当前位置:育文网>高中>高中数学> 高中数学知识点

高中数学知识点

时间:2022-05-27 13:34:46 高中数学 我要投稿

高中集合数学知识点(6篇)

  漫长的学习生涯中,大家对知识点应该都不陌生吧?知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。哪些才是我们真正需要的知识点呢?下面是小编精心整理的高中集合数学知识点,仅供参考,大家一起来看看吧。

高中集合数学知识点(6篇)

高中集合数学知识点1

  重点知识归纳、总结

  (1)集合的分类

  (2)集合的运算

  ①子集,真子集,非空子集;

  ②A∩B={xx∈A且x∈B}

  ③A∪B={xx∈A或x∈B}

  ④ A={xx∈S且x A},其中A S.

  2、不等式的解法

  (1)含有绝对值的不等式的解法

  ①x0) -a

  x>a(a>0) x>a,或x<-a.

  ②f(x)

  f(x)>g(x) f(x)>g(x)或f(x)<-g(x).

  ③f(x)

  ④对于含有两个或两个以上的绝对值符号的绝对值不等式,利用“零点分段讨论法”去绝对值. 如解不等式:x+3-2x-1<3x+2.

  3、简易逻辑知识

  逻辑联结词 “或”、“且”、“非”是判断简单合题与复合命题的依据;真值表是由简单命题和真假判断复合命题真假的依据,理解好四种命题的关系,对判断命题的真假有很大帮助;掌握好反证法证明问题的步骤。

  (2)复合命题的'真值表

  非p形式复合命题的真假可以用下表表示.

  p 非p

  真 假

  假 真

  p且q形式复合命题的真假可以用下表表示.

  p或q形式复合命题的真假可以用下表表示.

  (3)四种命题及其相互之间的关系

  一个命题与它的逆否命题是等价的.

  (4)充分、必要条件的判定

  ①若p q且q p,则p是q的充分不必要条件;

  ②若p q且q p,则p是q的必要不充分条件;

  ③若p q且q p,则p是q的充要条件;

  ④若p q且q p,则p是q的既不充分也不必要条件.

高中集合数学知识点2

  复习的重点一是要掌握所有的知识点,二就是要大量的做题,编辑为各位考生带来了高中数学知识点复习:集合与映射专题复习指导

  一、集合与简易逻辑

  复习导引:这部分高考题一般以选择题与填空题出现。多数题并不是以集合内容为载体,只是用了集合的表示方法和简单的交、并、补运算。这部分题其内容的载体涉及到函数、三角函数、不等式、排列组合等知识。复习这一部分特别请读者注意第1题,阐述了如何审题,第3、5题的思考方法。简易逻辑部分应把目光集中到充要条件上。

  1.设集合M={1,2,3,4,5,6},S1、S2、Sk都是M的含两个元素的子集,且满足:对任意的Si={ai,bi},Sj={aj,bj},(ij,i、j{1,2,3,k})都有min{-,-}min{-,-}(min{x,y}表示两个数x、y中的较小者)。则k的最大值是( )

  A.10 B. 11

  C. 12 D. 13

  分析:审题是解题的源头,数学审题训练是对数学语言不断加深理解的过程。以本题为例min{-,-}{-,-}如何解决?我们不妨把抽象问题具体化!

  如Si={1,2},Sj={2,3}那么min{-,2}为-,min{-,-}为-,Si是Sj符合题目要求的两个集合。若Sj={2,4}则与Si={2,4}按题目要求应是同一个集合。

  题意弄清楚了,便有{1,2},{2,4},{1,3},{2,6},{1,2},{3,6},{2,3},{4,6}按题目要求是4个集合。M是6个元素构成的集合,含有2个元素组成的集合是C62=15个,去掉4个,满足条件的集合有11个,故选B。

  注:把抽象问题具体化是理解数学语言,准确抓住题意的捷径。

  2.设I为全集,S1、S2、S3是I的三个非空子集,且S1S3=I,则下面论断正确的是( )

  (A)CIS1(S2S3)=

  (B)S1(CIS2CIS3)

  (C)CIS1CIS2CIS3=

  (D)S1(CIS2CIS3)

  分析:这个问题涉及到集合的交、并、补运算。我们在复习集合部分时,应让同学掌握如下的定律:

  摩根公式

  CIACIB=CI(AB)

  CIACIB=CI(AB)

  这样,选项C中:

  CIS1CIS2CIS3

  =CI(S1S3)

  由已知

  S1S3=I

  即CI(S1S3)=CI=

  而上面的定律并不是复习中硬加上的,这个定律是教材练习一道习题的引申。所以,高考复习源于教材,高于教材。

  这道题的解决,也可用特殊值法,如可设S1={1,2},S2={1,3},S3={1,4}问题也不难解决。

  3.是正实数,设S={|f(x)=cos[(x+])是奇函数},若对每个实数a,S(a,a+1)的元素不超过2个,且有a使S(a,a+1)含2个元素,则的取值范围是 。

  解:由f(x)=cos[(x+)]是奇函数,可得cosxcos=0,cosx不恒为0,

  cos=0,=k+-,kZ

  又0,=-(k+-)

  (a,a+1)的区间长度为1,在此区间内有且仅有两个角, 两个角之差为:-(k1+k2)

  不妨设k0,kZ:

  两个相邻角之差为-。

  若在区间(a,a+1)内仅有二角,那么-2,2。

  注:这是集合与三角函数综合题。

  对应于一组,正如在数学原始概念.我们知道,有个和数字线之间真正的对应关系,点的实数的平面坐标,并下令一名男子与他的名字,一个学生,他的学校,可以看作是对应关系.

  对应的是两个集合A和B. A

  之间的关系对于每一个元素,有以下三种情况:

  比索(1)B有相应的唯一元素.

  (2)B,有对应的`一个以上的元素.

  (3)B是没有相应的元件.

  同样,对于B中的每一个元素而言,有以下三种情况:

  在相应的独特元素.

  比索(5),有相应的多个元素.

  比索(6)没有相应的元素.

  相当于在一般情况下,这些情况都可能发生.

  【2】映射

  映射是一种特殊的对应关系,学习这个定义时,应注意以下几点:

  比索(1)映射为对应的集合从A,B和从A到BF由法律决定.

  (2)中的映射,设置一个“任何元素”有“才”在集合B这不是集合A的元素在集合B中存在的没有,或者案件多于一个的对象(即,将不会在上述(2)(3)在这两种情况下).

  比索(3)在地图上,设置一个状态和B是不平等的.在一般情况下,我们并不要求B的两个元素之间的映射和A是对应于(间的(4)(5)(6)三种情况下都可能发生,即对应)的唯一元素.因此,从映射A到B并从B到A被映射有不同的要求. A的收集,B可以是相同的集合.

  仿佛原始图像是一个映射f,从A到B,那么A和B在图像B中的对应元素的元素称为,原来的名字图像b的关系可以表示为B = F(A),与原图像的概念和类似物,该映射可以被理解为“A中的每个元素有B中一个独特的图像”对应于这样一个特殊的.由于映射在一般情况下,B,作为元件不一定如此,因为该组(即由所有的图像形成的集合)是B的子集,记为{F(A)|a∈A} IB.

高中集合数学知识点3

  一、集合与函数概念

  1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

  2、集合的中元素的三个特性:元素的确定性;元素的互异性;元素的无序性。

  集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A

  列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

  ①语言描述法:例:{不是直角三角形的三角形}

  ②数学式子描述法

  二、函数的有关概念

  1、函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。记作:y=f(x),x∈A。其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。

  一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f:A B”

  给定一个集合A到B的映射,如果a∈A,b∈B。且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

  说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

  学习数学的方法

  第一,兴趣。

  如今的家庭和学校对孩子的期望很高,而且女生的性格普遍较为文静,心理不够强大,还有的就是数学这科目难度相对来说较高,很容易会导致女生对数学的兴趣降低。

  所以说,作为老师应该多关心她们的学习情况,多与她们交流科目上的内容,了解她们的想法,只有理解她们的想法才能有效的制定相应的学习计划,为她们驱除紧张的情绪,从而达到一个好的学习状态。与此同时,作为家长的应该多关心孩子的情况,不要一看到成绩不好就开口训斥,这样对孩子的心理会造成一定的影响,甚至可能削弱孩子对数学的兴趣。我们应该用积极的态度去对待孩子的学习,女生的情感与男生不同,她们对于感兴趣的,一般会更有耐心克服困难,达到自己的目标。

  第二,自信。

  女生的形象思维能力一般比男生要差,逻辑思维能力也如此,所以容易造成没有信心的现象。事实上,女生在运算准确率方面是很高的,也比较规范,所以我们看到女生的`数学答题大都很工整,其实这是一个优点。

  所谓每个人都有优缺点,我们不应该因为自己的缺点而妄自菲薄,而是应该努力克服缺点,增强自己的自信心,在学习上应该多了解通解通法,还有一些常用的数学公式,解题技巧,还有解题速度。很多女生解数学题的速度都不快,甚至有些女生到时间了还有几道大题没做,这样丢分是让人很遗憾的。

  第三,学习方法。

  很多女生在学习数学的时候喜欢按部就班,注重基础,但是却很少做难题,所以便导致了解题能力薄弱。女生上课的时候很认真,复习的时候喜欢看笔记和书本,但是却忽视了对自己能力的训练,所以导致了自己适应性比较差。

  所以,女生应该从这几点下手,多下功夫,对于难题我们不要害怕,但是也不能一味地做难题,适当的训练,对于自己的数学能力是有很大提升的。还有,女生在学习数学的时候应该多向男生学习,学习他们的一些优秀技巧,进而转化为自己的学习技巧,结合在做题上,多训练,相信对自己的数学水平是有很大帮助的。

  第四,课前预习。

  正所谓“笨鸟先飞”,我们经过预习可以提前对新内容有一个大概的了解,从而在听课的时候能够有的放矢,对自己不了解的知识点着重注意,很可能会有奇效。而提前预习,还能对女生的心理有一个暗示,对女生的信心提高也是有极大的好处。

  数学棱锥知识点

  棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。

  棱锥的性质:

  (1)侧棱交于一点。侧面都是三角形

  (2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

  正棱锥

  正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

  正棱锥的性质:

  (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

  (3)多个特殊的直角三角形

  a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

  b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

高中集合数学知识点4

  知识点概述

  本节包括集合的概念、集合元素的特性、集合的表示方法、常见的特殊集合、集合的分类和集合间的基本关系等知识点,除了集合的表示方法中的描述法较难理解,其它的都多是好理解的知识,只需加强记忆。

  知识点总结

  方法:常用数轴或韦恩图进行集合的交、并、补三种运算

  1.包含关系子集

  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA

  2.不含任何元素的集合叫做空集,记为

  规定:空集是任何集合的子集,空集是任何非空集合的真子集

  3.相等关系(55,且55,则5=5)

  实例:设A={xx2-1=0}B={-11}元素相同

  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

  常见考点考法

  集合是学习函数的基础知识,在段考和高考中是必考内容。在段考中多考查集合间的子集和真子集关系,在高考中也是不可少的考查内容,多以选择题和填空题的形式出现,经常出现在选择填空题的前几小题,难度不大。主要与函数和方程、不等式联合考查的集合的表示方法和集合间的`基本关系。

  常见误区提醒

  1.集合的关系问题,有同学容易忽视空集这个特殊的集合,导致错解。空集是任何集合的子集,是任何非空集合的真子集。

  2.集合的运算要注意灵活运用韦恩图和数轴,这实际上是数形结合的思想的具体运用。

  3.集合的运算注意端点的取等问题。最好是直接代入原题检验。

  4.集合中的元素具有确定性、互异性和无序性三个特征,尤其是确定性和互异性。在解题中,要注意把握与运用,例如在解答含有参数问题时,千万别忘了检验,否则很可能会因为不满足互异性而导致结论错误。

高中集合数学知识点5

  知识点概述

  本节包括集合的概念、集合元素的特性、集合的表示方法、常见的特殊集合、集合的分类和集合间的基本关系等知识点,除了集合的表示方法中的描述法较难理解,其它的都多是好理解的知识,只需加强记忆。

  知识点总结

  方法:常用数轴或韦恩图进行集合的交、并、补三种运算

  1。包含关系子集

  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA

  2。不含任何元素的集合叫做空集,记为

  规定:空集是任何集合的子集,空集是任何非空集合的'真子集

  3。相等关系(55,且55,则5=5)

  实例:设A={xx2—1=0}B={—11}元素相同

  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

  常见考点考法

  集合是学习函数的基础知识,在段考和高考中是必考内容。在段考中多考查集合间的子集和真子集关系,在高考中也是不可少的考查内容,多以选择题和填空题的形式出现,经常出现在选择填空题的前几小题,难度不大。主要与函数和方程、不等式联合考查的集合的表示方法和集合间的基本关系。

  常见误区提醒

  1。集合的关系问题,有同学容易忽视空集这个特殊的集合,导致错解。空集是任何集合的子集,是任何非空集合的真子集。

  2。集合的运算要注意灵活运用韦恩图和数轴,这实际上是数形结合的思想的具体运用。

  3。集合的运算注意端点的取等问题。最好是直接代入原题检验。

  4。集合中的元素具有确定性、互异性和无序性三个特征,尤其是确定性和互异性。在解题中,要注意把握与运用,例如在解答含有参数问题时,千万别忘了检验,否则很可能会因为不满足互异性而导致结论错误。

高中集合数学知识点6

  一、集合间的关系

  1.子集:如果集合A中所有元素都是集合B中的元素,则称集合A为集合B的子集。

  2.真子集:如果集合AB,但存在元素a∈B,且a不属于A,则称集合A是集合B的真子集。

  3.集合相等:集合A与集合B中元素相同那么就说集合A与集合B相等。

  子集:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作:AB(或BA),读作“A包含于B”(或“B包含A”),这时我们说集合是集合的子集,更多集合关系的知识点见集合间的.基本关系

  二、集合的运算

  1.并集

  并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}

  2.交集

  交集: 以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}

  3.补集

【高中数学知识点】相关文章:

高中数学椭圆知识点06-15

高中数学必修知识点11-08

高中数学知识点11-03

高中数学数列知识点03-17

高中数学圆的知识点归纳04-14

高中数学导数知识点总结05-09

高中数学知识点总结11-12

高中数学全部知识点总结04-25

高中数学统计知识点总结10-21

高中数学必背知识点03-05