当前位置:育文网>初中>初中数学> 初中数学知识点总结

初中数学知识点总结

时间:2024-10-21 15:59:55 初中数学 我要投稿

初中数学知识点总结【范例15篇】

  总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它在我们的学习、工作中起到呈上启下的作用,因此,让我们写一份总结吧。总结你想好怎么写了吗?下面是小编为大家收集的初中数学知识点总结,欢迎阅读与收藏。

初中数学知识点总结【范例15篇】

初中数学知识点总结1

  1、圆是定点的距离等于定长的点的集合

  2、圆的内部可以看作是圆心的距离小于半径的点的集合

  3、圆的外部可以看作是圆心的距离大于半径的点的集合

  4、同圆或等圆的半径相等

  5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  6、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线7、到已知角的两边距离相等的点的轨迹,是这个角的平分线

  8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

  9、定理不在同一直线上的三点确定一个圆。

  10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  11、推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  12、推论2:圆的两条平行弦所夹的弧相等

  13、圆是以圆心为对称中心的中心对称图形

  14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  15、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  16、定理:一条弧所对的圆周角等于它所对的圆心角的一半

  17、推论:1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  18、推论:2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

  19、推论:3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

  20、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

  21、①直线L和⊙O相交dr②直线L和⊙O相切d=r③直线L和⊙O相离dr

  22、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线23、切线的性质定理圆的'切线垂直于经过切点的半径24、推论1经过圆心且垂直于切线的直线必经过切点25、推论2经过切点且垂直于切线的直线必经过圆心

  26、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角

  27、圆的外切四边形的两组对边的和相等

  28、弦切角定理:弦切角等于它所夹的弧对的圆周角

  29、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等30、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等31、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

  32、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

  33、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

  34、如果两个圆相切,那么切点一定在连心线上

  35、①两圆外离dR+r②两圆外切d=R+r③两圆相交R—rdR+r(Rr)④两圆内切d=R—r(Rr)⑤两圆内含dR—r(Rr)

  36、定理:相交两圆的连心线垂直平分两圆的公共弦

  37、定理:把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  38、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  39、正n边形的每个内角都等于(n—2)×180°/n40、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  41、正n边形的面积Sn=pnrn/2p表示正n边形的周长42、正三角形面积√3a/4a表示边长

  43、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k(n—2)180°/n=360°化为(n—2)(k—2)=444、弧长计算公式:L=n兀R/180

  45、扇形面积公式:S扇形=n兀R^2/360=LR/246、内公切线长=d—(R—r)外公切线长=d—(R+r)

初中数学知识点总结2

  一次函数的图象与性质的口诀:

  一次函数是直线,图象经过三象限;

  正比例函数更简单,经过原点一直线;

  两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;

  k为负来左下展,变化规律正相反;

  k的绝对值越大,线离横轴就越远。

  拓展阅读:一次函数的解题方法

  理解一次函数和其它知识的联系

  一次函数和代数式以及方程有着密不可分的联系。如一次函数和正比例函数仍然是函数,同时,等号的两边又都是代数式。需要注意的是,与一般代数式有很大区别。首先,一次函数和正比例函数都只能存在两个变量,而代数式可以是多个变量;其次,一次函数中的变量指数只能是1,而代数式中变量指数还可以是1以外的数。另外,一次函数解析式也可以理解为二元一次方程。

  掌握一次函数的解析式的特征

  一次函数解析式的结构特征:kx+b是关于x的一次二项式,其中常数b可以是任意实数,一次项系数k必须是非零数,k≠0,因为当k = 0时,y = b(b是常数),由于没有一次项,这样的函数不是一次函数;而当b = 0,k≠0,y = kx既是正比例函数,也是一次函数。

  应用一次函数解决实际问题

  1、分清哪些是已知量,哪些是未知量,尤其要弄清哪两种量是相关联的量,且其中一种量因另一种量的变化而变化;

  2、找出具有相关联的两种量的等量关系之后,明确哪种量是另一种量的函数;

  3、在实际问题中,一般存在着三种量,如距离、时间、速度等等,在这三种量中,当且仅当其中一种量时间(或速度)不变时,距离与速度(或时间)才成正比例,也就是说,距离(s)是时间(t)或速度( )的正比例函数;

  4、求一次函数与正比例函数的关系式,一般采取待定系数法。

  数形结合

  方程,不等式,不等式组,方程组我们都可以用一次函数的观点来理解。一元一次不等式实际上就看两条直线上下方的关系,求出端点后可以很容易把握解集,至于一元一次方程可以把左右两边看为两条直线来认识,直线交点的横坐标就是方程的解,至于二元一次方程组就是对应2条直线,方程组的解就是直线的交点,结合图形可以认识两直线的.位置关系也可以把握交点个数。

  如果一个交点时候两条直线的k不同,如果无穷个交点就是k,b都一样,如果平行无交点就是k相同,b不一样。至于函数平移的问题可以化归为对应点平移。k反正不变然后用待定系数法得到平移后的方程。这就是化一般为特殊的解题方法。

  数学解题方法分别有哪些

  1、配方法

  所谓的公式是使用变换解析方程的同构方法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。通过配方解决数学问题的公式。其中,用的最多的是配成完全平方式。匹配方法是数学中不断变形的重要方法,其应用非常广泛,在分解,简化根,它通常用于求解方程,证明方程和不等式,找到函数的极值和解析表达式。

  2、因式分解法

  因式分解是将多项式转换为几个积分产品的乘积。分解是恒定变形的基础。除了引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有很多方法可以进行因式分解。还有一些项目,如拆除物品的使用,根分解,替换,未确定的系数等等。

  3、换元法

  替代方法是数学中一个非常重要和广泛使用的解决问题的方法。我们通常称未知或变元。用新的参数替换原始公式的一部分或重新构建原始公式可以更简单,更容易解决。

  4、判别式法与韦达定理

  一元二次方程 ax2+ bx+ c=0( a、 b、 c属于 R, a≠0)根的判别, = b2-4 ac,不仅用来确定根的性质,还作为一个问题解决方法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何以及三角函数都有非常广泛的应用。

  韦达定理除了知道二次方程的根外,还找到另一根;考虑到两个数的和和乘积的简单应用并寻找这两个数,也可以找到根的对称函数并量化二次方程根的符号。求解对称方程并解决一些与二次曲线有关的问题等,具有非常广泛的应用。

  5、待定系数法

  在解决数学问题时,如果我们首先判断我们所寻找的结果具有一定的形式,其中包含某些未决的系数,然后根据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这些待定系数之间的关系。为了解决数学问题,这种问题解决方法被称为待定系数法。它是中学数学中常用的方法之一。

  6、构造法

  在解决问题时,我们通常通过分析条件和结论来使用这些方法来构建辅助元素。它可以是一个图表,一个方程(组),一个方程,一个函数,一个等价的命题等,架起连接条件和结论的桥梁。为了解决这个问题,这种解决问题的数学方法,我们称之为构造方法。运用结构方法解决问题可以使代数,三角形,几何等数学知识相互渗透,有助于解决问题。

  数学经常遇到的问题解答

  1、要提高数学成绩首先要做什么?

  这一点,是很多学生所关注的,要提高数学成绩,首先就应该从基础知识学起。不少同学觉得基础知识过于简单,看两遍基本上就都会了。这种“自我感觉良好”其实是一种错觉,而真正考试时又觉得无从下手,这还是基础不牢的表现,因此要提高数学成绩先要把基础夯实。

  2、基础不好怎么学好数学?

  对于基础差的同学来说,课本是就是学好数学的秘籍,把课本上的定义、公式、定理全部弄懂,力争在理解的基础上全部背熟,每一道例题、每一道课后题都要掌握。我们知道只有把公式、定理烂熟于心,才能举一反三、活学活用,把课本的知识学透有两个好处,第一,强化基础;第二,提高得分能力。

  3、是否要采用题海战术?

  方法君曾不止一次提到了“题海战术”,题海战术究竟可不可取呢?“题海战术”其实也是一种学习方法,但很多学生只知道做题,不懂得总结,体现不出任何的学习效果。因此在做题后要总结至关重要,只有认真总结才能不断积累做题经验,这样才能取得理想成绩。

  4、做题总是粗心怎么办?

  很多学生成绩不好,会说自己是因为粗心导致的,其实“粗心”只是借口,真正的原因就是题做得少、基础知识不牢、没有清晰的解题思路、计算能力不强。因此在平时的学习中,一定要注重熟练度和精准度的练习。如果总是给自己找“粗心”的借口,也就变相否定了自己的学习弱点,所以,要告诉自己,高中数学没有“粗心”只有“不用心”。

  为什么要学习数学

  作为一门普及度极广的学科,数学在人类文明的发展史上一直占据着重要的地位。虽然很多人可能会对数学产生排斥,认为它枯燥无味,但事实上,数学是所有学科的基石之一,对我们日常生活以及未来的职业发展有着重大影响。下面我将详细阐述学习数学的重要性。

  首先,数学可以帮助我们提高逻辑思维能力。数学的学科性质使我们在学习的过程中时时刻刻面临着思考、推理、证明等诸多问题,而这些问题正是锻炼我们逻辑思维的好机会。通过长期的学习和练习,我们的思维能力得到提升,可以更加清晰地分析问题,更快速地找到正确的答案。这对我们在工作和生活中都非常有帮助,尤其是在解决复杂问题时更能得心应手。

  其次,数学在现代科技中起着至关重要的作用。在计算机科学、物理学、经济学、工程学等领域,数学可以帮助我们建立模型、分析数据、预测趋势,并且可以在实际应用中优化和改进。例如,在人工智能领域,深度学习技术所涉及的数学概念包括线性代数、微积分和概率论等,如果没有深厚的数学基础,很难理解和应用这些技术。同时,在工程学领域,许多机械、电子、化工等产品的设计和制造过程,也需要运用到数学知识,因此学习数学可以使我们更好地参与到现代科技的发展中。

  除此之外,数学也是一种普遍使用的语言,许多学科和领域都使用数学语言进行表达和交流。例如,在自然科学领域,生物学、化学、物理学等学科都使用数学语言来描述自然世界的规律和现象。在社会科学和商科领域,经济学和金融学运用的数学概念,如微积分、线性代数和统计学等,使得我们能够更好地理解经济和财务数据,并进行决策。因此,学习数学可以让我们更好地理解、沟通和交流各个领域的知识。

  最后,学习数学也可以为我们的职业发展带来广泛的机遇和发展空间。在许多领域,数学专业的毕业生都有很广泛的就业机会,如金融界、数据科学、研究机构、教育等。数学专业的人才,不只会提供理论支持,同时也能够解决现实中具体的问题,使其在各自领域脱颖而出。

初中数学知识点总结3

  课题

  3.5正比例函数、反比例函数、一次函数和二次函数

  教学目标

  1、掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质2、会用待定系数法确定函数的解析式

  教学重点

  掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质

  教学难点

  掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质

  教学方法

  讲练结合法

  教学过程

  (I)知识要点(见下表:)

  第三章第29页函数名称解析式图像正比例函数ykx(k0)0x反比例函数一次函数ykxb(k0)0x二次函数yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0图像过点(0,0)及(1,k)的直线双曲线,x轴、y轴是它的渐近线与直线ykx平行且过点(0,b)的直线抛物线定义域RxxR且xoyyR且yoRR4acb2a0时,y,4aR值域R4acb2a0时,y,4aba0时,在-,上为增2a函数,在,-单调性k0时,在,0,k0时为增函数0,上为减函数k0时,为增函数b上为减函数2ak0时为减函数k0时,在,0,k0时,为减函数0,上为增函数ba0时,在-,上为减2a函数,在,-b上为增函数2a奇偶性奇函数奇函数b=0时奇函数b=0时偶函数a0且x-ymin最值无无无b时,2a24acb4ab时,2a24acb4aa0且x-ymax

  第三章第30页b24acb2注:二次函数yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2对称轴x,顶点(,)

  2a2a4a2抛物线与x轴交点坐标(m,0),(n,0)(II)例题讲解

  例1、求满足下列条件的二次函数的解析式:(1)抛物线过点A(1,1),B(2,2),C(4,2)(2)抛物线的顶点为P(1,5)且过点Q(3,3)

  (3)抛物线对称轴是x2,它在x轴上截出的线段AB长为2且抛物线过点(1,7)。2,

  解:(1)设yax2bxc(a0),将A、B、C三点坐标分别代入,可得方程组为

  abc1a1解得b4yx24x24a2bc216a4bc2c2(2)设二次函数为ya(x1)25,将Q点坐标代入,即a(31)253,得

  a2,故y2(x1)252x24x3

  (3)∵抛物线对称轴为x2;

  ∴抛物线与x轴的.两个交点A、B应关于x2对称;∴由题设条件可得两个交点坐标分别为A(2∴可设函数解析式为:ya(x2代入方程可得a1

  ∴所求二次函数为yx24x2,

  2,0)、B(222,0)

  2)(x22)a(x2)22a,将(1,7)

  5),例2:二次函数的图像过点(0,8),(1,(4,0)

  (1)求函数图像的顶点坐标、对称轴、最值及单调区间(2)当x取何值时,①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4

  例3:求函数f(x)x2x1,x[1,1]的最值及相应的x值

  113x1(x)2,知函数的图像开口向上,对称轴为x

  224111]上是增函数。∴依题设条件可得f(x)在[1,]上是减函数,在[,22131]时,函数取得最小值,且ymin∴当x[1,24131又∵11

初中数学知识点总结4

  ∴当x1时函数取得最大值,且ymax(1)2(1)13例4、已知函数f(x)x22(a1)x2

  4],求实数a的取值(1)若函数f(x)的递减区间是(,4]上是减函数,求实数a的取值范围(2)若函数f(x)在区间(,分析:二次函数的单调区间是由其开口方向及对称轴决定的,要分清函数在区间A上是单调函数及单调区间是A的区别与联系

  解:(1)f(x)的对称轴是x可得函数图像开口向上

  2(a1)21a,且二次项系数为1>0

  1a]∴f(x)的单调减区间为(,∴依题设条件可得1a4,解得a3

  4]上是减函数(2)∵f(x)在区间(,4]是递减区间(,1a]的子区间∴(,∴1a4,解得a3

  例5、函数f(x)x2bx2,满足:f(3x)f(3x)

  (1)求方程f(x)0的两根x1,x2的和(2)比较f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函数图像的对称轴为x(3x)(3x)23

  b3可得b62f(x)x26x2(x3)211

  而f(x)的图像与x轴交点(x1,0)、(x2,0)关于对称轴x3对称

  x1x223,可得x1x26

  第三章第32页由二次项系数为1>0,可知抛物线开口向上又134,132,431

  ∴依二次函数的`对称性及单调性可f(4)f(1)f(1)(III)课后作业练习六

  (Ⅳ)教学后记:

  第三章第33页

  扩展阅读:初中数学函数知识点归纳

  学大教育

  初中数学函数板块的知识点总结与归类学习方法

  初中数学知识大纲中,函数知识占了很大的知识体系比例,学好了函数,掌握了函数的基本性质及其应用,真正精通了函数的每一个模块知识,会做每一类函数题型,就读于中考中数学成功了一大半,数学成绩自然上高峰,同时,函数的思想是学好其他理科类学科的基础。初中数学从性质上分,可以分为:一次函数、反比例函数、二次函数和锐角三角函数,下面介绍各类函数的定义、基本性质、函数图象及函数应用思维方式方法。

  一、一次函数

  1.定义:在定义中应注意的问题y=kx+b中,k、b为常数,且k≠0,x的指数一定为1。2.图象及其性质(1)形状、直线

初中数学知识点总结5

  一、平移变换:

  1、概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。

  2、性质:

  (1)平移前后图形全等;

  (2)对应点连线平行或在同一直线上且相等。

  3、平移的作图步骤和方法:

  (1)分清题目要求,确定平移的方向和平移的距离。

  (2)分析所作的图形,找出构成图形的关健点。

  (3)沿一定的方向,按一定的`距离平移各个关健点。

  (4)连接所作的各个关键点,并标上相应的字母。

  (5)写出结论。

  二、旋转变换:

  1、概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

  说明:

  (1)图形的旋转是由旋转中心和旋转的角度所决定的;

  (2)旋转过程中旋转中心始终保持不动。

  (3)旋转过程中旋转的方向是相同的。

  (4)旋转过程静止时,图形上一个点的旋转角度是一样的。⑤旋转不改变图形的大小和形状。

  2、性质:

  (1)对应点到旋转中心的距离相等;

  (2)对应点与旋转中心所连线段的夹角等于旋转角;

  (3)旋转前、后的图形全等。

  3、旋转作图的步骤和方法:

  (1)确定旋转中心及旋转方向、旋转角;

  (2)找出图形的关键点;

  (3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;

  (4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。

  说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。

  4、常见考法

  (1)把平移旋转结合起来证明三角形全等;

  (2)利用平移变换与旋转变换的性质,设计一些题目。

  误区提醒

  (1)弄反了坐标平移的上加下减,左减右加的规律;

  (2)平移与旋转的性质没有掌握。

初中数学知识点总结6

  一、圆

  1、圆的有关性质

  在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。

  由圆的意义可知:

  圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

  就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。

  圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。

  圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。

  圆心相同,半径不相等的两个圆叫同心圆。

  能够重合的两个圆叫等圆。

  同圆或等圆的半径相等。

  在同圆或等圆中,能够互相重合的弧叫等弧。

  二、过三点的圆

  l、过三点的圆

  过三点的圆的作法:利用中垂线找圆心

  定理不在同一直线上的三个点确定一个圆。

  经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

  2、反证法

  反证法的三个步骤:

  ①假设命题的结论不成立;

  ②从这个假设出发,经过推理论证,得出矛盾;

  ③由矛盾得出假设不正确,从而肯定命题的结论正确。

  例如:求证三角形中最多只有一个角是钝角。

  证明:设有两个以上是钝角

  则两个钝角之和>180°

  与三角形内角和等于180°矛盾。

  ∴不可能有二个以上是钝角。

  即最多只能有一个是钝角。

  三、垂直于弦的直径

  圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

  垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

  推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。

  弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

  平分弦所对的一条弧的`直径,垂直平分弦,并且平分弦所对的另一个条弧。

  推理2:圆两条平行弦所夹的弧相等。

  四、圆心角、弧、弦、弦心距之间的关系

  圆是以圆心为对称中心的中心对称图形。

  实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。

  顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。

  定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。

  推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。

  五、圆周角

  顶点在圆上,并且两边都和圆相交的角叫圆周角。

  推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

  推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

  推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

  由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。

  相关的角:

  1、对顶角:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。

  2、互为补角:如果两个角的和是一个平角,这两个角做互为补角。

  3、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。

  4、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。

  注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。

  角的性质

  1、对顶角相等。

  2、同角或等角的余角相等。

  3、同角或等角的补角相等。

  其实角的大小与边的长短没有关系,角的大小决定于角的两条边张开的程度。

  角的静态定义

  具有公共端点的两条射线组成的图形叫做角(angle)。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

  角的动态定义

  一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边

  角的符号

  角的符号:∠

  角的种类

  在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

  锐角:大于0°,小于90°的角叫做锐角。

  直角:等于90°的角叫做直角。

  钝角:大于90°而小于180°的角叫做钝角。

  平角:等于180°的角叫做平角。

  优角:大于180°小于360°叫优角。

  劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

  角周角:等于360°的角叫做周角。

  负角:按照顺时针方向旋转而成的角叫做负角。

  正角:逆时针旋转的角为正角。

  0角:等于零度的角。

  特殊角

  余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

  对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

  邻补角:两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,互为邻补角。

  内错角:互相平行的两条直线直线,被第三条直线所截,如果两个角都在两条直线的

  内侧,并且在第三条直线的两侧,那么这样的一对角叫做内错角(alternate interior angle )。如:∠1和∠6,∠2和∠5

  同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角。如:∠1和∠5,∠2和∠6

  同位角:两个角都在截线的同旁,又分别处在被截的两条直线同侧,具有这样位置关系的一对角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7

  外错角:两条直线被第三条直线所截,构成了八个角。如果两个角都在两条被截线的外侧,并且在截线的两侧,那么这样的一对角叫做外错角。例如:∠4与∠7,∠3与∠8。

  同旁外角:两个角都在截线的同一侧,且在两条被截线之外,具有这样位置关系的一对角互为同旁外角。如:∠4和∠8,∠3和∠7

  终边相同的角:具有共同始边和终边的角叫终边相同的角。与角a终边相同的角属于集合:

  A{bb=k_360+a,k∈Z}表示角度制;

  B{bb=2kπ+a,k∈Z}表示弧度制

  ①直线和圆无公共点,称相离。 AB与圆O相离,d>r。

  ②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d

  ③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)

  平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:

  1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程

  如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

  如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

  如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

  2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

  当x=-C/Ax2时,直线与圆相离;

初中数学知识点总结7

  首先你要有一个好的态度,有些人学习数学,可能有的阶段会喜欢学习,但是某一阶段,对数学就没有什么兴趣了,可能每个人都会有这样一个阶段,但是如果发现自己不喜欢学习数学了,一定要克制自己,在学习数学上,保持一个良好的学习态度,这是你学好数学的第一步。

  充分的利用好上课的时间,上课时间你所掌握的'知识,会比你在课下学很长时间都有用,所以珍惜课堂老师所讲的内容,老师的某些话对我们以后做数学题都很有帮助,如果你上课走神,这些话没有听到,你在做题的时候,可能会走很多弯路,做题的效率也会降低,一旦有这样的情况,可能你就会不喜欢数学了。

  学习最重要的是思考,会思考数学才能学好,数学中的题都是需要我们去举一反三的,没做一道题,都要思考一下,围绕着这道题的知识点,还会有什么样的题型出现,哪怕是遇到不会的题,也要勤加的思考,如果你把知识点自认为学习透彻,那么就用做题检验吧,数学中多做题是必须的,成绩都是用题堆积出来的,很少会有人不做题数学成绩很高的。

初中数学知识点总结8

  初中数学基础知识点

  平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

  初中数学平行四边形的性质知识点

  1.定义:两组对边分别平行的.四边形叫平行四边形

  2.平行四边形的性质

  (1)平行四边形的对边平行且相等;

  (2)平行四边形的邻角互补,对角相等;

  (3)平行四边形的对角线互相平分;

  3.平行四边形的判定

  平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:

  第一类:与四边形的对边有关

  (1)两组对边分别平行的四边形是平行四边形;

  (2)两组对边分别相等的四边形是平行四边形;

  (3)一组对边平行且相等的四边形是平行四边形;

  第二类:与四边形的对角有关

  (4)两组对角分别相等的四边形是平行四边形;

  第三类:与四边形的对角线有关

  (5)对角线互相平分的四边形是平行四边形

  初中数学函数知识点总结

  1.一次函数

  (1)定义:形如y=kx+b(k、b是常数,且k≠0)的函数,叫做一次函数。特别地,当b=0时,y是x的正比例函数。即:y=kx(k为常数,k≠0)

  所以,正比例函数是特殊的一次函数。

  (2)一次函数的图像及性质:

  1在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

  2一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。

  3正比例函数的图像总是过原点。

  4k,b与函数图像所在象限的关系:

  当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

  当k>0,b>0时,直线通过一、二、三象限;

  当k>0,b<0时,直线通过一、三、四象限;

  当k<0,b>0时,直线通过一、二、四象限;

  当k<0,b<0时,直线通过二、三、四象限;

  当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

  2.二次函数

  (1)定义:一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,),称y为x的二次函数。

  (2)二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0);

  顶点式:y=a(x-h)^2+k(抛物线的顶点P(h,k));

  交点式:

  (3)二次函数的图像与性质

  1二次函数的图像是一条抛物线。

  2抛物线是轴对称图形。对称轴为直线x=-b/2a。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。

  3二次项系数a决定抛物线的开口方向。

  当a>0时,抛物线向上开口;

  当a<0时,抛物线向下开口。

  4一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5抛物线与x轴交点个数

  Δ=b^2-4ac>0时,抛物线与x轴有2个交点;

  Δ=b^2-4ac=0时,抛物线与x轴有1个交点;

  Δ=b^2-4ac<0时,抛物线与x轴没有交点。

  3.反比例函数

  (1)定义:形如y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。

  (2)反比例函数图像性质:

  1反比例函数的图像为双曲线;

  当K>0时,反比例函数图像经过一,三象限,是减函数;

  当K<0时,反比例函数图像经过二,四象限,是增函数;

  反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

  2由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

初中数学知识点总结9

  一、投影

  1、投影:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。

  2、平行投影:由平行光线形成的投影是平行投影。(光源特别远)

  3、中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影

  4、正投影:投影线垂直于投影面产生的投影叫做正投影。物体正投影的形状、大小与它相对于投影面的位置有关。

  5、当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同。当物体的某个面顶斜于投影面时,这个面的正投影变小。当物体的某个面垂直于投影面时,这个面的正投影成为一条直线。

  二、三视图

  1、三视图:是观测者从三个不同位置(正面、水平面、侧面)观察同一个空间几何体而画出的图形。三视图就是主视图、俯视图、左视图的总称。另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

  2、主视图:在正面内得到的由前向后观察物体的视图。

  3、俯视图:在水平面内得到的由上向下观察物体的视图。

  4、左视图:在侧面内得到的由左向右观察物体的视图。

  5、三个视图的位置关系:

  ①主视图在上、俯视图在下、左视图在右;

  ②主视、俯视表示物体的长,主视、左视表示物体的高,左视、俯视表示物体的宽。

  ③主视、俯视长对正,主视、左视高平齐,左视、俯视宽相等。

  6、画法:看得见的部分的轮廓线画成实线,因被其它部分遮档而看不见的部分的轮廓线画成虚线。

  邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

  对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

  垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

  平行线:在同一平面内,不相交的'两条直线叫做平行线。

  同位角、内错角、同旁内角:

  同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

  内错角:∠2与∠6像这样的一对角叫做内错角。

  同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

  命题:判断一件事情的语句叫命题。

  平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

  对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

初中数学知识点总结10

  第十一章三角形

  一、知识框架:

  二、知识概念:

  1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.

  2.三边关系:三角形任意两边的和(大于或小于)第三边,任意两边的差(大于或小于)第三边.

  3.高:从三角形的一个顶点向它的对边所在直线作,顶点和间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边的线段叫做三角形的中线.

  5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和之间的线段叫做三角形的角平分线.

  6.三角形的稳定性:三角形的形状是,三角形的这个性质叫三角形的稳定性.

  7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.

  8.多边形的内角:多边形两边组成的角叫做它的内角.

  9.多边形的外角:多边形的一边与它的邻边的线组成的角叫做多边形的外角.

  10.多边形的对角线:连接多边形的两个顶点的线段,叫做多边形的对角线.

  11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.

  12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,

  13.公式与性质:

  ⑴三角形的内角和:三角形的'内角和为度。

  ⑵三角形外角的性质:

  性质1:三角形的一个外角等于和它不相邻的的和.

  性质2:三角形的一个外角大于任何一个和它的内角.

  ⑶多边形内角和公式:n边形的内角和等于。

  学无虑课后辅导中心编制

  ⑷多边形的外角和:多边形的外角和为度.

  ⑸多边形对角线的条数:

  ①从n边形的一个顶点出发可以引条对角线,把多边形分成个三角形.

  ②n边形共有条对角线.

  第十二章全等三角形

  一、知识框架:

  二、知识概念:

  1.基本定义:

  ⑴全等形:能够完全的两个图形叫做全等形.

  ⑵全等三角形:能够完全的两个三角形叫做全等三角形.

  ⑶对应顶点:全等三角形中互相的顶点叫做对应顶点.

  ⑷对应边:全等三角形中互相的边叫做对应边.

  ⑸对应角:全等三角形中互相的角叫做对应角.

  2.基本性质:

  ⑴三角形的稳定性:三角形三边的确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.

  ⑵全等三角形的性质:全等三角形的相等,对应角相等.

  3.全等三角形的判定定理:

  ⑴边边边(SSS):。

  ⑵边角边(SAS):。

  ⑶角边角(ASA):。

  ⑷角角边(AAS):。

  ⑸斜边、直角边(HL):。

  4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的上.

  5.证明的基本方法:

  ⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.

  第十三章轴对称

  一、知识框架:

  二、知识概念:

  1.基本概念:

  ⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相,这个图形就叫做轴对称图形.

  ⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且这条线段的直线,叫做这条线段的垂直平分线.

  ⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.

  ⑸等边三角形:都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段的距离相等.②与一条线段两个端点距离相等的点在这条线段的上.⑶关于坐标轴对称的点的坐标性质①点P(x,y)关于x轴对称的点的坐标为P"(,).②点P(x,y)关于y轴对称的点的坐标为P"(,).⑷等腰三角形的性质:

  ①等腰三角形两腰.

  ②等腰三角形两底角相等(等边对等角).

  ③等腰三角形的、,相互重合.④等腰三角形是图形,对称轴是三线合一(1条).⑸等边三角形的性质:

  ①等边三角形三边都相等.

  ②等边三角形三个内角都相等,都等于度。③等边三角形每条边上都存在三线合一.

  ④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:

  ⑴等腰三角形的判定:

  ①相等的三角形是等腰三角形.

  ②如果一个三角形有两个角相等,那么这两个角所对的边也(等角对等边).

  ⑵等边三角形的判定:

  ①都相等的三角形是等边三角形.②三个角都相等的三角形是三角形.

  ③有一个角是度。的等腰三角形是等边三角形.

  4.基本方法:

  ⑴做已知直线的垂线:

  ⑵做已知线段的垂直平分线:

  ⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.

  ⑷作已知图形关于某直线的对称图形:

  ⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.

  第十四章整式的乘除与分解因式

  一、知识框架:

  整式乘法乘法法则整式除法因式分解

  二、知识概念:

  基本运算:⑴同底数幂的乘法公式:。⑵幂的乘方公式:。⑶积的乘方公式:。

  2.整式的乘法:⑴单项式单项式:系数,同字母,不同字母为积的因式.⑵单项式多项式:。⑶多项式多项式:.

  3.计算公式:

  ⑴平方差公式:ababab

  222222⑵完全平方公式:aba2abb;aba2abb

  224.整式的除法:

  ⑴同底数幂的除法:aaamnmn

  ⑵单项式单项式:系数,同字母,不同字母作为商的因式.⑶多项式单项式:.⑷多项式多项式:用竖式.

  5.因式分解:把一个多项式化成的积的形式,这种变形叫做把这个式子因式分解.

  6.因式分解方法:

  ⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:。②完全平方公式:。③立方和:。④立方差:。⑶十字相乘法:。⑷拆项法⑸添项法第十五章分式一、知识框架:

  二、知识概念:A1.分式:形如,A、B是整式,B中含有字母且B不等于的整式叫做分式.其中AB叫做分式的,B叫做分式的2.分式有意义的条件:分母不等于.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为的整式,分式的值不变.4.约分:把一个分式的分子和分母的(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成的分式,这一过程叫做通分.

  6.最简分式:一个分式的分子和分母没有时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:

  ⑴同分母分式加减法则:同分母的分式相加减,分母,把相加减.用字

  母表示

  为:。

  ⑵异分母分式加减法则:异分母的分式相加减,先,化为同分母的分

  式,然后再按同分母分式的加减法法则进行计算.用字母表示为:。

  ⑶分式的乘法法则:两个分式相乘,把相乘的积作为积的分子,把相乘的积作为积的分母.用字母表示为:。

  ⑷分式的除法法则:两个分式相除,把除式的和颠倒位置后再与被除式相乘.用字母表示为:。⑸分式的乘方法则:、分别乘方.用字母表示为:。8.整数指数幂:⑴aaam⑵amnmn(m、n是正整数)namn(m、n是正整数)nn⑶abab(n是正整数)n⑷aaanmnmn(a0,m、n是正整数,mn)ana⑸n(n是正整数)bb⑹an1(a0,n是正整数)na9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:

  ①(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;

  ③(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).

初中数学知识点总结11

  [关键词]课堂小结;初中数学;理解提升

  德国作家、科学家利希顿堡说过:“当你还不能对自己说今天学到了什么东西时,你就不要去睡觉。 ”这句话从侧面阐明了总结对于知识学习的重要性。课堂小结作为一项提炼收获、分析问题、概括经验的学习手段,对于初中数学课堂教学具有很好的促进作用。这是因为初中数学与其他学科相比,有更强的思维性、逻辑性和综合性,这使得初中数学的知识体系、概念内容更庞杂,更不容易消化吸收,这就需要我们寻求一项有效的手段来将这些知识进行聚合、巩固、提升,而课堂小结恰恰解决了这一问题。课堂教学形式多变、内涵丰富,并非时时刻刻都应该总结、都需要总结,课堂小结只有在合适的时间运用,才能发挥效果。笔者正是基于此,对初中数学如何有效运用课堂小结进行策略探析,通过对初中数学教学规律、学生数学知识吸收特点进行整理、分析后,提出如下四点建议。

  在知识讲解之后小结,掌握新

  知强调重点

  我们在进行新知识的课堂教学时,一堂课里一般会有多个小知识点,我们在带入新知识的同时,还会引入一些老问题,帮助学生进行对比、区分,增进理解。但这同时也加大了课堂容量,容易让学生在知识吸收中出现遗漏、错读。所以,在新知识教学完成之后进行课堂小结,帮助学生将所学的新知识进行统一规整,能够很好地帮助学生理清思路,明确知识重点,快速掌握新知。在对新知识进行课堂小结时,我们讲究全而美,即小结涵盖的内容要全,要将本节课的所有知识都涵盖进来;美是指总结的语言要生动,要将新知识的特点用趣味的语言表现出来,让学生更容易理解,更方便记忆。

  例如,教学苏教版初中数学“合并同类项”这一部分内容时,笔者进行了这样的小结:“同学们,我们今天学习了合并同类项,合并同类项我们要掌握两个关键,一是什么是同类项,另一个是怎么合并,你们说对不对?”笔者先抛出一个问题,学生回答:“对。 ”“那你们谁能告诉老师答案呢?”笔者继续问,学生思考后回答:“老师,是同类项的话,首先所含字母要相同。”“同一个字母的指数也必须一样。”另一个学生回答。 “合并同类项就是把同类项的系数加起来。 ”还有学生补充。笔者笑着说:“同学们说得很好呢,其实合并同类项只要掌握两同、两无关,常数也是同类项就可以了。两同就是字母同、指数同,两无关是字母顺序无关、系数大小无关。 ”像这样,通过教师引导学生思考,再进行总结,能够有效帮助学生了解新知识的重点,促进学生理解掌握。

  在答疑解惑之后小结,突出要

  点指明问题

  学必有疑,学生在数学学习过程中,一定会碰到一些麻烦,提出一些问题。对于学生提出的疑问,教师都会认真讲解、仔细分析,直到学生明白为止,但有时候会出现同一知识点学生听了忘、反复问的现象,出现这种情况的原因是学生对于教师的讲解没理解透彻。而如何才能让学生参透呢?教师在帮学生答疑解惑之后的课堂小结,很多时候刚好能起到这样的点拨作用。教师在答疑解惑之后的课堂小结要注意两个问题:一是小结要指明问题,就学生所出现的问题进行分析,让学生根据自身情况认领问题,以便对症下药;二是小结要注重方法的启发,针对学生的问题阐明解决办法,引导学生领会方法,运用原则,破获解题密码,得到新的收获与启发。

  例如,教学苏教版初中数学“一元一次方程”时,有一位学生向笔者提出疑问:“老师,这道题目:+=2,我算了好几遍,答案都是—1,跟老师给的答案不一样,这是为什么呢?”笔者稍稍看了学生的解题步骤后发现,原来这个学生犯了解一元一次方程非常常见的错误,即他去分母的时候,没有分母的项忘记乘相同的系数了。于是笔者在向他讲解完之后进行小结:“同学们,我们在给一元一次方程去分母的时候,要注意什么呢?方程两边要同时乘以所有分母的最小公倍数,只有这么做,方程的大小才会保持不变。一旦你漏乘了谁,特别是没有分母的项,那就不公平了,等式大小就发生了改变,那么答案肯定就错了。 ”像这样,根据学生的问题,直指关键,帮助学生答疑解惑,能促进学生吃一堑长一智,规避错误,更加进步。

  在迁移发散之后小结,明确关

  系梳理联系

  数学知识盘丝错节,各个知识点之间的联系十分多样、紧密,因此要帮助学生真正深入掌握知识,明晰知识点间的灵活运用,就必须适当对这些知识进行迁移发散。迁移发散是一种举一反三的'教学手段,通过一个数学概念迁移出旧识新知,通过一种方法发散出多种不同形式。迁移发散是数学万紫千红总是春的集中体现,是数学学习的较高阶段,同时也是学生较难理解掌握的部分,因此,在迁移发散之后进行课堂小结很有必要。教师要注意通过小结引导学生明确各个知识点之间的因果先后关系,梳理多个知识点之间联系的条件和影响因素,让学生通过小结可以在脑中形成更为准确的印象。

  例如,教学苏教版初中数学“梯形中位线”这部分内容时,笔者迁移出三角形中位线的相关概念,引导学生进行比对、思考、拓展。迁移发散之后,笔者做了如下总结:“同学们,通过迁移我们可以得出,三角形中位线是梯形中位线的一种特殊形式,所有梯形通过割补平移都可以转换成一个三角形。另外,通过式子的转化我们知道,梯形的面积可以看做是中位线乘以梯形高的积,那么作为梯形中位线的特例,三角形的面积同样也可以是中位线与第三边上的高的乘积。 ”像这样,在迁移之后进行小结,明确了知识之间的联系,能帮助学生进行梳理归纳,有助于学生理解掌握。

  在整体复习之后小结,高屋建

  瓴全面吸收

  复习是数学学习中非常重要的一个环节,是对学生一段时间以来学习的回顾。整体复习一般具有复习量大、知识跨度大、知识整合度高等特点,一堂整体复习课下来,学生需要重新理顺和温习的知识点非常多,初中生注意力容易分散,对于过于繁多的知识概念会出现“消化不良”的现象。整体复习之后的课堂小结,是对整个复习过程的凝练、概括,起到高屋建瓴的作用,能帮助学生更为系统、全面地知悉内容、吸收知识。

初中数学知识点总结12

  一、可能性:

  1. 必然事件:有些事情我们能确定他一定会发生,这些事情称为必然事件;

  2.不可能事件:有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;

  3.确定事件:必然事件和不可能事件都是确定的;

  4.不确定事件:有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。

  5.一般来说,不确定事件发生的可能性是有大小的。.

  二、概率:

  1.概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。

  2.必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0

  3.一步试验事件发生的概率的计算公式是P=k/n,n为该事件所有等可能出现的结果数,k为事件包含的结果数。两步试验事件发生的概率的发生的概率的计算方法有两种,一种是列表法,另一种是画树状图,利用这两种方法计算两步实验时,应用树状图或列表将简单的两步试验所有可能的'情况表示出来,从而计算随机事件的概率。

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的。数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

初中数学知识点总结13

  初中数学的学科地位很高,一直以来是三大学科之一,影响着物理化学的学习。

  圆心角

  在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

  推理过程

  根据旋转的性质,将∠aob绕圆心o旋转到∠a'ob'的位置时,显然∠aob=∠a'ob',射线oa与oa'重合,ob与ob'重合,而同圆的半径相等,oa=oa',ob=ob',从而点a与a'重合,b与b'重合。

  因此,弧ab与弧a'b'重合,ab与a'b'重合。即

  弧ab=弧a'b',ab=a'b'。

  则得到上面定理。

  同样还可以得到:

  在同圆或等圆中,如果两条弧相等,那么他们所对的'圆心角相等,所对的弦相等,所对的弦心距也相等。

  在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

  所以,在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等。

  圆的圆心角知识要领很容易掌握,经常会出现在关于圆的证明题中。

初中数学知识点总结14

  一.圆的定义

  1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。

  2.平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

  二.圆心

  1.定义1中的定点为圆心。

  2.定义2中绕的那一端的端点为圆心。

  3.圆任意两条对称轴的交点为圆心。

  4.垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

  注:圆心一般用字母O表示

  5.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

  6.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

  7.圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

  8.圆的半径或直径决定圆的大小,圆心决定圆的位置。

  三.圆的基本性质

  1.圆的对称性

  (1)圆是轴对称图形,它的对称轴是直径所在的直线。

  (2)圆是中心对称图形,它的对称中心是圆心。

  (3)圆是旋转对称图形。

  2.垂径定理

  (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

  (2)推论:

  平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

  平分弧的直径,垂直平分弧所对的弦。

  3.圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。

  (1)同弧所对的圆周角相等。

  (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

  4.在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

  5.夹在平行线间的两条弧相等。

  (1)过两点的圆的圆心一定在两点间连线段的中垂线上。

  (2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

  (直角三角形的外心就是斜边的'中点。)

  6.直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。

  直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。

  四.圆和圆

  1.两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。

  2.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。

  3.两个圆有两个交点,叫做两个圆的相交。

  4.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。

  5.两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。

  五.正多边形和圆

  1.正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。

  2.正多边形与圆的关系:

  (1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。

  (2)这个圆是这个正多边形的外接圆。

初中数学知识点总结15

  一、初中数学基本概念

  1.方程:含有未知数的等式叫做方程。

  2.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

  3.二元一次方程:含有两个未知数,并且未知数的次数是1的二元一次方程。

  4.二元一次方程组:由两个二元一次方程组成的方程组。

  5.一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程。

  6.一元二次方程的解:使一元二次方程左右两边相等的未知数的值。

  7.一元二次方程的根:一元二次方程的解。

  8.一元二次方程的判别式:当a是正数时,如果一元二次方程左右两边相等时,那么这个一元二次方程有两个不相等的实数根;当a是负数时,如果一元二次方程左右两边相等时,那么这个一元二次方程没有实数根;当a是零时,如果一元二次方程左右两边相等时,那么这个一元二次方程有两个相等的实数根。

  9.函数:在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫做自变量。

  10.一次函数:在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的一次函数。

  11.正比例函数:在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,并且这个数值在比例上成正比,那么称y是x的比例函数。

  12.反比例函数:在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的'值,y都有唯一的值与它对应,并且这个数值在比例上成反比,那么称y是x的反比例函数。

  13.平行四边形:在同一个平面内两组对角分别平行的四边形叫做平行四边形。

  14.矩形:有一个内角是直角的平行四边形叫做矩形。

  15.菱形:有两组邻边相等的平行四边形叫做菱形。

  16.正方形:四边相等的矩形叫做正方形。

  17.等腰梯形:两条腰相等的梯形叫做等腰梯形。

  18.三角形:在同一个平面内由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  19.中线:连接一个顶点和它对边的中点的线段叫做中线。

  20.高线:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做高线。

  21.角平分线:三角形的一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做角平分线。

  22.中位线:连接三角形两边中点的线段叫做中位线。

  23.轴对称图形:一条物体沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。

  24.直接开平方法:形如x2=p或者(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程的方法。

  25.配方法:把一元二次方程的常数项移到方程的右边,两边加上一次项系数的一半的平方,再用右边的式子除以左边的式子,得到一个平方的形式,再用直接开平方的方法求解一元二次方程的方法。

  26.公式法:用求根公式解一元二次方程的方法。

  27.因式分解法:将一元二次方程分解成两个一次因式的积等于0的一元二次方程,然后将各个因式分解,得到一元一次方程,再用直接开方法求解一元一次方程的方法。

  二、初中数学基本运算

  1.整式:单项式和多项式的统称。

  2.单项式:由数字和字母的积组成的代数式叫做单项式。单独的一个数字或字母也叫做单项式。

  3.多项式:几个单项式的和叫做多项式。每个单项式叫做多项式的项。其中不含字母的项叫做常数

【初中数学知识点总结】相关文章:

初中数学总结知识点08-26

初中数学几何知识点总结11-05

初中数学函数知识点总结11-24

初中数学圆的知识点总结12-05

初中数学函数知识点总结06-14

数学初中知识点总结06-10

【经典】数学初中知识点总结07-16

初中数学概率知识点总结10-21

初中数学知识点总结07-15

初中数学知识点总结(精选)06-16