初中数学知识点总结[必备15篇]
总结是指社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而肯定成绩,得到经验,找出差距,得出教训和一些规律性认识的一种书面材料,写总结有利于我们学习和工作能力的提高,因此我们要做好归纳,写好总结。那么如何把总结写出新花样呢?以下是小编帮大家整理的初中数学知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。
初中数学知识点总结1
[关键词]课堂小结;初中数学;理解提升
德国作家、科学家利希顿堡说过:“当你还不能对自己说今天学到了什么东西时,你就不要去睡觉。 ”这句话从侧面阐明了总结对于知识学习的重要性。课堂小结作为一项提炼收获、分析问题、概括经验的学习手段,对于初中数学课堂教学具有很好的促进作用。这是因为初中数学与其他学科相比,有更强的思维性、逻辑性和综合性,这使得初中数学的知识体系、概念内容更庞杂,更不容易消化吸收,这就需要我们寻求一项有效的手段来将这些知识进行聚合、巩固、提升,而课堂小结恰恰解决了这一问题。课堂教学形式多变、内涵丰富,并非时时刻刻都应该总结、都需要总结,课堂小结只有在合适的时间运用,才能发挥效果。笔者正是基于此,对初中数学如何有效运用课堂小结进行策略探析,通过对初中数学教学规律、学生数学知识吸收特点进行整理、分析后,提出如下四点建议。
在知识讲解之后小结,掌握新
知强调重点
我们在进行新知识的课堂教学时,一堂课里一般会有多个小知识点,我们在带入新知识的同时,还会引入一些老问题,帮助学生进行对比、区分,增进理解。但这同时也加大了课堂容量,容易让学生在知识吸收中出现遗漏、错读。所以,在新知识教学完成之后进行课堂小结,帮助学生将所学的新知识进行统一规整,能够很好地帮助学生理清思路,明确知识重点,快速掌握新知。在对新知识进行课堂小结时,我们讲究全而美,即小结涵盖的内容要全,要将本节课的所有知识都涵盖进来;美是指总结的语言要生动,要将新知识的特点用趣味的语言表现出来,让学生更容易理解,更方便记忆。
例如,教学苏教版初中数学“合并同类项”这一部分内容时,笔者进行了这样的小结:“同学们,我们今天学习了合并同类项,合并同类项我们要掌握两个关键,一是什么是同类项,另一个是怎么合并,你们说对不对?”笔者先抛出一个问题,学生回答:“对。 ”“那你们谁能告诉老师答案呢?”笔者继续问,学生思考后回答:“老师,是同类项的话,首先所含字母要相同。”“同一个字母的指数也必须一样。”另一个学生回答。 “合并同类项就是把同类项的系数加起来。 ”还有学生补充。笔者笑着说:“同学们说得很好呢,其实合并同类项只要掌握两同、两无关,常数也是同类项就可以了。两同就是字母同、指数同,两无关是字母顺序无关、系数大小无关。 ”像这样,通过教师引导学生思考,再进行总结,能够有效帮助学生了解新知识的重点,促进学生理解掌握。
在答疑解惑之后小结,突出要
点指明问题
学必有疑,学生在数学学习过程中,一定会碰到一些麻烦,提出一些问题。对于学生提出的疑问,教师都会认真讲解、仔细分析,直到学生明白为止,但有时候会出现同一知识点学生听了忘、反复问的现象,出现这种情况的原因是学生对于教师的讲解没理解透彻。而如何才能让学生参透呢?教师在帮学生答疑解惑之后的课堂小结,很多时候刚好能起到这样的点拨作用。教师在答疑解惑之后的课堂小结要注意两个问题:一是小结要指明问题,就学生所出现的问题进行分析,让学生根据自身情况认领问题,以便对症下药;二是小结要注重方法的启发,针对学生的问题阐明解决办法,引导学生领会方法,运用原则,破获解题密码,得到新的收获与启发。
例如,教学苏教版初中数学“一元一次方程”时,有一位学生向笔者提出疑问:“老师,这道题目:+=2,我算了好几遍,答案都是—1,跟老师给的'答案不一样,这是为什么呢?”笔者稍稍看了学生的解题步骤后发现,原来这个学生犯了解一元一次方程非常常见的错误,即他去分母的时候,没有分母的项忘记乘相同的系数了。于是笔者在向他讲解完之后进行小结:“同学们,我们在给一元一次方程去分母的时候,要注意什么呢?方程两边要同时乘以所有分母的最小公倍数,只有这么做,方程的大小才会保持不变。一旦你漏乘了谁,特别是没有分母的项,那就不公平了,等式大小就发生了改变,那么答案肯定就错了。 ”像这样,根据学生的问题,直指关键,帮助学生答疑解惑,能促进学生吃一堑长一智,规避错误,更加进步。
在迁移发散之后小结,明确关
系梳理联系
数学知识盘丝错节,各个知识点之间的联系十分多样、紧密,因此要帮助学生真正深入掌握知识,明晰知识点间的灵活运用,就必须适当对这些知识进行迁移发散。迁移发散是一种举一反三的教学手段,通过一个数学概念迁移出旧识新知,通过一种方法发散出多种不同形式。迁移发散是数学万紫千红总是春的集中体现,是数学学习的较高阶段,同时也是学生较难理解掌握的部分,因此,在迁移发散之后进行课堂小结很有必要。教师要注意通过小结引导学生明确各个知识点之间的因果先后关系,梳理多个知识点之间联系的条件和影响因素,让学生通过小结可以在脑中形成更为准确的印象。
例如,教学苏教版初中数学“梯形中位线”这部分内容时,笔者迁移出三角形中位线的相关概念,引导学生进行比对、思考、拓展。迁移发散之后,笔者做了如下总结:“同学们,通过迁移我们可以得出,三角形中位线是梯形中位线的一种特殊形式,所有梯形通过割补平移都可以转换成一个三角形。另外,通过式子的转化我们知道,梯形的面积可以看做是中位线乘以梯形高的积,那么作为梯形中位线的特例,三角形的面积同样也可以是中位线与第三边上的高的乘积。 ”像这样,在迁移之后进行小结,明确了知识之间的联系,能帮助学生进行梳理归纳,有助于学生理解掌握。
在整体复习之后小结,高屋建
瓴全面吸收
复习是数学学习中非常重要的一个环节,是对学生一段时间以来学习的回顾。整体复习一般具有复习量大、知识跨度大、知识整合度高等特点,一堂整体复习课下来,学生需要重新理顺和温习的知识点非常多,初中生注意力容易分散,对于过于繁多的知识概念会出现“消化不良”的现象。整体复习之后的课堂小结,是对整个复习过程的凝练、概括,起到高屋建瓴的作用,能帮助学生更为系统、全面地知悉内容、吸收知识。
初中数学知识点总结2
1、正数和负数的有关概念
(1)正数:
比0大的数叫做正数;
负数:比0小的数叫做负数;
0既不是正数,也不是负数。
(2)正数和负数表示相反意义的量。
2、有理数的概念及分类
3、有关数轴
(1)数轴的三要素:原点、正方向、单位长度。数轴是一条直线。
(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
(2)相反数:符号不同、绝对值相等的两个数互为相反数。
若a、b互为相反数,则a+b=0;
相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。
(3)绝对值最小的数是0;绝对值是本身的数是非负数。
4、任何数的绝对值是非负数。
最小的正整数是1,最大的负整数是-1。
5、利用绝对值比较大小
两个正数比较:绝对值大的那个数大;
两个负数比较:先算出它们的绝对值,绝对值大的反而小。
6、有理数加法
(1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和。
(2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零。
(3)一个数同零相加,仍得这个数。
加法的交换律:a+b=b+a
加法的结合律:(a+b)+c=a+(b+c)
7、有理数减法:
减去一个数,等于加上这个数的相反数。
8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写。
例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12 -25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和。”
9、有理数的乘法
两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。
第一步:确定积的符号第二步:绝对值相乘
10、乘积的符号的确定
几个有理数相乘,因数都不为0时,积的符号由负因数的个数确定:当负因数有奇数个时,积为负;
当负因数有偶数个时,积为正。几个有理数相乘,有一个因数为零,积就为零。
11、倒数:
乘积为1的两个数互为倒数,0没有倒数。
正数的倒数是正数,负数的倒数是负数。(互为倒数的`两个数符号一定相同)
倒数是本身的只有1和-1。
初中数学知识点总结2平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:
①在同一平面
②两条数轴
③互相垂直
④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向。
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成。
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成。
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
初中数学知识点总结3
统计
科学记数法:一个大于10的数可以表示成A_10N的形式,其中1小于等于A小于10,N是正整数。
扇形统计图:①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。
各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。
近似数字和有效数字:①测量的结果都是近似的。②利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。③对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。
平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X(上边一横)。
加权平均数:一组数据里各个数据的.重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
中位数与众数:①N个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。②一组数据中出现次数最大的那个数据叫做这个组数据的众数。③优劣:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。
调查:①为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。②从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。③抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。
频数与频率:①每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。②当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。
概率
可能性:①有些事情我们能确定他一定会发生,这些事情称为必然事件;有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;必然事件和不可能事件都是确定的。②有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。③一般来说,不确定事件发生的可能性是有大小的。
概率:①人们通常用1(或100%)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。②游戏对双方公平是指双方获胜的可能性相同。③必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0〈P(A)〈1。
对于概率类问题特别要注意以下几点
01 注意概率、机会、频率的共同点和不同点。
02 注意题目中隐含求概率的问题。
03 画树状图及其它方法求概率。
04 摸球模型题注意放回和不放回。
05 注意在求概率的问题中寻找替代物,常见的替代物有:球,扑克牌,骰子等。
统计与概率会在中考中以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查。
解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等。
学好数学的方法有哪些
1学好初中数学课前预习是重点
数学解题思路和能力的培养主要在于课堂上,所以想要学好初中数学一定要重视数学的学习效率和提前预习。只有提前预习才知道自己哪里不会,这样在课堂上才会注意力集中不走神。同时在初中数学的课上,学生也要紧跟老师的解题思路,注意自己的解题思路和老师的有什么不同。尤其是基础知识和最基本的技能学习,课上数学老师讲完后,初中生要在课后及时复习,争取老师讲完每一节的知识后,学生都不要留下疑问。
2独立完成初中数学作业
在完成老师布置的作业时,初中生要学会自己能够独立完成,想要学好初中数学就要勤于思考,千万不能偷懒。平时对于自己弄不懂的题目和解题思路,不要放弃,静下心来认真分析和研究,尽量做到自己能够解决,实在是想不出来在问同学或者老师。对于初中数学的每一个学习阶段,都要学会进行整理和归纳。
3多做题是学好初中数学的关键
想要学好初中数学,就要多做数学题。只有学生掌握了各种各样的题型,那么你对于初中数学的解题思路才能够了解,这样通过积累就会使自己的解题思路和思维丰富。在刚开始的时候,可以从最简单的基础题入手,学生最好是以课本上的习题为主,一定要将课本上的习题弄懂,这样打好基础,才会为接下来的做其他类型的题最好准备。然后在开始做一些课外的有难度的习题,目的是为了帮助学生开拓自己的思路,提高自己分析能力。
4正确的对待初中数学考试
初中学生数学想要打高分,就要把大部分的精力放在基础知识和解题的基本技能上面,因为在初中数学的考试中,基础题占了试卷的大部分,所以基础知识一定要记牢固。另外还要摆正自己的心态,这样在答初中数学题的时候思路才能清晰。
N是指什么数学
数学中的N表示的是集合中的自然数集,这是数学集合中的相关概念,需要掌握的还有:N+表示的是正整数集,Z表示的是集合中的整数集,Q表示的是有理数集,R表示的是实数集。
初中数学知识点总结4
1、xxx:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做xxx。
2、xxx的分类
3、xxx的三边关系:xxx任意两边的和大于第三边,任意两边的差小于第三边。
4、高:从xxx的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做xxx的高。
5、中线:在xxx中,连接一个顶点和它的对边中点的线段叫做xxx的中线。
6、角平分线:xxx的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做xxx的角平分线。
7、高线、中线、角平分线的意义和做法
8、xxx的稳定性:xxx的形状是固定的,xxx的这个性质叫xxx的稳定性。
9、xxx内角和定理:xxx三个内角的和等于180°
推论1直角xxx的两个锐角互余
推论2xxx的一个外角等于和它不相邻的两个内角和
推论3xxx的一个外角大于任何一个和它不相邻的内角;xxx的内角和是外角和的一半
10、xxx的外角:xxx的一条边与另一条边延长线的'夹角,叫做xxx的外角。
11、xxx外角的性质
(1)顶点是xxx的一个顶点,一边是xxx的一边,另一边是xxx的一边的延长线;
(2)xxx的一个外角等于与它不相邻的两个内角和;
(3)xxx的一个外角大于与它不相邻的任一内角;
(4)xxx的外角和是360°。
初中数学知识点总结5
一、特殊的平行四边形:
1.矩形:
(1)定义:有一个角是直角的平行四边形。
(2)性质:矩形的四个角都是直角;矩形的对角线平分且相等。
(3)判定定理:
①有一个角是直角的平行四边形叫做矩形。
②对角线相等的平行四边形是矩形。
③有三个角是直角的四边形是矩形。
直角三角形的性质:直角三角形中所对的直角边等于斜边的一半。
2.菱形:
(1)定义:邻边相等的平行四边形。
(2)性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
(3)判定定理:
①一组邻边相等的平行四边形是菱形。
②对角线互相垂直的平行四边形是菱形。
③四条边相等的四边形是菱形。
(4)面积:
3.正方形:
(1)定义:一个角是直角的菱形或邻边相等的矩形。
(2)性质:四条边都相等,四个角都是直角,对角线互相垂直平分。正方形既是矩形,又是菱形。
(3)正方形判定定理:
①对角线互相垂直平分且相等的四边形是正方形;
②一组邻边相等,一个角为直角的平行四边形是正方形;
③对角线互相垂直的矩形是正方形;
④邻边相等的矩形是正方形
⑤有一个角是直角的菱形是正方形;
⑥对角线相等的菱形是正方形。
二、矩形、菱形、正方形与平行四边形、四边形之间的联系:
1.矩形、菱形和正方形都是特殊的平行四边形,其性质都是在平行四边形的基础上扩充来的。矩形是由平行四边形增加“一个角为90°”的条件得到的,它在角和对角线方面具有比平行四边形更多的特性;菱形是由平行四边形增加“一组邻边相等”的`条件得到的,它在边和对角线方面具有比平行四边形更多的特性;正方形是由平行四边形增加“一组邻边相等”和“一个角为90°”两个条件得到的,它在边、角和对角线方面都具有比平行四边形更多的特性。
2.矩形、菱形的判定可以根据出发点不同而分成两类:一类是以四边形为出发点进行判定,另一类是以平行四边形为出发点进行判定。而正方形除了上述两个出发点外,还可以从矩形和菱形出发进行判定。
三、判定一个四边形是特殊四边形的步骤:
常见考法
(1)利用菱形、矩形、正方形的性质进行边、角以及面积等计算;
(2)灵活运用判定定理证明一个四边形(或平行四边形)是菱形、矩形、正方形;
(3)一些折叠问题;
(4)矩形与直角三角形和等腰三角形有着密切联系、正方形与等腰直角三角形也有着密切联系。所以,以此为背景可以设置许多考题。
误区提醒
(1)平行四边形的所有性质矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性质平行四边形不一定具有,这点易出现混淆;
(2)矩形、菱形具有的性质正方形都具有,而正方形具有的性质,矩形不一定具有,菱形也不一定具有,这点也易出现混淆;
(3)不能正确的理解和运用判定定理进行证明,(如在证明菱形时,把四条边相等的四边形是菱形误解成两组邻边相等的四边形是菱形);
(4)再利用对角线长度求菱形的面积时,忘记乘;
(5)判定一个四边形是特殊的平行四边形的条件不充分。
初中数学知识点总结6
1.圆是以圆心为对称中心的中心对称图形;同圆或等圆的半径相等。
2.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
3.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
4.圆是定点的距离等于定长的点的集合。
5.圆的内部可以看作是圆心的距离小于半径的点的集合;圆的外部可以看作是圆心的距离大于半径的点的集合。
6.不在同一直线上的三点确定一个圆。
7.垂径定理垂直于弦的'直径平分这条弦并且平分弦所对的两条弧。
推论1:
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
8.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
9.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
10.经过切点且垂直于切线的直线必经过圆心。
11.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
12.切线的性质定理圆的切线垂直于经过切点的半径。
13.经过圆心且垂直于切线的直线必经过切点
14.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
15.圆的外切四边形的两组对边的和相等外角等于内对角。
16.如果两个圆相切,那么切点一定在连心线上。
17.
①两圆外离d>R+r
②两圆外切d=R+r
③两圆相交d>R-r)
④两圆内切d=R-r(R>r)
⑤两圆内含d=r)
18.定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。
19.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。
20.弧长计算公式:L=n兀R/180;扇形面积公式:S扇形=n兀R^2/360=LR/2。
21.内公切线长= d-(R-r)外公切线长= d-(R+r)。
22.定理一条弧所对的圆周角等于它所对的圆心角的一半。
23.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
24.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
初中数学知识点总结7
一、投影
1、投影:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。
2、平行投影:由平行光线形成的投影是平行投影。(光源特别远)
3、中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影
4、正投影:投影线垂直于投影面产生的投影叫做正投影。物体正投影的形状、大小与它相对于投影面的位置有关。
5、当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同。当物体的某个面顶斜于投影面时,这个面的正投影变小。当物体的某个面垂直于投影面时,这个面的正投影成为一条直线。
二、三视图
1、三视图:是观测者从三个不同位置(正面、水平面、侧面)观察同一个空间几何体而画出的图形。三视图就是主视图、俯视图、左视图的总称。另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
2、主视图:在正面内得到的由前向后观察物体的视图。
3、俯视图:在水平面内得到的由上向下观察物体的视图。
4、左视图:在侧面内得到的'由左向右观察物体的视图。
5、三个视图的位置关系:
①主视图在上、俯视图在下、左视图在右;
②主视、俯视表示物体的长,主视、左视表示物体的高,左视、俯视表示物体的宽。
③主视、俯视长对正,主视、左视高平齐,左视、俯视宽相等。
6、画法:看得见的部分的轮廓线画成实线,因被其它部分遮档而看不见的部分的轮廓线画成虚线。
邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
命题:判断一件事情的语句叫命题。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
初中数学知识点总结8
一、平移变换:
1、概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。
2、性质:
(1)平移前后图形全等;
(2)对应点连线平行或在同一直线上且相等。
3、平移的作图步骤和方法:
(1)分清题目要求,确定平移的方向和平移的距离。
(2)分析所作的图形,找出构成图形的关健点。
(3)沿一定的方向,按一定的距离平移各个关健点。
(4)连接所作的各个关键点,并标上相应的字母。
(5)写出结论。
二、旋转变换:
1、概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
说明:
(1)图形的旋转是由旋转中心和旋转的角度所决定的;
(2)旋转过程中旋转中心始终保持不动。
(3)旋转过程中旋转的方向是相同的。
(4)旋转过程静止时,图形上一个点的旋转角度是一样的。⑤旋转不改变图形的大小和形状。
2、性质:
(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等。
3、旋转作图的步骤和方法:
(1)确定旋转中心及旋转方向、旋转角;
(2)找出图形的关键点;
(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的`对应点;
(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。
说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。
4、常见考法
(1)把平移旋转结合起来证明三角形全等;
(2)利用平移变换与旋转变换的性质,设计一些题目。
误区提醒
(1)弄反了坐标平移的上加下减,左减右加的规律;
(2)平移与旋转的性质没有掌握。
初中数学知识点总结9
1.相似三角形定义:
对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号"∽"表示,读作"相似于"。
3.相似三角形的相似比:
相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
从表中可以看出只要将全等三角形判定定理中的"对应边相等"的条件改为"对应边
成比例"就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。
6.直角三角形相似:
(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
7.相似三角形的'性质定理:
(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
8. 相似三角形的传递性
如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2
初中数学知识点总结10
在初中数学课堂教学中,小结一般作为总结本课,开启下一课的钥匙。但是在具体执行过程中,受到时间、学生心态、教师课堂设计水平等因素的限制,初中数学课堂小结在运用的过程中呈现出多种问题。究其原因是多方面的,而其最主要的原因则来源于教师对学生心理的把握力度不够。心理学专家在当代少年儿童的大脑结构分析基础上所做出的研究表明,在初中阶段的学生对课程的关注度主要集中在前15分钟,个别注意力比较好的学生能坚持到15~25分钟,随着时间的推移,从25分钟到45分钟之间学生的记忆力和注意力则出现了逐渐下滑的趋势。由此可见,教师在做初中数学课程设计时,仅仅按照传统习惯将课堂小结作为课末总结的方式并不科学,对学生的课堂学习和课下探索延伸起不到推动作用。
由此,在新的知识环节讲解和学习的过程中,对课堂小结的设计,教师应该通过巧妙的规划,实现温故知新,而这又是对本堂课程的总结和反思的过程,具有极强的逻辑性和渐进性,环环相扣,同时要为学生的思考和课下探索的延伸留出独立的空间。因此,按照具体的操作,本文以浙教版初中数学“探索多边形的内角和”的课堂学习为例,对课堂小结的运用从以下两个方面进行阐述。
一、拨迷梳“理”,温故知新
七年级“探索多边形的内角和”一课的教学重点是让学生了解什么是多边形、什么是内角、如何求内角和、如何在现实生活中利用此种计算方法。新课标要求,学生作为教学主体,对课程重点内容的了解和领悟主要是以他们自身的动手操作为主,这也是教师在教案设计时的主要切入点之一。在明确本堂课的教学重点之后,教师需要对以往学习过的知识点进行梳理,并找出与本堂课有关联性的知识点,在课程初始时作为引导,通过对以往知识点的回顾,如三角形、相交线等已学知识点引出本堂课的重点。而后面即将学习的课程,如“多姿多彩几何图形”等的相应测试,也可以作为学生课堂及课后的延伸知识点,在教师的`课程讲解过程中予以贯穿。当然,在课程设计初期,教师要尤为注意的是,应根据本堂课知识点的重点排序,由主到辅、由简入深地安排好具有节奏感的讲解内容及小结,而作为延伸思考的知识点在每个小结部分可以按照其相关性和重要性进行穿插安排。
二、动手操作,注重反思
“探索多边形的内角和”中,多边形的概念是本课各个难点展开的基础,按照多边形的概念,教师可以让学生用线、卡纸、铁丝等工具自行制作凹多边形或凸多变形,以体验多边形的曲线美。引导学生尝试以拉伸和缩小的方式构架出凹多边形和凸多变形后,教师可以让学生按照体验来描述二者的区别和相同点,并以此作为小结。当学生做完归纳后,根据本课“多边形的内角和主要以凸多边形为主”的教学目标要求,教师可提问:“同学们目前已经了解了二者的区别,本堂课要讲解的‘多边形内角和’主要以凸多边形为基础,但是为什么我们不以凹多边形为基础呢?请同学们仔细想想原因。”教师的这种讲解模式既可以为下面对“内角和”的重点讲解作铺垫,又可以让学生深入思考之前对凹凸多边形的描述是否恰当,是否符合多边形的数学性规律。
在此种引导方法下,学生会按照下一个知识点的内容来反思之前的小结是否具有全面性。在反复的思考和对比过程中,学生的逻辑思维可以得到充分的训练。这对培养学生的数学思维,以及对知识点的重复性推敲和反思能力的提升具有促进作用。一旦学生在思考和探讨的过程中,摸索到数学本身的规律,并从复杂多样的数学知识点中找到其原本的架构,自然会在头脑中建立起一个符合自身记忆和领悟需要的数学知识体系。
三、大道从简,循环渐进
大道从简,按照初中数学的知识点架构来看,每堂课的每个知识点都可以在被重点提炼之后作为节点来布置课堂小结。以数学的逻辑思维传承性为基础,课堂上的下一个知识点就可以作为反思和推敲上一个小结的试金石,如此循环往复后,课末的最终知识点总结则对本课所有知识点小结进行有效的补充和完善,进而延伸出下堂课以及与本堂课重点内容相关的其他数学知识点的探索和思考。
当然,这种教学方法也同样可以运用到其他学科的教学中。借助教师的渐进式诱导,学生会自主加入到课堂探索中,通过由简到难、由浅入深的逐层递进式反思和讨论提升在课堂中的兴趣度和专注度。
初中数学知识点总结11
有两条边相等的三角形叫等腰三角形
相等的两条边叫腰;两腰的夹角叫顶角;顶角所对的边叫底;腰与底的夹角叫底角。
等腰三角形性质
(1)具有一般三角形的边角关系
(2)等边对等角;
(3)底边上的高、底边上的中线、顶角平分线互相重合;
(4)是轴对称图形,对称轴是顶角平分线;
(5)底边小于腰长的.两倍并且大于零,腰长大于底边的一半;
(6)顶角等于180减去底角的两倍;
(7)顶角可以是锐角、直角、钝角而底角只能是锐角
等腰三角形分类:可分为腰和底边不等的等腰三角形及等边三角形
等边三角形性质
①具备等腰三角形的一切性质。
②等边三角形三条边都相等,三个内角都相等并且每个都是60。
等腰三角形的判定
①利用定义;②等角对等边;
等边三角形的判定
①利用定义:三边相等的三角形是等边三角形
②有一个角是60的等腰三角形是等边三角形.
含30锐角的直角三角形边角关系:在直角三角形中,30锐角所对的直角边等于斜边的一半。
三角形边角的不等关系;长边对大角,短边对小角;大角对长边,小角对短边。
初中数学知识点总结12
首先你要有一个好的态度,有些人学习数学,可能有的阶段会喜欢学习,但是某一阶段,对数学就没有什么兴趣了,可能每个人都会有这样一个阶段,但是如果发现自己不喜欢学习数学了,一定要克制自己,在学习数学上,保持一个良好的学习态度,这是你学好数学的第一步。
充分的利用好上课的时间,上课时间你所掌握的知识,会比你在课下学很长时间都有用,所以珍惜课堂老师所讲的内容,老师的某些话对我们以后做数学题都很有帮助,如果你上课走神,这些话没有听到,你在做题的时候,可能会走很多弯路,做题的效率也会降低,一旦有这样的`情况,可能你就会不喜欢数学了。
学习最重要的是思考,会思考数学才能学好,数学中的题都是需要我们去举一反三的,没做一道题,都要思考一下,围绕着这道题的知识点,还会有什么样的题型出现,哪怕是遇到不会的题,也要勤加的思考,如果你把知识点自认为学习透彻,那么就用做题检验吧,数学中多做题是必须的,成绩都是用题堆积出来的,很少会有人不做题数学成绩很高的。
初中数学知识点总结13
轴对称的定义:
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。
轴对称的性质:
(1)对应点所连的线段被对称轴垂直平分;
(2)对应线段相等,对应角相等;
(3)关于某直线对称的两个图形是全等图形。
轴对称的判定:
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
这样就得到了以下性质:
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
线段的垂直平分线上的点与这条线段的两个端点的距离相等。
对称轴是到线段两端距离相等的点的集合。
轴对称作用:
可以通过对称轴的.一边从而画出另一边。
可以通过画对称轴得出的两个图形全等。
扩展到轴对称的应用以及函数图像的意义。
轴对称的应用
关于平面直角坐标系的X,Y对称意义
如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。
相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。
关于二次函数图像的对称轴公式(也叫做轴对称公式)
设二次函数的解析式是y=ax2+bx+c
则二次函数的对称轴为直线x=—b/2a,顶点横坐标为—b/2a,顶点纵坐标为(4ac—b2)/4a
在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。
譬如,等腰三角形经常添设顶角平分线;
矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;
正方形,菱形问题经常添设对角线等等。
另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。
初中数学知识点总结14
一、基本知识
㈠、数与代数A、数与式:
1、有理数
有理数:
①整数→正整数/0/负整数
②分数→正分数/负分数
数轴:
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方
向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:
①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的
绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:
加法:
①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。2、实数
无理数:无限不循环小数叫无理数
平方根:
①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:
①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:
①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。幂的运算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作
为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则
连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。分式的运算:
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。除法:除以一个分式等于乘以这个分式的倒数。
加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。B、方程与不等式1、方程与方程组
一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的`方程叫做二元一次方程。二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系
大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了2)一元二次方程的解法
大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法
利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的
形式去解(3)公式法
这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步骤:(1)配方法的步骤:
先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式
(2)分解因式法的步骤:
把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法
就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4)韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a
也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5)一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diaota”,而△=b2-4ac,这里可以分为3种情况:
I当△>0时,一元二次方程有2个不相等的实数根;II当△=0时,一元二次方程有2个相同的实数根;
III当△B,A+C>B+C在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数Y=KX的图象是经过原点的一条直线。
③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。
④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。
㈡空间与图形A、图形的认识1、点,线,面
点,线,面:①图形是由点,线,面构成的。
②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相
等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。
②圆可以分割成若干个扇形。
2、角
线:①线段有两个端点。
②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。
②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
②一度的1/60是一分,一分的1/60是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。
②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。
③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。
②经过直线外一点,有且只有一条直线与这条直线平行。
③如果两条直线都与第3条直线平行,那么这两条直线互相平行。垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。
②互相垂直的两条直线的交点叫做垂足。
③平面内,过一点有且只有一条直线与已知直线垂直。垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;判定定理:到线段2端点距离相等的点在这线段的垂直平分线上角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出
现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上正方形:一组邻边相等的矩形是正方形
性质:正方形具有平行四边形、菱形、矩形的一切性质判定:1、对角线相等的菱形2、邻边相等的矩形
二、基本定理
1、过两点有且只有一条直线2、两点之间线段最短
3、同角或等角的补角相等4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补
15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边
17、三角形内角和定理三角形三个内角的和等于180°18、推论1直角三角形的两个锐角互余
19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等
22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS)有三边对应相等的两个三角形全等
26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27、定理1在角的平分线上的点到这个角的两边的距离相等
28、定理2到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合
30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边
32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3等边三角形的各角都相等,并且每一个角都等于60°
34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1三个角都相等的三角形是等边三角形
36、推论2有一个角等于60°的等腰三角形是等边三角形
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半
5
39、定理线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1关于某条直线对称的两个图形是全等形
43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°
50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°
52、平行四边形性质定理1平行四边形的对角相等53、平行四边形性质定理2平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等
55、平行四边形性质定理3平行四边形的对角线互相平分
56、平行四边形判定定理1两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3对角线互相平分的四边形是平行四边形59、平行四边形判定定理4一组对边平行相等的四边形是平行四边形60、矩形性质定理1矩形的四个角都是直角61、矩形性质定理2矩形的对角线相等
62、矩形判定定理1有三个角是直角的四边形是矩形63、矩形判定定理2对角线相等的平行四边形是矩形64、菱形性质定理1菱形的四条边都相等
65、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1四边都相等的四边形是菱形
68、菱形判定定理2对角线互相垂直的平行四边形是菱形
69、正方形性质定理1正方形的四个角都是直角,四条边都相等
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1关于中心对称的两个图形是全等的
72、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等
76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰
80、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半
82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d==m/n(b+d++n≠0),
那么(a+c++m)/(b+d++n)=a/b
86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2相似三角形周长的比等于相似比
98、性质定理3相似三角形面积的比等于相似比的平方
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合
102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。
110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形
114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116、定理一条弧所对的圆周角等于它所对的圆心角的一半
117、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交dr②直线L和⊙O相切d=r③直线L和⊙O相离dr
122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径
124、推论1经过圆心且垂直于切线的直线必经过切点125、推论2经过切点且垂直于切线的直线必经过圆心
126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等
128、弦切角定理弦切角等于它所夹的弧对的圆周角
129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等
131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上
135、①两圆外离dR+r②两圆外切d=R+r③两圆相交R-rdR+r(Rr)
④两圆内切d=R-r(Rr)⑤两圆内含dR-r(Rr)136、定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n
140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2p表示正n边形的周长142、正三角形面积√3a/4a表示边长
143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144、弧长计算公式:L=n兀R/180
145、扇形面积公式:S扇形=n兀R^2/360=LR/2146、内公切线长=d-(R-r)外公切线长=d-(R+r)
一、常用数学公式
公式分类公式表达式乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b|
|a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式
b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根
b2-4ac归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。9、几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。几何变换包括:(1)平移;(2)旋转;(3)对称。10、客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,为分析法。
初中数学知识点总结15
一、圆
1、圆的有关性质
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。
由圆的意义可知:
圆上各点到定点(圆心O)的距离等于定长的点都在圆上。
就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。
圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。
圆心相同,半径不相等的两个圆叫同心圆。
能够重合的两个圆叫等圆。
同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的弧叫等弧。
二、过三点的圆
l、过三点的圆
过三点的圆的作法:利用中垂线找圆心
定理不在同一直线上的三个点确定一个圆。
经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。
2、反证法
反证法的三个步骤:
①假设命题的结论不成立;
②从这个假设出发,经过推理论证,得出矛盾;
③由矛盾得出假设不正确,从而肯定命题的结论正确。
例如:求证三角形中最多只有一个角是钝角。
证明:设有两个以上是钝角
则两个钝角之和>180°
与三角形内角和等于180°矛盾。
∴不可能有二个以上是钝角。
即最多只能有一个是钝角。
三、垂直于弦的直径
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。
弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。
推理2:圆两条平行弦所夹的弧相等。
四、圆心角、弧、弦、弦心距之间的关系
圆是以圆心为对称中心的中心对称图形。
实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。
顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。
定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。
推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。
五、圆周角
顶点在圆上,并且两边都和圆相交的角叫圆周角。
推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
由于以上的.定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。
六、圆的判定性质
1.不在同一直线上的三点确定一个圆。
2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的集合
5.圆的内部可以看作是圆心的距离小于半径的点的集合
6.圆的外部可以看作是圆心的距离大于半径的点的集合
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等
10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角
12.①直线L和⊙O相交 d
②直线L和⊙O相切 d=r
③直线L和⊙O相离 dr
13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理 圆的切线垂直于经过切点的半径
15.推论1 经过圆心且垂直于切线的直线必经过切点
16.推论2 经过切点且垂直于切线的直线必经过圆心
17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等 外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离 dR+r ②两圆外切 d=R+r
③.两圆相交 R-rr)
④.两圆内切 d=R-r(Rr) ⑤两圆内含dr)
【初中数学知识点总结】相关文章:
初中数学总结知识点08-26
初中数学几何知识点总结11-05
初中数学函数知识点总结11-24
初中数学圆的知识点总结12-05
初中数学函数知识点总结06-14
数学初中知识点总结06-10
【经典】数学初中知识点总结07-16
初中数学概率知识点总结10-21
初中数学知识点总结07-15
初中数学知识点总结(精选)06-16