高中数学函数知识总结(热)
总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,不如立即行动起来写一份总结吧。如何把总结做到重点突出呢?以下是小编帮大家整理的高中数学函数知识总结,供大家参考借鉴,希望可以帮助到有需要的朋友。
高中数学函数知识总结1
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(—x)=—f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的'任意一个x,都有f(—x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义
高中数学函数知识总结2
(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形都是下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的`。
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。
(7) 函数总是通过(0,1)这点。
(8) 显然指数函数无界。
高中数学函数知识总结3
形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(—x)=—f(x),图像关于原点对称。
另外,从反比例函数的'解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
如图,上面给出了k分别为正和负(2和—2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数
当K<0时,反比例函数图像经过二,四象限,是增函数
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
高中数学函数知识总结4
定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的.奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。
高中数学函数知识总结5
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x—h)^2+k [抛物线的顶点P(h,k)]
交点式:y=a(x—x?)(x—x ?) [仅限于与x轴有交点A(x? ,0)和 B(x?,0)的抛物线]
注:在3种形式的'互相转化中,有如下关系:
h=—b/2ak=(4ac—b^2)/4a x?,x?=(—b±√b^2—4ac)/2a
高中数学函数知识总结6
过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。
对于双曲线y=k/x ,若在分母上加减任意一个实数 (即 y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)
对数函数
对数函数的一般形式为,它实际上就是指数函数 的反函数。因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:
可以看到对数函数的图形只不过的指数函数的`图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
高中数学函数知识总结7
特别地,二次函数(以下称函数)y=ax^2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
二次函数y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式 顶点坐标对 称 轴
y=ax^2(0,0) x=0
y=a(x—h)^2(h,0) x=h
y=a(x—h)^2+k(h,k) x=h
y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a
当h>0时,y=a(x—h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,当h<0时,则向左平行移动|h|个单位得到。
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x—h)^2+k的图象;
当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x—h)^2+k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x—h)^2+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x—h)^2+k的图象;
因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x—h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了。这给画图象提供了方便。
抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=—b/2a,顶点坐标是(—b/2a,[4ac—b^2]/4a)。
抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ —b/2a时,y随x的增大而减小;当x ≥ —b/2a时,y随x的增大而增大。若a<0,当x ≤ —b/2a时,y随x的增大而增大;当x ≥ —b/2a时,y随x的增大而减小。
抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2—4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=
(a≠0)的两根。这两点间的距离AB=|x?—x?|
当△图象与x轴只有一个交点;
当△<图象与x轴没有交点。当a>0时,图象落在x轴的.上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<
抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= —b/2a时,y最小(大)值=(4ac—b^2)
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。
用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0)。
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x—h)^2+k(a≠0)。
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x—x?)(x—x?)(a≠0)。
二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。
高中数学函数知识总结8
②作差f(x1)—f(x2),并适当变形(“分解因式”、配方成同号项的和等);
③依据差式的符号确定其增减性。
2、导数法:
设函数y=f(x)在某区间D内可导。如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x)<0,则f(x)在区间D内为减函数。
补充
若使得f′(x)=0的x的值只有有限个,则如果f ′(x)≥0,则f(x)在区间D内为增函数;如果f′(x) ≤0,则f(x)在区间D内为减函数。
单调性的判断方法:定义法及导数法、图象法、复合函数的单调性(同增异减)、用已知函数的单调性等。
二、单调性的有关结论
1、若f(x),g(x)均为增(减)函数,则f(x)+g(x)仍为增(减)函数。
2、互为反函数的两个函数有相同的单调性。
3、y=f[g(x)]是定义在M上的函数,若f(x)与g(x)的单调性相同,则其复合函数f[g(x)]为增函数;若f(x)、g(x)的单调性相反,则其复合函数f[g(x)]为减函数,简称”同增异减”。
4、奇函数在关于原点对称的两个区间上的单调性相同;偶函数在关于原点对称的两个区间上的单调性相反。
函数奇偶性知识点
一、简单性质:
1、图象的对称性质:
一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的.图象关于y轴对称;
2、设f(x),g(x)的定义域分别是D1,D2那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇
3、任意一个定义域关于原点对称的函数f(x)均可写成一个奇函数g(x)与一个偶函数h(x)和的形式
4、奇偶函数图象的对称性
(1)若y=f(a+x)是偶函数,则f(a+x)=f(a—x)?f(2a—x)=f(x)?f(x)的图象关于直线x=a对称;(2)若y=f(b+x)是偶函数,则f(b—x)=—f(b+x)?f(2a—x)=—f(x)?f(x)的图象关于点(b,0)中心对称
5、一些重要类型的奇偶函数
高中数学函数知识总结9
抛物线是轴对称图形。对称轴为直线
x= —b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
抛物线有一个顶点P,坐标为
P( —b/2a ,(4ac—b^2)/4a )
当—b/2a=0时,P在y轴上;当Δ= b^2—4ac=0时,P在x轴上。
二次项系数a决定抛物线的.开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
抛物线与x轴交点个数
Δ= b^2—4ac>0时,抛物线与x轴有2个交点。
Δ= b^2—4ac=0时,抛物线与x轴有1个交点。
Δ= b^2—4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= —b±√b^2—4ac 的值的相反数,乘上虚数i,整个式子除以2a)
【高中数学函数知识总结】相关文章:
高中数学函数知识总结09-02
高中数学函数知识点总结08-30
高中数学函数知识点总结【热】10-25
高中数学三角函数知识点总结07-12
高中数学三角函数知识点11-27
初中数学函数知识点总结11-24
初中数学函数知识点总结06-14
高中数学知识总结04-06
(推荐)初中数学函数知识点总结8篇07-22
初中数学函数知识点总结(大全8篇)07-23