识点总结11-05 初中数学函数知识点总结11-24 【经典】数学初中知识点总结07-16 初中数学知识点总结(精选)06-16 初中数学圆的知识点总结12-05 初中数学知识点总结 16
初中数学知识点总结 17