- 初中一年级上册数学知识点 推荐度:
- 相关推荐
初中一年级上册数学知识点2篇
在平凡的学习生活中,看到知识点,都是先收藏再说吧!知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。哪些知识点能够真正帮助到我们呢?以下是小编为大家收集的初中一年级上册数学知识点,仅供参考,希望能够帮助到大家。
初中一年级上册数学知识点1
第一章丰富的图形世界
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形
圆柱、柱
生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分)锥圆锥、棱锥
4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种
6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图
物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n—2)个三角形。
弧:圆上A、B两点之间的部分叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
第二章有理数及其运算
1、有理数的分类
正有理数
有理数零
负有理数
或整数
有理数
分数
2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零
3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。解题时要真正掌握数形结合的思想,并能灵活运用。
4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和—1。零没有倒数。
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=—a,则a≤0。
6、有理数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
7、有理数的运算:
(1)五种运算:加、减、乘、除、乘方
(2)有理数的运算顺序
先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
(3)运算律
加法交换律
加法结合律
乘法交换律
乘法结合律
乘法对加法的分配律
第三章字母表示数
1、代数式
用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。
2、同类项
所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。
3、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。
4、去括号法则
(1)括号前是“+”,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。
(2)括号前是“﹣”,把括号和它前面的“﹣”号去掉后,原括号里各项的符号都要改变。
5、整式的运算:
整式的加减法:(1)去括号;(2)合并同类项。
第四章平面图形及其位置关系
1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段。线段有两个端点。
2、射线:将线段向一个方向无限延长就形成了射线。射线有一个端点。
3、直线:将线段向两个方向无限延长就形成了直线。直线没有端点。
4、点、直线、射线和线段的表示
在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示。
一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面)。
一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示。
5、点和直线的位置关系有两种:
①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
6、直线的性质
(1)直线公理:经过两个点有且只有一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
7、线段的性质
(1)线段公理:两点之间的所有连线中,线段最短。
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
8、线段的中点:点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。
9、角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。
10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。
11、角的表示
角的表示方法有以下四种:
①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。
④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。
注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
12、角的'度量
角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。
1°=60’,1’=60”
13、角的性质
(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
(2)角的大小可以度量,可以比较
(3)角可以参与运算。
14、角的平分线
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
15、平行线:
在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”。
注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。
16、平行线公理及其推论
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
补充平行线的判定方法:
(1)平行于同一条直线的两直线平行。
(2)在同一平面内,垂直于同一条直线的两直线平行。
(3)平行线的定义。
17、垂直:
两条直线相交成直角,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。
18、垂线的性质:
性质1:平面内,过一点有且只有一条直线与已知直线垂直。
性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。
19、点到直线的距离:过A点作l的垂线,垂足为B点,线段AB的长度叫做点A到直线l的距离。
20、同一平面内,两条直线的位置关系:相交或平行。
初中一年级上册数学知识点2
第一章 有理数
1.1 正数与负数
正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)
负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。
0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。
1.2 有理数
1、有理数:整数和分数统称有理数。
2、数轴 :通常用一条直线上的点表示数,这条直线叫数轴;所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
4、绝对值:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
1.3 有理数的加减法
有理数加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数
4、加法交换律:a+b=b+a
5、加法结合律:a+b+c=a+(b+c)=(a+c)+b
有理数减法法则:
减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;
乘法交换律:a*b=b*a
结合律:a*b*c=a*(b*c)
分配律:a(b+c)=ab+ac
2、有理数除法法则:除以一个不等于0的'数,等于乘这个数的倒数;
两数相除,同号得正,异号得负,并把绝对值相除;
0除以任何一个不等于0的数,都得0。
1.5 有理数的乘方
1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a<10。
第二章 整式的加减
2.1 整式
1、单项式:由数字和字母乘积组成的式子。判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。
2、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。
3、单项式和多项式统称为整式。
2.2整式的加减
1、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。
2、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关
3、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。
4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;
5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。
6、整式加减的一般步骤:
一去、二找、三合
(1)如果遇到括号按去括号法则先去括号. (2)结合同类项. (3)合并同类项
第三章 一元一次方程
3.1 一元一次方程
1、方程是含有未知数的等式。
2、方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。
3、等式的性质:
1)等式两边同时加(或减)同一个数(或式子),结果仍相等;
2)等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。
3.2 、3.3解一元一次方程
在实际解方程的过程中,以下步骤不一定完全用上,有些步骤还需重复使用。
①去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;
②去括号:遵从先去小括号,再去中括号,最后去大括号;不要漏乘括号的项;不要弄错符号;
③移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号) 移项要变号;
④合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式;
⑤系数化为1:字母及其指数不变系数化成1,在方程两边都除以未知数的系数a,得到方程的解。不要分子、分母搞颠倒。
3.4 实际问题与一元一次方程
1、一元一次方程解决实际问题的一般步骤
①审题,特别注意关键的字和词的意义,弄清相关数量关系;
②设出未知数(注意单位);
③根据相等关系列出方程;
④解这个方程;
⑤检验并写出答案(括单位名称)。
⑵一些固定模型中的等量关系及典型例题参照一元一次方程应用题专练学案。
2、 列方程解应用题的检验包括两个方面:
⑴检验求得的结果是不是方程的解;
⑵是要判断方程的解是否符合题目中的实际意义.
3、应用(常见等量关系)
行程问题:s=v×t
工程问题:工作总量=工作效率×时间
盈亏问题:利润=售价-成本
利率=利润÷成本×100%
售价=标价×折扣数×10%
储蓄利润问题:利息=本金×利率×时间
本息和=本金+利息
【初中一年级上册数学知识点】相关文章:
初中一年级上册数学知识点12-07
初中数学垂直知识点12-07
初中数学方差知识点10-28
初中数学余切的知识点04-07
初中数学内错角的知识点04-07
初中数学的知识点大全06-06
初中数学旋转的知识点11-16
初中数学概率知识点05-09
初中数学知识点11-30