- 相关推荐
高中数学圆的知识点归纳
在我们平凡的学生生涯里,看到知识点,都是先收藏再说吧!知识点就是掌握某个问题/知识的学习要点。哪些知识点能够真正帮助到我们呢?下面是小编为大家整理的高中数学圆的知识点归纳,欢迎阅读与收藏。
圆与圆的位置关系的判断方法
一、设两个圆的半径为R和r,圆心距为d。
则有以下五种关系:
1、d>R+r 两圆外离; 两圆的圆心距离之和大于两圆的半径之和。
2、d=R+r 两圆外切; 两圆的圆心距离之和等于两圆的半径之和。
3、d=R-r 两圆内切; 两圆的圆心距离之和等于两圆的半径之差。
4、d<r-r p="" 两圆内含;两圆的圆心距离之和小于两圆的半径之差。
5、d<r+r p="" 两园相交;两圆的圆心距离之和小于两圆的半径之和。
二、圆和圆的位置关系,还可用有无公共点来判断:
1、无公共点,一圆在另一圆之外叫外离,在之内叫内含。
2、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。
3、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
高中数学直线与圆的关系
高中数学直线与圆的方位置关系一
1、平面内,直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0的位置关系判断一般方法是利用判别式b2-4ac的符号可确定圆与直线的位置关系如下:
如果b2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b2-4ac<0,则圆与直线有0交点,即圆与直线相离。
高中数学直线与圆的方位置关系二
圆上一点的切线方程
(x-a)2+(y-b)2=r2上任意一点(X0,Y0)该点的切线方程:
(X-a)(X0-a)+(Y-b)(Y0-b)=r—2
如果在平面直角坐标系中还可以直接将
直线方程: 与圆的方程: 联立得出
若判别式>0 则该方程有两个根,即直线与圆有两个交点,相交;
若判别式=0 则该方程有一个根,即直线与圆有一个交点,相切;
若判别式<0 则该方程有零个根,即直线与圆有零个交点,相离。
圆的位置与什么有关系
圆的大小与半径有关系,圆的位置与圆心有关系。在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数个点。在同一平面内,到定点的距离等于定长的点的集合叫做圆。
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫圆。圆有无数条对称轴。
在同一平面内,到定点的距离等于定长的点的集合叫做圆。圆可以表示为集合{M||MO|=r},其中O是圆心,r是半径。圆的标准方程是(x-a)2+(y-b)2=r2,其中点(a,b)是圆心,r是半径。
圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。
圆是一种几何图形。根据定义,通常用圆规来画圆。同圆内圆的直径、半径的长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。同时,圆又是“正无限多边形”,而“无限”只是一个概念。当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是一种概念性的图形。
数列的函数理解:
①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N_或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a。列表法;b。图像法;c。解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。③函数不一定有解析式,同样数列也并非都有通项公式。
通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不)。
数列通项公式的特点:
(1)有些数列的通项公式可以有不同形式,即不。
(2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,。。。)。
递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。
数列递推公式特点:
(1)有些数列的递推公式可以有不同形式,即不。
(2)有些数列没有递推公式。
有递推公式不一定有通项公式。
注:数列中的项必须是数,它可以是实数,也可以是复数。
等差数列通项公式
an=a1+(n—1)d
n=1时a1=S1
n≥2时an=Sn—Sn—1
an=kn+b(k,b为常数)推导过程:an=dn+a1—d令d=k,a1—d=b则得到an=kn+b
等差中项
由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷2
前n项和
倒序相加法推导前n项和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n—1)d]①
Sn=an+an—1+an—2+······+a1
=an+(an—d)+(an—2d)+······+[an—(n—1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)
∴Sn=n(a1+an)÷2
等差数列的前n项和等于首末两项的和与项数乘积的一半:
Sn=n(a1+an)÷2=na1+n(n—1)d÷2
Sn=dn2÷2+n(a1—d÷2)
亦可得
a1=2sn÷n—an=[sn—n(n—1)d÷2]÷n
an=2sn÷n—a1
有趣的是S2n—1=(2n—1)an,S2n+1=(2n+1)an+1
等差数列性质
一、任意两项am,an的关系为:
an=am+(n—m)d
它可以看作等差数列广义的通项公式。
二、从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an—1=a3+an—2=…=ak+an—k+1,k∈N_
三、若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq
四、对任意的k∈N_,有Sk,S2k—Sk,S3k—S2k,…,Snk—S(n—1)k…成等差数列。
怎么样提高数学成绩
首先想要提升数学成绩,成为数学学霸的前提是要对数学有良好的学习兴趣。其次要学会课前预习,方便自己能够更加深入的吃透课堂上的知识点。然后还要学会总结复习,总结自己课堂上的问题,复习课堂上的重要知识点,从而提高自己的数学成绩。
提升数学成绩还要拥有一个错题本,和数学资料。认真对待自己的学习工具,多做练习题,找出自己的薄弱环节和自己常犯的题型,记在错题本上,常练习,常巩固。在自己的数学资料中摸索出适合自己的解题技巧,反复练习加以运用,一定会提升你的数学成绩。
学会听课,在课堂上勇于提问。数学最重要的部分都是在课本上,所以必须要掌握好课堂的45分钟。把握好数学课本,为自己打下一个好基础,这样才能更有效的提升你的数学成绩。学会做课堂笔记,把每节课的重要知识点记下来,以便接下来的复习。
学好数学的方法技巧整理
预习的方法
上课之前一定要抽时间进行预习,有时预习比做作业更重要,因为通过预习我们可以初步掌握课程的大致内容,听课就能够把握好重点,针对性比较强,还会带着问题去听课,听课效率就会比较高,上课听明白了,完成作业也会更好更快,最终会形成良性循环。
听懂课的习惯
注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。
不断练习
不断练习是指多做数学练习题。希望学好数学,多做练习是必不可少的。做练习的原因有以下三点:第一,熟练和巩固学到的数学知识;二,引导同学灵活运用所学知识点以及独立思考独立做题的水平;第三,融会贯通。通过做题将所学的所有知识点结合起来,加深同学对数学体系化的理解。
一、圆及圆的相关量的定义
1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
2.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫
做直径。
3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。
二、有关圆的字母表示方法
圆--⊙ 半径—r 弧--⌒ 直径—d
扇形弧长/圆锥母线—l 周长—C 面积—S三、有关圆的基本性质与定理(27个)
1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):
P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO
2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定
理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
5.一条弧所对的圆周角等于它所对的圆心角的一半。
6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
7.不在同一直线上的3个点确定一个圆。
8.一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。
9.直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距
离):
AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO
10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
11.圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):
外离P>R+r;外切P=R+r;相交R-r
三、有关圆的计算公式
1.圆的周长C=2πr=πd
2.圆的面积S=s=πr?
3.扇形弧长l=nπr/180
4.扇形面积S=nπr? /360=rl/2
5.圆锥侧面积S=πrl
四、圆的方程
1.圆的标准方程
在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是
(x-a)^2+(y-b)^2=r^2
2.圆的一般方程
把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是
x^2+y^2+Dx+Ey+F=0
和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2
相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r.
人教版高中数学知识点
1、含n个元素的有限集合其子集共有2n个,非空子集有2n—1个,非空真子集有2n—2个。
2、集合中,Cu(A∩B)=(CuA)U(CuB),交之补等于补之并。
Cu(AUB)=(CuA)∩(CuB),并之补等于补之交。
3、ax2+bx+c<0的解集为x(0
+c>0的解集为x,cx2+bx+a>0的解集为>x或x<;ax2—bx+
4、c<0的解集为x,cx2—bx+a>0的解集为—>x或x<—。
5、原命题与其逆否命题是等价命题。
原命题的逆命题与原命题的否命题也是等价命题。
6、函数是一种特殊的映射,函数与映射都可用:f:A→B表示。
A表示原像,B表示像。当f:A→B表示函数时,A表示定义域,B大于或等于其值域范围。只有一一映射的函数才具有反函数。
7、原函数与反函数的单调性一致,且都为奇函数。
偶函数和周期函数没有反函数。若f(x)与g(x)关于点(a,b)对称,则g(x)=2b—f(2a—x)。
8、若f(—x)=f(x),则f(x)为偶函数,若f(—x)=f(x),则f(x)为奇函数;
偶函数关于y轴对称,且对称轴两边的单调性相反;奇函数关于原点对称,且在整个定义域上的单调性一致。反之亦然。若奇函数在x=0处有意义,则f(0)=0。函数的单调性可用定义法和导数法求出。偶函数的导函数是奇函数,奇函数的导函数是偶函数。对于任意常数T(T≠0),在定义域范围内,都有f(x+T)=f(x),则称f(x)是周期为T的周期函数,且f(x+kT)=f(x),k≠0。
9、周期函数的特征性:①f(x+a)=—f(x),是T=2a的函数,②若f(x+a)+f(x+b)=0,即f(x+a)=—f(x+b),T=2(b—a)的函数,③若f(x)既x=a关对称,又关于x=b对称,则f(x)是T=2(b—a)的函数④若f(x
+a)?f(x+b)=±1,即f(x+a)=±,则f(x)是T=2(b—a)的函数⑤f(x+a)=±,则f(x)
是T=4(b—a)的函数
10、复合函数的单调性满足“同增异减”原理。
定义域都是指函数中自变量的取值范围。
11、抽象函数主要有f(xy)=f(x)+f(y)(对数型),f(x+y)=f(x)?f(y)(指数型),f(x+y)=f(x)+f(y)(直线型)。
解此类抽象函数比较实用的方法是特殊值法和周期法。
12、指数函数图像的规律是:底数按逆时针增大。
对数函数与之相反。
13、ar?as=ar+s,ar÷as=ar—s,(ar)s=ars,(ab)r=arbr。
在解可化为a2x+Bax+C=0或a2x+Bax+C≥0(≤0)的指数方程或不等式时,常借助于换元法,应特别注意换元后新变元的取值范围。
14、log10N=lgN;logeN=lnN(e=2。718???);对数的性质:如果a>0,a≠0,M>0N>0,
那么loga(MN)=logaM+logaN,;loga()=logaM—logaN;logaMn=nlogaM;alogaN=N。
换底公式:logaN=;logamlogbnlogck=logbmlogcnlogak=logcmloganlogbk。
15、函数图像的变换:
(1)水平平移:y=f(x±a)(a>0)的图像可由y=f(x)向左或向右平移a个单位得到;
(2)竖直平移:y=f(x)±b(b>0)图像,可由y=f(x)向上或向下平移b个单位得到;
(3)对称:若对于定义域内的一切x均有f(x+m)=f(x—m),则y=f(x)的图像关于直线x=m对称;y=f(x)关于(a,b)对称的函数为y!=2b—f(2a—x)。
(4),学习计划;翻折:①y=|f(x)|是将y=f(x)位于x轴下方的部分以x轴为对称轴将期翻折到x轴上方的图像。②y=f(|x|)是将y=f(x)位于y轴左方的图像翻折到y轴的右方而成的图像。
(5)有关结论:①若f(a+x)=f(b—x),在x为一切实数上成立,则y=f(x)的图像关于
x=对称。②函数y=f(a+x)与函数y=f(b—x)的图像有关于直线x=对称。
15、等差数列中,an=a1+(n—1)d=am+(n—m)d;sn=n=na1+
16、若n+m=p+q,则am+an=ap+aq;
sk,s2k—k,s3k—2k成以k2d为公差的等差数列。an是等差数列,若ap=q,aq=p,则ap+q=0;若sp=q,sq=p,则sp+q=—(p+q);若已知sk,sn,sn—k,sn=(sk+sn+sn—k)/2k;若an是等差数列,则可设前n项和为sn=an2+bn(注:没有常数项),用方程的思想求解a,b。在等差数列中,若将其脚码成等差数列的项取出组成数列,则新的数列仍旧是等差数列。
17、等比数列中,an=a1?qn—1=am?qn—m,若n+m=p+q,则am?an=ap?aq;sn=na1(q=1),
sn=,(q≠1);若q≠1,则有=q,若q≠—1,=q;
sk,s2k—k,s3k—2k也是等比数列。a1+a2+a3,a2+a3+a4,a3+a4+a5也成等比数列。在等比数列中,若将其脚码成等差数列的项取出组成数列,则新的数列仍旧是等比数列。裂项公式:
=—,=?(—),常用数列递推形式:叠加,叠乘,
18、弧长公式:l=|α|?r。
s扇=?lr=?|α|r2=?;当一个扇形的周长一定时(为L时),
其面积为,其圆心角为2弧度。
19、Sina(α+β)=sinαcosβ+cosαsinβ;Sina(α—β)=sinαcosβ—cosαsinβ;
Cos(α+β)=cosαcosβ—sinαsinβ;cos(α—β)=cosαcosβ+sinαsinβ
【高中数学圆的知识点归纳】相关文章:
初中数学圆的知识点归纳04-15
高中数学水平考知识点归纳12-07
初中数学知识点归纳.07-30
初中数学圆的知识点总结12-05
初中数学圆的方程知识点04-07
初中数学圆知识点总结04-06
高中数学重要知识总复习归纳04-25
初中会考化学知识点归纳03-02
初中化学知识点总结归纳12-08