- 高中数学重点知识点总结 推荐度:
- 相关推荐
高中数学重点知识点总结4篇
总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它可以帮助我们总结以往思想,发扬成绩,让我们抽出时间写写总结吧。如何把总结做到重点突出呢?下面是小编帮大家整理的高中数学重点知识点总结,欢迎大家分享。
高中数学重点知识点总结1
空间两条直线只有三种位置关系:平行、相交、异面
1、按是否共面可分为两类:
(1)共面:平行、相交
(2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp。空间向量法
两异面直线间距离:公垂线段(有且只有一条)esp。空间向量法
2、若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共点——相交直线;
(2)没有公共点——平行或异面
直线和平面的位置关系:
直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行
①直线在平面内——有无数个公共点
②直线和平面相交——有且只有一个公共点
直线与平面所成的角:平面的'一条斜线和它在这个平面内的射影所成的锐角。
高中数学重点知识点总结2
1、命题的四种形式及其相互关系是什么?
(互为逆否关系的命题是等价命题。)
原命题与逆否命题同真、同假;逆命题与否命题同真同假。
2、对映射的'概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?
(一对一,多对一,允许B中有元素无原象。)
3、函数的三要素是什么?如何比较两个函数是否相同?
(定义域、对应法则、值域)
4、反函数存在的条件是什么?
(一一对应函数)
求反函数的步骤掌握了吗?
(①反解x;②互换x、y;③注明定义域)
5、反函数的性质有哪些?
①互为反函数的图象关于直线y=x对称;
②保存了原来函数的单调性、奇函数性;
6、函数f(x)具有奇偶性的必要(非充分)条件是什么?
(f(x)定义域关于原点对称)
高中数学重点知识点总结3
简单随机抽样的定义:
一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
简单随机抽样的特点:
(1)用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为X%;在整个抽样过程中各个个体被抽到的概率为
(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;
(3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础。
(4)简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样
简单抽样常用方法:
(1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的.样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法。
(2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数。
高中数学重点知识点总结4
什么是不等式?
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z)(其中不等号也可以为<,≤,≥,>中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
数学知识点1、不等式性质比较大小方法:
(1)作差比较法(2)作商比较法
不等式的基本性质
①对称性:a > b,b > a
②传递性:a > b,b > ca > c
③可加性:a > b a + c > b + c
④可积性:a > b,c > 0,ac > bc
⑤加法法则:a > b,c > d,a + c > b + d
⑥乘法法则:a > b > 0,c > d > 0,ac > bd
⑦乘方法则:a > b > 0,an > bn(n∈N)
⑧开方法则:a > b > 0
数学知识点2、算术平均数与几何平均数定理:
(1)如果a、b∈R,那么a2 + b2 ≥2ab;(当且仅当a=b时等号)
(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:
如果为实数,则重要结论
(1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;
(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。
数学知识点3、证明不等式的常用方法:
比较法:比较法是最基本、最重要的方法。
当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。
综合法:从已知或已证明过的不等式出发,根据不等式的'性质推导出欲证的不等式。综合法的放缩经常用到均值不等式。
分析法:不等式两边的联系不够清楚,通过寻找不等式成立的充分条件,逐步将欲证的不等式转化,直到寻找到易证或已知成立的结论。
【高中数学重点知识点总结】相关文章:
高中数学重点知识点总结11-18
高中数学知识点总结04-07
高中数学导数知识点总结05-09
高中数学知识点总结11-12
高中数学全部知识点总结04-25
高中数学统计知识点总结10-21
初中重点数学知识点总结04-25
高中数学必修2知识点总结11-22
文科高中数学知识点总结04-25