当前位置:育文网>初中>初中数学> 初中数学知识点余弦定理

初中数学知识点余弦定理

时间:2023-01-07 09:31:25 芷欣 初中数学 我要投稿
  • 相关推荐

初中数学知识点余弦定理

  在日常过程学习中,是不是经常追着老师要知识点?知识点在教育实践中,是指对某一个知识的泛称。还在苦恼没有知识点总结吗?以下是小编为大家整理的初中数学知识点余弦定理,仅供参考,大家一起来看看吧。

初中数学知识点余弦定理

  余弦定理—初中数学知识点总结

  正弦定理和余弦定理的公式大全和分类大家要熟记了。那么下面为大家带来的是初中数学知识点大全之正弦定理和余弦定理,希望大家做好笔记了。

  正弦定理 a/sinA=b/sinB=c/sinC=2R

  注:其中 R 表示三角形的外接圆半径

  余弦定理 b2=a2+c2-2accosB

  注:角B是边a和边c的夹角

  相信大家看过上面的初中数学知识点大全之正弦定理和余弦定理后,肯定会有所感悟有所学习了吧,接下来还有更多的精彩知识尽在哦。

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

  通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

  初中数学知识点余弦定理

  首先,我们要了解下正弦定理的应用领域

  在解三角形中,有以下的应用领域:

  (1)已知三角形的两角与一边,解三角形

  (2)已知三角形的两边和其中一边所对的角,解三角形

  (3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系

  直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦

  正弦定理

  在△ABC中,角A、B、C所对的边分别为a、b、c,则有a/sinA=b/sinB=c/sinC=2R(其中R为三角形外接圆的半径)

  其次,余弦的应用领域

  余弦定理

  余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

  正弦定理的变形公式

  (1) a=2RsinA, b=2RsinB, c=2RsinC;

  (2) sinA : sinB : sinC = a : b : c; 在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及大边对大角,大角对大边定理和三角形内角和定理去考虑解决问题

  (3)相关结论: a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sinA+sinB+sinC) c/sinC=c/sinD=BD=2R(R为外接圆半径)

  (4)设R为三角外接圆半径,公式可扩展为:a/sinA=b/sinB=c/sinC=2R,即当一内角为90时,所对的边为外接圆的直径。灵活运用正弦定理,还需要知道它的几个变形 sinA=a/2R,sinB=b/2R,sinC=c/2R asinB=bsinA,bsinC=csinB,asinC=csinA

  (5)a=bsinA/sinB sinB=bsinA/a

  正弦、余弦典型例题

  1.在△ABC中,C=90,a=1,c=4,则sinA 的值为

  2.已知为锐角,且,则 的度数是( ) A.30 B.45 C.60 D.90

  3.在△ABC中,若,A,B为锐角,则C的度数是() A.75 B.90 C.105 D.120

  4.若A为锐角,且,则A=() A.15 B.30 C.45 D.60

  5.在△ABC中,AB=AC=2,ADBC,垂足为D,且AD= ,E是AC中点, EFBC,垂足为F,求sinEBF的值。

  正弦、余弦解题诀窍

  1、已知两角及一边,或两边及一边的对角(对三角形是否存在要讨论)用正弦定理

  2、已知三边,或两边及其夹角用余弦定理

  3、余弦定理对于确定三角形形状非常有用,只需要知道最大角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。

【初中数学知识点余弦定理】相关文章:

初中数学垂直知识点12-07

初中数学方差知识点10-28

初中数学余切的知识点04-07

初中数学内错角的知识点04-07

初中数学概率知识点05-09

初中数学的知识点大全06-06

初中数学知识点11-30

初中数学旋转的知识点11-16

初中数学圆的知识点归纳04-15