- 初中数学二次函数知识点 推荐度:
- 相关推荐
有关初中数学二次函数知识点
在日复一日的学习中,很多人都经常追着老师们要知识点吧,知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。哪些知识点能够真正帮助到我们呢?下面是小编精心整理的有关初中数学二次函数知识点,希望能够帮助到大家。
有关初中数学二次函数知识点1
一、定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:
y=ax2+bx+c(a0),则称y为x的二次函数。
二、二次函数的三种表达式一般式:
y=ax2+bx+c(a0)顶点式:y=a(x-h)2+k(a0),此时抛物线的顶点坐标为P(h,k)交点式:y=a(x-x1)(x-x2)(a0)仅用于函数图像与x轴有两个交点时,x1、x2为交点的横坐标,所以两交点的坐标分别为A(x1,0)和B(x2,0)),对称轴所在的直线为x=注:在3种形式的互相转化中,有如下关系:h=-,k=;x1,x2=;x1+x2=-
三、二次函数的图像从图像可以看出,二次函数的'图像是一条抛物线,属于轴对称图形。
四、抛物线的性质
1.抛物线是轴对称图形,对称轴为直线x=-,对称轴与抛物线唯一的交点是抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为P(-,)。当x=-时,y最值=,当a0时,函数y有最小值;当a0时,函数y有最大值。当-=0时,P在y轴上(即交点的横坐标为0);当=b2-4ac=0时,P在x轴上(即函数与x轴只有一个交点)。
3.二次项系数a决定抛物线的开口方向和大小(即形状)。当a0时,抛物线开口向上;当a0时,抛物线开口向下。|a|越大,则抛物线的开口越小。对于两个抛物线,若形状相同,开口方向相同,则a相等;若形状相同,开口方向相反,则a互为相反数。
4.二次项系数a和一次项系数b共同决定对称轴的位置,四字口诀为“左同右异”,即:当对称轴在y轴左边时,a与b同号(即ab当对称轴在y轴右边时,a与b异号(即ab0)。
5.常数项c决定抛物线与y轴交点位置,抛物线与y轴交于点(0,c)。
6.抛物线y=ax2+bx+c(a0)与x轴交点个数与方程ax2+bx+c=0的根的判定方法:=b2-4ac0时,抛物线与x轴有2个交点,对应方程有两个不相同的实数根;=b2-4ac=0时,抛物线与x轴有1个交点,对应方程有两个相同的实数根。=b2-4ac0时,抛物线与x轴没有交点,对应方程没有实数根。
五、二次函数与一元二次方程
二次函数(以下称函数)y=ax2+bx+c(a0),当y=0时,二次函数为关于x的一元二次方程,即ax2+bx+c=0,此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。
六、常用的计算方法
1、求解析式的时候:若给定三个普通点的坐标,则设为一般式y=ax2+bx+c(a0),分别将三点坐标代入组成三元一次方程组,然后解此方程组求出a、b、c,再代回设的一般式中即可求出解析式;若给定有顶点坐标或对称轴、最值,则设为顶点式y=a(x-h)2+k(a0),再找一点坐标代入即可求出a,再代回设的顶点式即可求出解析式;若给定有与x轴的交点坐标,则设为交点式y=a(x-x1)(x-x2)(a0),再找一点坐标代入即可求出a,再代回设的交点式即可求出解析式。以上方法特别要注意括号内的正负号。
2、若求函数与x轴的交点坐标,让y=0,解一元二次方程所得的根就是交点的横坐标;
3、若求函数的顶点坐标,用配方的方法或者直接套用顶点坐标的公式;
4、若求函数的最大值或者最小值,也可以用配方的方法或者直接套用最值的公式(同顶点坐标)。
5、当需要判定函数y=ax2+bx+c(a0)与x轴没有交点时,需判定方程ax2+bx+c=0的<0,同理,与x轴只有一个交点时,=0,与x轴有两个交点时,>0。对的判定方法仍然是用配方的方法。
有关初中数学二次函数知识点2
i.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,iai还可以决定开口大小,iai越大开口就越小,iai越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
ii.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k [抛物线的顶点p(h,k)]
交点式:y=a(x-x)(x-x ) [仅限于与x轴有交点a(x ,0)和 b(x,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a
iii.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
iv.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点p。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点p,坐标为:p ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,p在y轴上;当δ= b^2-4ac=0时,p在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
δ= b^2-4ac>0时,抛物线与x轴有2个交点。
δ= b^2-4ac=0时,抛物线与x轴有1个交点。
δ= b^2-4ac<0时,抛物线与x轴没有交点。x的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
v.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴:
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;
当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.
4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点a(x,0)和b(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离ab=|x-x|
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的`上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a≠0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
【初中数学二次函数知识点】相关文章:
有关初中数学二次函数知识点04-07
初中数学函数知识点总结11-24
数学初中函数知识点总结04-29
初中数学余切函数的知识点整理04-07
初中数学反比例函数知识点11-02
数学二次函数说课稿02-27
数学二次函数教学反思04-22
初中数学反比例函数知识点归纳08-05
初中数学一次函数知识点07-20