高中数学重点知识点总结
总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它是增长才干的一种好办法,我想我们需要写一份总结了吧。那么总结要注意有什么内容呢?以下是小编收集整理的高中数学重点知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。
高中数学重点知识点总结1
一、集合与简易逻辑
1、集合的元素具有确定性、无序性和互异性
2、对集合,时,必须注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集
3、对于含有个元素的有限集合,其子集、真子集、非空子集、非空真子集的个数依次为
4、“交的补等于补的并,即”;“并的补等于补的交,即”
5、判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”
6、“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”
7、四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”
原命题等价于逆否命题,但原命题与逆命题、否命题都不等价、反证法分为三步:假设、推矛、得果
注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” L
8、充要条件
二、函数
1、指数式、对数式
2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”
(2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个
(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像
3、单调性和奇偶性
(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同
偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反
注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称、确定函数奇偶性的常用方法有:定义法、图像法等等、对于偶函数而言有:
(2)若奇函数定义域中有0,则必有、即的定义域时,是为奇函数的必要非充分条件
(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等
(4)既奇又偶函数有无穷多个(,定义域是关于原点对称的任意一个数集)
(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”
复合函数的奇偶性特点是:“内偶则偶,内奇同外”、复合函数要考虑定义域的变化。(即复合有意义)
4、对称性与周期性(以下结论要消化吸收,不可强记)
(1)函数与函数的图像关于直线(轴)对称
推广一:如果函数对于一切,都有成立,那么的图像关于直线(由“和的一半确定”)对称
推广二:函数,的图像关于直线(由确定)对称
(2)函数与函数的图像关于直线(轴)对称
(3)函数与函数的图像关于坐标原点中心对称
推广:曲线关于直线的对称曲线是;
曲线关于直线的对称曲线是
(5)类比“三角函数图像”得:若图像有两条对称轴,则必是周期函数,且一周期为
如果是R上的周期函数,且一个周期为,那么
特别:若恒成立,则、若恒成立,则、若恒成立,则
三、数列
1、数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的关系:(必要时请分类讨论)
注意:;、
2、等差数列中:
(1)等差数列公差的取值与等差数列的单调性
(2);
(3)、也成等差数列
(4)两等差数列对应项和(差)组成的新数列仍成等差数列
(5)仍成等差数列、
(8)“首正”的递等差数列中,前项和的最大值是所有非负项之和;
“首负”的递增等差数列中,前项和的最小值是所有非正项之和;
(9)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定、若总项数为偶数,则“偶数项和”—“奇数项和”=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和”—“偶数项和”=此数列的中项
(10)两数的等差中项惟一存在、在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解
(11)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式)
3、等比数列中:
(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性
(2)成等比数列;成等比数列成等比数列
(3)两等比数列对应项积(商)组成的新数列仍成等比数列
(4)“首大于1”的正值递减等比数列中,前项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前项积的最小值是所有小于或等于1的项的积;
(5)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定、若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和
(6)并非任何两数总有等比中项、仅当实数同号时,实数存在等比中项、对同号两实数的等比中项不仅存在,而且有一对、也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时)、在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解
(7)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式)、
4、等差数列与等比数列的联系
(1)如果数列成等差数列,那么数列(总有意义)必成等比数列
(2)如果数列成等比数列,那么数列必成等差数列
(3)如果数列既成等差数列又成等比数列,那么数列是非零常数数列;但数列是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件
(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数
如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列、
注意:
(1)公共项仅是公共的项,其项数不一定相同,即研究、但也有少数问题中研究,这时既要求项相同,也要求项数相同
(2)三(四)个数成等差(比)的中项转化和通项转化法
5、数列求和的`常用方法:
(1)公式法:
①等差数列求和公式(三种形式)
②等比数列求和公式(三种形式)
(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和
(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法)
(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前和公式的推导方法之一)
(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和、常用裂项形式有:
特别声明:L运用等比数列求和公式,务必检查其公比与1的关系,必要时分类讨论
(6)通项转换法。
四、三角函数
1、终边与终边相同(的终边在终边所在射线上)
终边与终边共线(的终边在终边所在直线上)
终边与终边关于轴对称
终边与终边关于轴对称
终边与终边关于原点对称
一般地:终边与终边关于角的终边对称。
与的终边关系由“两等分各象限、一二三四”确定。
2、弧长公式:,扇形面积公式:,1弧度(1rad)。
3、三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正
注意:
4、三角函数线的特征是:正弦线“站在轴上(起点在轴上)”、余弦线“躺在轴上(起点是原点)”、正切线“站在点处(起点是)”、务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’ ‘纵坐标’、‘余弦’ ‘横坐标’、‘正切’ ‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与值的大小变化的关系、为锐角
5、三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;
6、三角函数诱导公式的本质是:奇变偶不变,符号看象限
7、三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!
角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换。
常值变换主要指“1”的变换:
三角式变换主要有:三角函数名互化(切割化弦)、三角函数次数的降升(降次、升次)、运算结构的转化(和式与积式的互化)、解题时本着“三看”的基本原则来进行:“看角、看函数、看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次。
注意:和(差)角的函数结构与符号特征;余弦倍角公式的三种形式选用;降次(升次)公式中的符号特征、“正余弦‘三兄妹— ’的联系”(常和三角换元法联系在一起)。
辅助角公式中辅助角的确定:(其中角所在的象限由a,b的符号确定,角的值由确定)在求最值、化简时起着重要作用、尤其是两者系数绝对值之比为的情形有实数解。
8、三角函数性质、图像及其变换:
(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性
注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变、既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定、如的周期都是,但的周期为,y=|tanx|的周期不变,问函数y=cos|x|,y=cos|x|是周期函数吗?
(2)三角函数图像及其几何性质:
(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换。
(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法。
9、三角形中的三角函数:
(1)内角和定理:三角形三角和为,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余、锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是钝角任意两边的平方和大于第三边的平方。
(2)正弦定理:(R为三角形外接圆的半径)。
注意:已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解。
(3)余弦定理:等,常选用余弦定理鉴定三角形的类型。
高中数学重点知识点总结2
1、命题的四种形式及其相互关系是什么?
(互为逆否关系的命题是等价命题。)
原命题与逆否命题同真、同假;逆命题与否命题同真同假。
2、对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的'唯一性,哪几种对应能构成映射?
(一对一,多对一,允许B中有元素无原象。)
3、函数的三要素是什么?如何比较两个函数是否相同?
(定义域、对应法则、值域)
4、反函数存在的条件是什么?
(一一对应函数)
求反函数的步骤掌握了吗?
(①反解x;②互换x、y;③注明定义域)
5、反函数的性质有哪些?
①互为反函数的图象关于直线y=x对称;
②保存了原来函数的单调性、奇函数性;
6、函数f(x)具有奇偶性的必要(非充分)条件是什么?
(f(x)定义域关于原点对称)
高中数学重点知识点总结3
什么是不等式?
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z)(其中不等号也可以为<,≤,≥,>中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
数学知识点1、不等式性质比较大小方法:
(1)作差比较法(2)作商比较法
不等式的基本性质
①对称性:a > b,b > a
②传递性:a > b,b > ca > c
③可加性:a > b a + c > b + c
④可积性:a > b,c > 0,ac > bc
⑤加法法则:a > b,c > d,a + c > b + d
⑥乘法法则:a > b > 0,c > d > 0,ac > bd
⑦乘方法则:a > b > 0,an > bn(n∈N)
⑧开方法则:a > b > 0
数学知识点2、算术平均数与几何平均数定理:
(1)如果a、b∈R,那么a2 + b2 ≥2ab;(当且仅当a=b时等号)
(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:
如果为实数,则重要结论
(1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;
(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。
数学知识点3、证明不等式的常用方法:
比较法:比较法是最基本、最重要的方法。
当不等式的'两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。
综合法:从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式。综合法的放缩经常用到均值不等式。
分析法:不等式两边的联系不够清楚,通过寻找不等式成立的充分条件,逐步将欲证的不等式转化,直到寻找到易证或已知成立的结论。
高中数学重点知识点总结4
1、基本初等函数
正弦函数sinθ=y/r
余弦函数cosθ=x/r
正切函数tanθ=y/x
余切函数cotθ=x/y
正割函数secθ=r/x
余割函数cscθ=r/y
2、同角三角函数之间的平方关系:
sin^2(α)cos^2(α)=1
tan^2(α)1=sec^2(α)
cot^2(α)1=csc^2(α)
三、同角三角函数间积关系:
sinα=tanαxcosα
cosα=cotαxsinα
tanα=sinαxsecα
cotα=cosαxcscα
secα=tanαxcscα
cscα=secαxcotα
四、同角三角函数间倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
5、使用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0、定义域内解集的不间断区间为增加区间;④解不等式f(x)在定义域中解集的不间断间隔为减间隔。
另一方面,函数的单调性也可以用导数来解决相关问题(如确定参数的值范围):设置函数yf(x)在区间(a,b)内可导,(1)若函数yf(x)在区间(a,b)为增函数,则f(x)0(其中使f(x)x值不构成区间)。
(2)若函数yf(x)在区间(a,b)为减函数,则f(x)0(其中使f(x)x值不构成区间)。
(3)若函数yf(x)在区间(a,b)上面是常数函数,则f(x)0恒成立。
6、求函数的极值:
设函数yf(x)在x0及其附近有定义,如果是x0附近的所有点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)极小值(或极大值)。
通过研究函数的单调性,可以获得可导函数的极值。基本步骤如下:
(1)确定函数f(x)的定义域。
(2)求导数f(x)。
(3)求方程f(x)0的全部实根,x1x2xn,将定义域分成几个小区间并列表:x变化时,f(x)和f(x)值的变化。
(4)检查f(x)极值由表格判断。
7、求函数值和最小值:
如果函数f(x)存在于定义域I中x使对任何事xI,总有f(x)f(x0),则称f(x0)是定义域中函数的值。定义域中函数的极值不一定,但定义域中的最值是。
求函数f(x)在区间[a,b]上值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值。
(2)第一步获得的极值f(a),f(b)比较,得到f(x)在区间[a,b]上值和最小值。
8、解决不等式问题:
(1)值域可考虑不等式恒成立问题(绝对不等式问题)。
f(x)(xA)的值域是[a,b]时,不等式f(x)0恒成立的充要条件是f(x)max0,即b0;
不等式f(x)0恒成立的充要条件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)时,不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。
(2)证明不等式f(x)0可转化为证明f(x)max0,或使用函数f(x)单调转化为证明f(x)f(x0)0。
奇偶性定义:
一般来说,函数f(x)
(1)函数定义域中的任何一个x,都有f(—x)=—f(x),那么函数f(x)叫奇函数。
(2)函数定义域中的任何一个x,都有f(—x)=f(x),那么函数f(x)称为偶函数。
(3)函数定义域中的任何一个x,f(—x)=—f(x)与f(—x)=f(x)同时成立,然后函数f(x)既奇函数又偶函数,称为既奇又偶函数。
10、有理数乘法:(1)两数相乘,同号得正,异号得负,绝对值相乘。
(2)任何数同零相乘都得零。
(3)几个因式不为零,积的符号由负因式的数量决定、奇数负数为负,偶数负数为正。
高中数学学习方法
1、及时理解和掌握常用的数学思想和方法。要学好高中数学,我们需要从数学思想和方法的高度来掌握它。在解决数学问题时,我们也应该注意解决问题的'思维策略,并经常思考:我们应该选择什么角度,我们应该遵循什么原则。
2、在学习过程中,要遵循理解规律,善于动脑筋,积极发现问题,注意新旧知识之间的内在联系,不满足于现成的思路和结论,经常从多方面、多角度思考问题,挖掘问题的本质。
3、建立良好的学习数学习惯会使你的学习有序、轻松。高中数学的好习惯应该是:多质疑,多思考,多动手,多总结,注意应用。
4、建立数学纠错书。记录平时容易出错的知识或推理,防止再犯。努力找错,分析错误,改正错误,防止错误。从负面入手,深入了解正确的东西,因为错误的原因,果朔可以水落石出,对症下药;答案完整,推理严谨。
5、记住一些数学规律和数学小结论,使你平时的计算技能达到自动化或半自动化的熟练程度。
【高中数学重点知识点总结】相关文章:
高中数学重点知识点总结11-18
高中数学重点知识点总结4篇11-19
高中数学统计知识点总结10-21
高中数学知识点总结05-15
高中数学知识点总结[精选]06-09
高中数学知识点的总结03-07
高中数学导数知识点总结04-10
高中数学复数知识点总结05-10
高中数学基本的知识点总结05-17