当前位置:育文网>高中>高中数学> 高中学考数学必考知识点总结

高中学考数学必考知识点总结

时间:2022-06-16 15:05:15 高中数学 我要投稿
  • 相关推荐

高中学考数学必考知识点总结

  在我们平凡无奇的学生时代,说起知识点,应该没有人不熟悉吧?知识点是指某个模块知识的重点、核心内容、关键部分。为了帮助大家掌握重要知识点,以下是小编为大家收集的高中学考数学必考知识点总结,欢迎阅读,希望大家能够喜欢。

高中学考数学必考知识点总结

  高中学考数学必考知识点总结1

  1、向量的加法

  向量的加法满足平行四边形法则和三角形法则。

  AB+BC=AC。

  a+b=(x+x,y+y)。

  a+0=0+a=a。

  向量加法的运算律:

  交换律:a+b=b+a;

  结合律:(a+b)+c=a+(b+c)。

  2、向量的减法

  如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0

  AB-AC=CB.即“共同起点,指向被减”

  a=(x,y)b=(x,y)则a-b=(x-x,y-y).

  3、数乘向量

  实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。

  当λ>0时,λa与a同方向;

  当λ<0时,λa与a反方向;

  当λ=0时,λa=0,方向任意。

  当a=0时,对于任意实数λ,都有λa=0。

  注:按定义知,如果λa=0,那么λ=0或a=0。

  实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

  当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

  当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

  数与向量的乘法满足下面的运算律

  结合律:(λa)·b=λ(a·b)=(a·λb)。

  向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

  数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

  数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。

  4、向量的的数量积

  定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。

  定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。

  向量的`数量积的坐标表示:a·b=x·x+y·y。

  向量的数量积的运算率

  a·b=b·a(交换率);

  (a+b)·c=a·c+b·c(分配率);

  向量的数量积的性质

  a·a=|a|的平方。

  a⊥b〈=〉a·b=0。

  |a·b|≤|a|·|b|。

  高中学考数学必考知识点总结2

  考点一、映射的概念

  1、了解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多

  2、映射:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任意一个元素x,在集合B中都存在的一个元素y与之对应,那么,就称对应f:A→B为集合A到集合B的一个映射(mapping)、映射是特殊的对应,简称“对一”的对应、包括:一对一多对一

  考点二、函数的概念

  1、函数:设A和B是两个非空的数集,如果按照某种确定的对应关系f,对于集合A中的任意一个数x,在集合B中都存在确定的数y与之对应,那么,就称对应f:A→B为集合A到集合B的一个函数、记作y=f(x),xA、其中x叫自变量,x的取值范围A叫函数的定义域;与x的值相对应的y的值函数值,函数值的集合叫做函数的值域、函数是特殊的映射,是非空数集A到非空数集B的映射、

  2、函数的三要素:定义域、值域、对应关系、这是判断两个函数是否为同一函数的依据、

  3、区间的概念:设a,bR,且a

  ①(a,b)={xa

  ⑤(a,+∞)={>a}⑥[a,+∞)={≥a}⑦(—∞,b)

  考点三、函数的表示方法

  1、函数的三种表示方法列表法图象法解析法

  2、分段函数:定义域的不同部分,有不同的.对应法则的函数、注意两点:①分段函数是一个函数,不要误认为是几个函数、②分段函数的定义域是各段定义域的并集,值域是各段值域的并集、

  考点四、求定义域的几种情况

  ①若f(x)是整式,则函数的定义域是实数集R;

  ②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;

  ③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;

  ④若f(x)是对数函数,真数应大于零、

  ⑤因为零的零次幂没有意义,所以底数和指数不能同时为零、

  ⑥若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;

  ⑦若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题

  高中学考数学必考知识点总结3

  1、定义法:

  判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可、

  2、转换法:

  当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断、

  3、集合法

  在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:

  若A∩B,则p是q的'充分条件、

  若A∪B,则p是q的必要条件、

  若A=B,则p是q的充要条件、

  若A∈B,且B∈A,则p是q的既不充分也不必要条件、

  高中学考数学必考知识点总结4

  1、求函数的单调性

  利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,

  (1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;

  (2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;

  (3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数、

  利用导数求函数单调性的基本步骤:

  ①求函数yf(x)的定义域;

  ②求导数f(x);

  ③解不等式f(x)0,解集在定义域内的不间断区间为增区间;

  ④解不等式f(x)0,解集在定义域内的不间断区间为减区间、

  反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

  (1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

  (2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

  (3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立、

  2、求函数的极值:

  设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)、

  可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

  (1)确定函数f(x)的定义域;

  (2)求导数f(x);

  (3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况:

  (4)检查f(x)的``符号并由表格判断极值、

  3、求函数的值与最小值:

  如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值、函数在定义域内的极值不一定,但在定义域内的最值是的、

  求函数f(x)在区间[a,b]上的值和最小值的步骤:

  (1)求f(x)在区间(a,b)上的极值;

  (2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值

  4、解决不等式的有关问题:

  (1)不等式恒成立问题(绝对不等式问题)可考虑值域、

  f(x)(xA)的值域是[a,b]时,

  不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

  不等式f(x)0恒成立的充要条件是f(x)min0,即a0、

  f(x)(xA)的值域是(a,b)时,

  不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0、

  (2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0、

  5、导数在实际生活中的应用:

  实际生活求解(小)值问题,通常都可转化为函数的最值、在利用导数来求函数最值时,一定要注意,极值点的单峰函数,极值点就是最值点,在解题时要加以说明、

  高中学考数学必考知识点总结5

  空间几何体表面积体积公式:

  1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)。

  2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高。

  3、a—边长,S=6a2,V=a3。

  4、长方体a—长,b—宽,c—高S=2(ab+ac+bc)V=abc。

  5、棱柱S—h—高V=Sh。

  6、棱锥S—h—高V=Sh/3。

  7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。

  8、S1—上底面积,S2—下底面积,S0—中h—高,V=h(S1+S2+4S0)/6。

  9、圆柱r—底半径,h—高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h。

  10、空心圆柱R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)。

  11、r—底半径h—高V=πr^2h/3。

  12、r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/313、球r—半径d—直径V=4/3πr^3=πd^3/6。

  14、球缺h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3。

  15、球台r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6。

  16、圆环体R—环体半径D—环体直径r—环体截面半径d—环体截面直径V=2π2Rr2=π2Dd2/4。

  17、桶状体D—桶腹直径d—桶底直径h—桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)。

  高中学考数学必考知识点总结6

  1、“包含”关系—子集

  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

  2、“相等”关系(5≥5,且5≤5,则5=5)

  实例:设A={2-1=0}B={-1,1}“元素相同”

  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

  ①任何一个集合是它本身的子集。AíA

  ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AíB,BíC,那么AíC

  ④如果AíB同时BíA那么A=B

  3、不含任何元素的.集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集

  高中学考数学必考知识点总结7

  1、一些基本概念:

  (1)向量:既有大小,又有方向的量、

  (2)数量:只有大小,没有方向的量、

  (3)有向线段的三要素:起点、方向、长度、

  (4)零向量:长度为0的向量、

  (5)单位向量:长度等于1个单位的向量、

  (6)平行向量(共线向量):方向相同或相反的非零向量、

  ※零向量与任一向量平行、

  (7)相等向量:长度相等且方向相同的向量、

  2、向量加法运算:

  ⑴三角形法则的.特点:首尾相连、

  ⑵平行四边形法则的特点:共起点

  高中学考数学必考知识点总结8

  有界性

  设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界、

  单调性

  设函数f(x)的定义域为D,区间I包含于D、如果对于区间上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的、单调递增和单调递减的函数统称为单调函数、

  奇偶性

  设为一个实变量实值函数,若有f(—x)=—f(x),则f(x)为奇函数、

  几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变、

  奇函数的例子有x、sin(x)、sinh(x)和erf(x)、

  设f(x)为一实变量实值函数,若有f(x)=f(—x),则f(x)为偶函数、

  几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变、

  偶函数的例子有|x|、x2、cos(x)和cosh(x)、

  偶函数不可能是个双射映射、

  连续性

  在数学中,连续是函数的一种属性、直观上来说,连续的.函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数、如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)、

  高中学考数学必考知识点总结9

  (1)不等关系

  感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。

  (2)一元二次不等式

  ①经历从实际情境中抽象出一元二次不等式模型的过程。

  ②通过函数图象了解一元二次不等式与相应函数、方程的联系。

  ③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的`程序框图。

  (3)二元一次不等式组与简单线性规划问题

  ①从实际情境中抽象出二元一次不等式组。

  ②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。

  ③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。

  (4)基本不等式

  ①探索并了解基本不等式的证明过程。

  ②会用基本不等式解决简单的(小)值问题。

  高中学考数学必考知识点总结10

  一、数列定义:

  如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

  等差数列的通项公式为:an=a1+(n-1)d(1)

  前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

  以上n均属于正整数。

  二、解释说明:

  从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

  在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的'等差中项,且为数列的平均数。

  且任意两项am,an的关系为:an=am+(n-m)d

  它可以看作等差数列广义的通项公式。

  三、推论公式:

  从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

  若m,n,p,q∈N,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

  四、基本公式:

  和=(首项+末项)×项数÷2

  项数=(末项-首项)÷公差+1

  首项=2和÷项数-末项

  末项=2和÷项数-首项

  末项=首项+(项数-1)×公差

  高中学考数学必考知识点总结11

  一、平面的基本性质与推论

  1、平面的基本性质:

  公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;

  公理2过不在一条直线上的三点,有且只有一个平面;

  公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

  2、空间点、直线、平面之间的位置关系:

  直线与直线—平行、相交、异面;

  直线与平面—平行、相交、直线属于该平面(线在面内,最易忽视);

  平面与平面—平行、相交。

  3、异面直线:

  平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);

  所成的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);

  两条直线不是异面直线,则两条直线平行或相交(反证);

  异面直线不同在任何一个平面内。

  求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角

  二、空间中的平行关系

  1、直线与平面平行(核心)

  定义:直线和平面没有公共点

  判定:不在一个平面内的'一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)

  性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行

  2、平面与平面平行

  定义:两个平面没有公共点

  判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行

  性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

  3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线

  三、空间中的垂直关系

  1、直线与平面垂直

  定义:直线与平面内任意一条直线都垂直

  判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直

  性质:垂直于同一直线的两平面平行

  推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面

  直线和平面所成的角:【0,90】度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度

  2、平面与平面垂直

  定义:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)

  判定:一个平面过另一个平面的垂线,则这两个平面垂直

  性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直

【高中学考数学必考知识点总结】相关文章:

初中数学必考知识点总结04-25

初中中考数学必考知识点总结04-25

高中数学学考知识点总结04-25

初中化学必考知识点02-26

数学学业水平考高中知识点总结04-06

高中数学学业水平考知识点总结04-13

初中学生数学知识点总结04-25

高中数学水平考知识点归纳12-07

高中数学学业水平考知识点总结大全03-04