当前位置:育文网>高中>高中数学> 高中数学三角函数知识点总结

高中数学三角函数知识点总结

时间:2024-07-12 06:59:07 高中数学 我要投稿
  • 相关推荐

高中数学三角函数知识点总结

  总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它可以帮助我们有寻找学习和工作中的规律,让我们抽出时间写写总结吧。总结你想好怎么写了吗?下面是小编精心整理的高中数学三角函数知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。

高中数学三角函数知识点总结

高中数学三角函数知识点总结1

  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

  sin^2(a/2)=(1-cos(a))/2

  cos^2(a/2)=(1+cos(a))/2

  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

高中数学三角函数知识点总结2

  sin2()=(1-cos(2))/2=versin(2)/2

  cos2()=(1+cos(2))/2=covers(2)/2

  tan2()=(1-cos(2))/(1+cos(2))

  推导公式

  tan+cot=2/sin2

  tan-cot=-2cot2

  1+cos2=2cos2

  1-cos2=2sin2

  1+sin=(sin/2+cos/2)2

  =2sina(1-sina)+(1-2sina)sina

  =3sina-4sina

  cos3a

  =cos(2a+a)

  =cos2acosa-sin2asina

  =(2cosa-1)cosa-2(1-sina)cosa

  =4cosa-3cosa

  sin3a=3sina-4sina

  =4sina(3/4-sina)

  =4sina[(3/2)-sina]

  =4sina(sin60-sina)

  =4sina(sin60+sina)(sin60-sina)

  =4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2]

  =4sinasin(60+a)sin(60-a)

  cos3...

高中数学三角函数知识点总结3

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα=(sinα/2+cosα/2)^2

  =2sina(1-sin2a)+(1-2sin2a)sina

  =3sina-4sin3a

  cos3a

  =cos(2a+a)

  =cos2acosa-sin2asina

  =(2cos2a-1)cosa-2(1-sin2a)cosa

  =4cos3a-3cosa

  sin3a=3sina-4sin3a

  =4sina(3/4-sin2a)

  =4sina[(√3/2)2-sin2a]

  =4sina(sin260°-sin2a)

  =4sina(sin60°+sina)(sin60°-sina)

  =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

  =4sinasin(60°+a)sin(60°-a)

  cos3a=4cos3a-3cosa

  =4cosa(cos2a-3/4)

  =4cosa[cos2a-(√3/2)2]

  =4cosa(cos2a-cos230°)

  =4cosa(cosa+cos30°)(cosa-cos30°)

  =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

  =-4cosasin(a+30°)sin(a-30°)

  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

  =-4cosacos(60°-a)[-cos(60°+a)]

  =4cosacos(60°-a)cos(60°+a)

  上述两式相比可得

  tan3a=tanatan(60°-a)tan(60°+a)

高中数学三角函数知识点总结4

  sin(-α) = -sinα

  cos(-α) = cosα

  tan (—a)=-tanα

  sin(π/2-α) = cosα

  cos(π/2-α) = sinα

  sin(π/2+α) = cosα

  cos(π/2+α) = -sinα

  sin(π-α) = sinα

  cos(π-α) = -cosα

  sin(π+α) = -sinα

  cos(π+α) = -cosα

  tanA= sinA/cosA

  tan(π/2+α)=-cotα

  tan(π/2-α)=cotα

  tan(π-α)=-tanα

  tan(π+α)=tanα

【高中数学三角函数知识点总结】相关文章:

高中数学三角函数知识点11-27

高中数学知识点总结[精选]06-09

高中数学基本的知识点总结05-17

高中数学知识点总结05-15

高中数学统计知识点总结10-21

高中数学导数知识点总结04-10

高中数学复数知识点总结05-10

高中数学知识点的总结03-07

(实用)高中数学知识点总结07-04

高中数学知识点总结【通用】05-28