当前位置:育文网>教学文档>教案> 小学数学教案

小学数学教案

时间:2023-07-21 11:32:57 教案 我要投稿

小学数学教案【合集10篇】

  作为一名教师,常常要写一份优秀的教案,编写教案助于积累教学经验,不断提高教学质量。那么写教案需要注意哪些问题呢?下面是小编收集整理的小学数学教案10篇,欢迎大家分享。

小学数学教案【合集10篇】

小学数学教案 篇1

  教学目标:

  1、经历猜测、实验、数据整理和描述的过程,体验事件发生的可能性。

  2、知道事件发生的可能性是有大小的,能对一些简单事件发生的可能性做出预测,并阐述自己的理由。

  3、积极参加摸棋子活动,在用可能性描述事件的过程中,发展合情推理能力。

  教学过程:

  一、创设情境

  师生谈话,由围棋子是什么颜色的引出把6个黑棋子,4个白棋子放在盒子中和“说一说”的问题,让学生发表自己的意见。

  (设计意图:由围棋子是什么颜色的问题引入学习活动,既调动学生学习的兴趣,又是摸棋子活动的准备。)

  二、摸棋子实验A

  1、教师提出摸棋子的活动和用“正”字记录黑白棋子的.出现次数的要求,全班同学轮流摸棋子。

  (设计意图:学生猜并摸出棋子,亲身感受事件发生的不确定性。)

  2、交流学生统计的情况,把结果记录在表(一)合计栏。

  (设计意图:使学生经历收集整理的过程,为下面的交流作铺垫。)

  3、提出:观察全班摸棋子的结果,你发现了什么?让学生充分发表自己的意见。

  (设计意图:从全班统计结果的描述中,感受统计的意义,为体验可能性的大小积累直观经验和素材。)

  三、摸棋子实验B

  1、提出:如果把盒子中的棋子换成9个黑的,1个白的,会出现什么结果?学生发表意见后,全班进行摸棋子实验。然后整理统计记录。(设计意图:改变事物的条件,让学生猜测,再摸,发展学生的数学思维和合理推理能力,获得愉快的学习体验。)

  2、让学生观察描述统计结果。

  然后提出:谁能解释一下,为什么这次摸出黑色棋子多呢?鼓励学生大胆发表自己的意见。

  (设计意图:在观察描述摸棋子结果的过程中,感受摸棋子实验的意义,初步体验摸出什么颜色的棋子的次数和盒子中放的这种颜色的棋子个数有关系。)

  四、摸棋子实验C

  1、提出:如果把盒子中的棋子换成1个黑的,9个白的,让学生猜一猜摸中哪种颜色棋子的次数多,再摸。然后整理统计结果,填在表(三)合计栏中,并和大家猜的结果进行比较。

  (设计意图:在学生已有活动经验的背景下,进行猜测、实验,发展学生的合理推理能力,激发参与活动的兴趣。)

  2、提出:谁能解释一下,为什么这次摸出白色棋子多呢?鼓励学生大胆发表自己的意见。

  (设计意图:在两次实验结果的分析比较中,再次体验到,摸中哪种颜色的棋子的可能性和放入盒子里这种颜色棋子的个数有关系。)

  五、可能性大小

  1、提出“议一议”的问题,让学生讨论:摸中哪种颜色的棋子的次数跟盒子中棋子个数有关系吗?得出盒子中哪种颜色的棋子多,摸中的次数就多,反之就少。

  (设计意图:在亲身实验的基础上,认识盒子中放棋子的情况和摸棋子结果的关系。)

  2、教师介绍可能性大小的含义。鼓励学生用可能性大小描述实验的结果。

  (设计意图:理解可能性大小的部分意义,学会用可能性大小描述实验结果。)

  六、课堂练习与问题讨论

  学生独立完成练习。

  教学反思:

小学数学教案 篇2

  教学目标:

  1、巩固千克、克、吨的认识,进一步建立千克、克和吨的质量观念。

  2、结合生活实际,解决与千克、克和吨有关的实际问题。

  3、初步经历质量单位的形成过程,结合生活实际解决问题。

  4、感受数学与实际生活的联系。

  教学重点:巩固千克、克、吨的认识。

  教学难点:结合生活实际,解决与千克、克、吨有关的.实际问题。

  教学设计:

  一、创设情境,导入新课

  某超市招聘售货员的考试,要求应试的人员必须掌握最基础的质量单位的有关知识,刚好我们才学过了这方面的知识,大家有没有兴趣试一试?

  二、合作交流,解读探究

  1、称物品,认秤。

  学生独立完成并说一说为什么下面两样物品称出的质量用“千克”作单位。

  2、贴标签。

  以给商品贴上质量标签的游戏形式出现,帮助学生进一步了解千克和克的实际质量,吸引学生参与到学习过程中来。

  3、补标签。

  教师创设情境:“下面这些物品和动物的质量标签上的质量单位漏写了,你能把它们填补完整吗?”学生用不同的手势表示“千克、克、吨”,集体完成,并请学生陈述自己的理由。

  4、比较下面物品的轻重。教师用第3题中单纯的式子变为比较两种标明质量的物品轻重,吸引学生参与。

  复试

  1、第5、6题。学生独立完成,集体订正。

  2、第7题。学生独立观察思考、理解图意;尝试列式解答;全班交流,说说自己的想法。

  3、第8题。学生独立尝试解决;同桌交流。

  4、第9题。这是一个开放性的问题,教学时,可以先让学生说说这幅图的意思,在此基础上,以小组为单位共同解决问题,给每个学生发表自己见解的机会。最后全班交流,看哪个小组想出的方法最多。

  三、应用迁移,巩固提高

  第10题。先让学生独立思考,然后在小组交流,最后以小组为单位进行实际操作。学生解决这个问题的方法可能有:10克10克地称5次;先称30克,再称20克;先称2个20克,再称10克等。

  6000克=( )千克 3 g=( )g

  4吨=( )千克 6000 t =( )g

  4千克500克=( )克 3吨70千克=( )千克

  四、总结反思,拓展升华

  第11题。这道思维训练题蕴含着代换的数学思想,教学时可以让学生用学具代替苹果梨子摆一摆,增强直观性。解题思路是:3个苹果和3个梨合起来刚好和9个桃子一样重,所以1个梨和1个苹果应和3个桃子一样重。学生若有其他的合理想法,教师都应给予肯定和鼓励。

  五、作业:作业本上的作业。

  教学反思:

小学数学教案 篇3

  教学内容:

  连加

  教学目的:

  1、掌握两步计算的正确计算方法

  2、初步体会计算的变化,培养和发展学生的口算和计算能力

  2、通过操作,培养学生数感和主动探索积极学习的`精神

  重点难点:

  掌握计算顺序

  教学过程:

  一、激趣导入

  课件出示小鸡,这是什么?

  你小鸡吗?

  如果让你来养小鸡,你会怎样做?

  二、合作探究

  小明家也养了小鸡,咱们到他家去看看吧?

  (出示课件)

  看图上画有什么?

  师:小明家是养鸡专业户,他们家养了很多鸡,他的父母靠知识和科技养鸡终于办起了这个大型养鸡场,小明今年才7岁,却已经懂得了帮父母的忙经常会帮着喂小鸡。你瞧,(课件出示5只小鸡,引导学生说出:小明喂了5只小鸡)说说图上画有什么?

  课件动画播放:又来了2只,现在呢?谁能说出图意?

  为了区别先走的我们通常都用线划掉来表示,师示范

  表示再次去掉可以用虚线框起来

  板书算式:8-2-2

  想一想:这题应该怎样计算?

  小组讨论后汇报解法。(若有生说先算2+2就把8-(2+2)的算式写出来以之对比。

  2、练习:P73页的做一做右图

  独立看图,说出图意

  三、练习

  第74页的第5至8题

  四、课堂小结

  今天同学们都学到了什么?

小学数学教案 篇4

  圆锥的体积教学目的:使同学初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,发展同学的空间观念。

  学具准备:等底等高的圆柱和圆锥8组,比圆柱体积多的沙土

  教学过程:

  一、复习

  1、圆锥有什么特征?

  使同学进一步熟悉圆锥的特征:底面,侧面,高和顶点。

  2、圆柱体积的计算公式是什么?

  指名同学回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。

  二、导人新课

  我们已经学过圆柱体积的计算公式,那么圆锥的'体积是不是和圆柱体积有关呢?今天我们就来学习圆锥体积的计算。

  板书课题:圆锥的体积

  三、新课

  1、教学圆锥体积的计算公式。

  师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?

  指名同学叙述圆柱体积计算公式的推导过程,使同学明确求圆柱的体积是通过切拼生长方体来求得的。

  师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?

  先让同学讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。

  教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么一起的地方?”

  然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

  同学分组实验。

  汇报实验结果。先在圆锥里装满沙土,然后倒入圆柱。正好3次可以倒满。

  多指名说

  接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。请大家注意观察,看看能够倒几次正好把圆柱装满?

  问:把圆柱装满一共倒了几次?

  生:3次。

  师:这说明了什么?

  生:这说明圆锥的体积是和它等底等高的圆柱的体积的。

  多找几名同学说。

  板书:圆锥的体积=1/3 × 圆柱体积

  师:圆柱的体积等于什么?

  生:等于“底面积×高”。

  师:那么,圆锥的体积可以怎样表示呢?

  引导同学想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。

  板书:圆锥的体积= 1/3 ×底面积×高

  师:用字母应该怎样表示?

  然后板书字母公式:V=1/3 SH

  师:在这个公式里你觉得哪里最应该注意?

  2、巩固练习

  (1)已知圆柱和圆锥等底等高。圆柱的体积是45立方厘米,圆锥的体积是( )立方厘米。已知圆柱和圆锥等底等高。圆锥的体积是20立方厘米,圆柱的体积是( )立方厘米。

  (2)求下面圆锥的体积。

  已知底面面积是9.6平方米,高是2米。

  底面半径是4厘米,高是3.5厘米。

  底面直径是4厘米,高是6厘米。

  在列式时注意什么?( ) 在计算时,我们怎样计算比较简便?(能约分的要先约分)

  (3)判断:

  (l)圆锥体积是圆柱体积的1/3( )

  (2)圆柱体的体积大于与它等底等高的圆锥体的体积。( )

  (3)假如圆柱圆锥等底等高,圆柱体积是圆锥的3倍,圆锥体积是圆柱体积的2/3。( )

  (4)圆锥的底面积是3平方厘米,体积是6立方厘米。( )

小学数学教案 篇5

  教学目标:

  1.通过知识迁移,使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数。2.使学生初步了解一个小时的近似数时表示的精确程度,理解求得一个小数的近似数时,小数末尾的“0”不能去掉。3.进一步培养学生运用旧知迁移新知和类比推理的能力。

  教学重点:掌握用“四舍五入法”求一个小数的近似数。

  教学难点:求小数的近似数时,小数末尾的“0”不能去掉的理解。

  教学过程:

  一、复习旧知,情境导入。

  1.师:同学们好!很高兴今天能和大家一起学习。我一看见同学们就感觉很聪明,是不是这样?既然如此,老师就来考考你们,看看同学们表现如何!

  2.板书出示:老师这有个数,请省略万后面的尾数,求出它的近似数。

  先写黑板:12953≈1万

  3.师:你是怎么想的?(省略万以后的位数,就是看尾数的最高位千位。千位是2,比5小,舍去。)

  师:得数约等于1万,千位还可以是哪些数?(0、1、3、4)尾数的最高位比5小,直接舍去尾数。

  师:如果得数约等于2万,千位上又可以是哪些数呢?(5、6、7、8、9尾数的最高位等于或大于5,向前一位进1,再舍去尾数。)

  4.师:刚才我们求的是整数的近似数,你能说出求整数的近似数的方法吗?

  学生说方法。(板书:求整数的近似数,先看所省略的最高位上的数是不是满5,再用四舍五入法保留。)学生齐读。同学们读得真好,和你们一起学习真快乐!

  二、整合情景,探究交流。

  1.师:今天我们来研究求一个小数的近似数,在实际应用小数时,往往没必要说出它的准确数,只要它的近似数就可以了。如:昨天豆豆体检,量得身高是(板书):0.984米。平常不需要说得那么准确,我们一般怎么说豆豆的身高呢?(学生讲,红红姐姐说豆豆身高0.98米。或1米。看回答情况板书。)

  这就是0.984的近似数,你是怎么得到豆豆的身高的近似数?你们能利用已学的知识来说一说吗?

  保留两位小数,就要省略百分位后面的尾数,看千分位。千分位是4,小于5,把尾数舍去。所以0.984≈0.98。

  谁再来说一遍?(2-3名同学。表扬。)

  2.(如果说的是1米,0.984的近似数还可以是多少?)小白弟弟的说法和小红姐姐不一样,他认为“豆豆身高约1米。”你能说说他的想法吗?

  (保留整数,就要省略整数后面的尾数,看十分位。十分位是9,大于5,向前一位进1。所以0.984≈1。)谁再来说一遍?。请同桌把这两题的思考过程互相说一说。

  3.同学们真能干,其实这就是我们今天要学习的'求小数的近似数。(板书课题)请同学们回忆一下我们求近似数的过程,你发现求一个小数的近似数是怎样做的?(学生回答。)求小数的近似数和求整数的近似数的方法相同。板书:小数。全班读--求小数的近似数,先看所省略的最高位上的数是不是满5,再用四舍五入法保留。

  4.现在,老师来考考你们,0.984可以保留整数、保留两位小数,如果0.984保留一位小数,应该是多少?(保留一位小数,就要省略十分位后面的尾数,看百分位。百分位是8,大于5,向前一位进1。十分位上9加1得10,再向个位进1,所以0.984≈1.0。)

  5.学习了求小数的近似值,老师有一些疑惑不能解开,(幻灯出示)0.984保留一位小数得1.0,小数末尾的0能去掉吗,为什么?(指名回答。)

  不能,题目要求保留一位小数,必须要0占位。求近似数时,小数末尾的零不能去掉。

  求得的近似数1.0和1比较,哪一个更精确一些,为什么?

  幻灯演示:保留整数为1,原来的准确长度在1.4与0.5之间,保留一位小数是1.0,原来的长度在0.95与1.04之间。尽管两个数的大小相等,但表示的精确程度不同,小数保留的位数越多,精确的程度越高。

  三、练习。(智力闯关。)

  同学们利用我们以前学过的知识“求整数近似数的方法来求一个小数的近似数”,希望同学们在今后的学习中也能运用我们学过的知识来解决问题。

  1.第一关。保留一位小数。

  0.58≈0.63.788≈3.8

  精确到百分位。精确到百分位就是保留几位小数?

  12.004≈12.001.987≈1.99

  保留整数。

  9.956≈109.0448≈9

  2.第二关。在□里填数。

  2.9□≈2.98.5□7≈8.56

  3.第三关。

  姚明的身高约为2.2米,姚明的身高可能是多少米?

  2.15(6、7、8、9)2.155……

  2.20(1、2、3、4)2.……

  四、全课。

  你今天有哪些收获?保留一位小数,就是精确到十分位,……

  板书设计

  求小数的近似数

  12953≈1万0.984≈0.98保留两位小数,看千分位。

  小于5,舍去。小于5,舍去

  0.984≈1.0保留一位小数,看百分位。

  0.984≈1保留整数,看十分位。

  大于5,向前一位进1。

小学数学教案 篇6

  教学内容:义务教育教科书北师大版小学数学四年级下册35-37页。

  教材分析:

  本节课是北师大版四年级数学下册第三单元《小数乘法》的第二课时。主要帮助学生掌握小数点移动引起小数大小变化的规律,创设情境,借助小数点搬家的规律来解决相关的问题,拓展学生的思路,引导他们自主探究、合作交流,应用知识解决实际问题。

  学情分析:

  学生在日常生活中也接触过小数,已经对小数的相关知识有一定的了解,学生在这个基础上学习小数点的移动引起小数大小变化的规律没有太大的难度。基于学生现有的知识水平,借助多媒体辅助教学,设置“小数点搬家”的情境,激发学生的学习兴趣,从设疑引趣到创设情境、激发探索、归纳发现、形成知识、实践应用。让学生经历知识的形成过程,归纳出小数点移动引起小数大小变化的规律,并应用这个规律来解决实际问题。

  教学目标:

  1.知识与技能:在解决实际问题的过程中,掌握小数点位置的移动引起小数大小变化的规律,并能解决实际问题。

  2.过程与方法:亲历小数点向左、向右移动引起小数大小变化的过程,体验到发现问题和解决问题的成就感。

  3.情感态度与价值观:借助多媒体,创设自主探索的空间,提高学生数学的综合素养。

  教学重点:理解小数点位置的移动引起小数大小变化的规律。

  教学难点:探索概括出小数点的移动引起小数大小变化的规律。

  教学准备:多媒体,预习卡,数字卡片,小圆片

  教学过程:

  一、故事导入:

  师:同学们你们喜欢听故事吗?

  生:喜欢。

  师:今天老师给你们讲个故事-----“小数点搬家”。

  师:在美丽的大森林里,蚂蚁开了一家快餐店。你看,它的快餐一份卖0.01元。开张之后,生意非常火爆。可是过几天蚂蚁一算账就郁闷了:不但没有赚钱,反而是亏了很多钱。小数点也很不高兴,心想:我办搬搬家吧!于是,它向右轻轻一跳,快餐一份就变成了0.10元。

  客人虽然少了很多,可是蚂蚁一算账很开心,因为赚了一些钱。小数点也很高兴,心想:这肯定是我搬家的功劳,我再搬搬家吧,让你发大财。于是,它又向右轻轻跳了一下,这时候快餐的价格就变成了0.01元。这下可糟糕了,一个客人也没有了。

  【设计意图:借助教材中“蚂蚁快餐店”的情境讲故事,激发了学生的学习兴趣,引起强烈的求知欲。】

  一、讲授新课

  (一)小数点向右移动:

  1.师:同学们,在这个故事中,为什么客人会越来越少呢?

  生:因为快餐价格越来越贵。

  师:为什么价格会越来越贵?

  生:因为小数点在向右搬家。

  师:小数点向右搬家,在数学上我们就叫做“小数点向右移动”。

  2.(ppt出示快餐的三个价格:0.01元→0.10元→1.00元)

  师:这是快餐的三个价格。同学们观察这三个数,小数点的位置发生了什么变化?

  生:0.01的小数点向右移动一位得到0.10,0.10的小数点向右移动一位得到1.00,从0.01到1.00小数点一共向右移动了两位。

  【设计意图:由“快餐价格”的变化的观察来理清图意,为新知的学习做好铺垫。】

  师:小数点移动一位、两位,数的大小就会发生变化,这种变化有什么规律呢?昨天已经让同学们预习了,通过预习,你得到什么结论?

  生:从0.01到0.10,小数点向右移动一位,得到的数就扩大到原数的10倍;从0.01到1.00,小数点向右移动两位,得到的数就扩大到原数的100倍。

  师:你是用什么方法验证的呢?请你拿出预习卡,把你的方法与小组同学交流分享。

  四人小组讨论交流。

  3.小组汇报验证结论的方法

  预设:

  (1)改写为以元角分为单位

  因为0.01元=1分,0.10元=1角=10分,1.00元=10角=100分,所以0.10是0.01的10倍,1.00是0.01的100倍,验证了结论。

  (2)利用数位顺序表。

  0.01、0.10、1.00,这三个数的计数单位都是0.01,所以0.10中有10,个0.01,1.00中有100个0.01,所以0.10是0.01的10倍,1.00是0.01的100倍。

  (3)利用面积模型进行说明

  0.01是把1平均分成100份,取其中的1份,所以1是0.01的100倍;0.1是把1平均分成10份,取其中的1份,所以0.1是0.01的10倍。

  (4)其他方法(如有学生改写为以米、分米、厘米为单位进行说明)

  【设计意图:通过自主探究、小组合作的学习方式,一方面可以让学生去发现、体验、创造,最终获取新知;另一方面,也可以增强学生的合作意识,在学习中碰撞出智慧的火花。】

  4.师:同学们,我们刚才用这么多的方法,说明了0.10是0.01的10倍,1.00是0.01的100倍,其实就是说明了这两个规律。

  (ppt出示:小数点向右移动一位,得到的数就扩大到原数的10倍;

  小数点向右移动两位,得到的数就扩大到原数的100倍。)

  学生读一读这两个规律。

  师:要是小数点向右移动三位呢?

  生:得到的数就扩大到原来的1000倍。

  (ppt出示:......)

  师:同学们,老师这里用了省略号,我省略了什么?

  生:按照这个规律往下推导还有很多。

  师:同学们,小数点向右移动一位,得到的数就扩大到原数的10倍;要是我想把一个数扩大到原数的10倍,这时候要怎么办?

  生:把这个数的小数点向右移动一位。

  师:比如0.01×10,这时候,只要把0.01的小数点向右移动一位,得到的数0.1就是0.01×10的积。

  类似方法教学0.01×100=,0.01×1000=(强调数位不够,添0补位)

  【设计意图:通过师生归纳,学生对知识更加清晰;举一反三让学生学会按照规律类推出新知识。】

  5.及时练习:

  口答:

  (1)把0.04的小数点向右移动1位,得到的数扩大到原数的( )倍。

  (2)把1.045的小数点向( )移动( )位,得到104.5,扩大到原数的( )倍。

  你会算吗?

  0.78×1 0 = 0 .35×100 = 0.82×1000=

  【设计意图:及时练习让学生所学即刻得到巩固。】

  (二)小数点向左移动:

  1.师:同学们,通过刚才的学习,我们知道了小数点向右移动一位,得到的数是比原数扩大了;要是小数点向左移动一位,得到的数可能是?

  生:缩小了。

  2.师:同学们来看,这是1,1的小数点在哪里?

  生:1的右下角。

  (ppt出示:《小数点搬家》教学设计(李莉))

  师:仔细观察这三个数,1是怎么得到0.1和0.01的。

  生:1的小数点向左移动一位得到0.1,1的小数点向左移动两位得到0.01。

  师:小数点向右移动一位、两位、......我们得到重要的规律,那小数点向左移动一位、两位、......你又发现了什么规律呢?把你发现的规律和同桌说一说。

  3.生说说发现的规律:

  预设1:小数点向左移动一位,得到的数缩小到原数的`1/10;

  小数点向左移动两位,得到的数缩小到原数的1/100。

  预设2:小数点向左移动一位,得到的数缩小到原数的10倍;

  小数点向左移动一位,得到的数缩小到原数的100倍;

  (此时师纠正:缩小10倍、100倍的说法缺乏科学性,我们应该说缩小到1/10,1/100)

  4.小老师上台解释:为什么小数点向左移动一位,得到的数缩小到原数的1/10。

  结合面积模型大致做如下解释:

  《小数点搬家》教学设计(李莉)

  师补充:把1平均分成10份列式应该是:1÷10。缩小到原数的1/10,其实就是1÷10.

  师:如果想把一个数缩小到原数的1/10,比如1÷10=,应该怎样才能得到商?

  生:把1的小数点向左移动一位。

  师:(结合ppt演示讲解)把1的小数点向左移动一位,整数部分空着怎么办?

  生:添0补齐数位。

  5.类似讲解:小数点向左移动两位,得到的数缩小到原数的1/100。

  【设计意图:让学生经历知识的形成过程,建立正确的表象,并利用数学中最重要的方法——比较法,探索、归纳出小数点向左移动,引起小数大小变化的规律,从而从形象思维过渡到抽象思维,进而达到感知新知的目的。】

  6.及时练习:

  口答:

  (1)把54.2的小数点向左移动一位,得到( ),这个数缩小到原数的( )

  (2)把54.2缩小到原来的1/1000是( )

  你会算吗?

  12.6÷1 0 = 40.1÷100 = 70.5÷1000 =

  【设计意图:及时练习让学生所学即刻得到巩固。】

小学数学教案 篇7

  《分数与有限小数的关系》是小学数学第十册第五单元“分数和小数的互化”中的例3,原教材安排与例1、例2合并成一节课,教学例3时,先把3/4等5个分数化成小数,接着把5个分数的分母分解质因数,最后发现并归纳出结论。如果按照这样的安排,整个教学过程显得比较平淡、枯燥、抽象,无法突现出分数和有限小数的这个关系的规律性,也使学生的思维受到限制,缺乏灵活性和探究性,也无法培养学生的创新精神。

  本节课我只安排例3这部分内容,重点突出:一个最简分数是否能化成有限小数的这个规律,在教学中创设问题情境,让学生自主探究,让学生对为什么要分解分母的的质因数及结论中“一个最简分数”的出现不会感受到突然,变“被动”为“主动”,这样掌握住的规律才是“牢固的规律”,才是“理解的规律”。

  一、教学目标的确定

  1、 知识性目标:使学生掌握一个最简分数能否化成有限小数的规律,并能应用规律灵活、熟练地进行判别。

  2、 发展性目标:在探索知识的过程中,发展学生观察分析、推理判断能力,培养学生提出问题、解决问题的能力。

  3、 创新性目标:通过观察、操作,小组合作等学习策略的.应用,激发学生进行发散思维,求异思维,培养学生的创新精神。

  二、教学模式的更新

  本节我选用了“猜想――探究――发现――引伸”的教学模式来教学。以猜想提出为起始,大部分时间是学生在“动”,检验――质疑――发出1――举例――质疑――发现2――最后引伸。我力求突出学生的“亲历性”,即知识让学生去探索,规律让学生去发现,结论让学生去归纳,培养学生具有创造性学力和发展性学力,开发学生的潜能,使学生不仅掌握规律,还学会数学的思想。

小学数学教案 篇8

  教学过程:

  一、回顾旧知,复习铺垫

  1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。

  教师把学生举的例子板书出来,并注明比的各部分的名称。

  2、我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让学生求出它们的比值。

  12:16 : 4.5:2.7 10:6

  学生求出各比的比值后,再提问:哪两个比的比值相等?

  (4.5:2.7的比值和10:6的比值相等。)

  教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?这就是这节课我们要学习的内容。(板书课题:比例的意义)

  二、引导探究,学习新知

  1、教学比例的意义。

  (1)出示P32例1。

  每面国旗的长和宽的比分别是多少?指名分别算出一面国旗长和宽的比。

  5: 2.4:1.6 60:40 15:10

  每面国旗长和宽的比值有什么关系?(都相等)

  5: =2.4:1.6 60:40=15:10 2.4:1.6=60:40

  象这样表示两个比相等的式子叫做比例。

  比例也可以写成: = =

  (2)我们也学过不同的两个量也可以组成一个比,如:

  一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

  时间(时)

  2

  5

  路程(千米)

  80

  200

  指名学生读题。

  教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位时,第二栏表示路程,单位千米。 这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问 边填写表格。)

  你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?教师根据学生的回答,板书:

  第一次所行驶的路程和时间的比是80:2

  第二次所行驶的路程和时间的比是200:5

  让学生算出这两个比的比值。指名学生回答,教师板书:80:2=40,200:5=40。让学生观察这两个比的比值。再提问:你们发现了什么?(这两个比的比值都是40,这两个比相等。)

  教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。

  指着比例式4.5:2.7=10:6提问: 谁能说说什么叫做比例?引导学生观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让学生齐读一遍。从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?

  根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。例如判断10:12和35: 42这两个比能不能组成比例,先要算出 10: 12= ,35: 42= ,所以 10:12=35:42。(以上举例边说边板书。)

  (3)比较比和比例两个概念。

  教师:上学期我们学习了比,现在又知道了比例的意义,那么比和比例有什么区别呢?

  引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

  (4)巩固练习。

  ①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表示;不能就用两手的食指交叉表示。)

  6:3和12:6 35:7和45:9 20:5和16:8 0.8:0.4和0.3:0.6

  学生判断后,指名说出判断的根据。

  ②做P33做一做。

  让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的`,看看自己做得对不对。

  ③给出2、3、4、6四个数,让学生组成不同的比例(不要求举全)。

  ④P36练习六的第1~2题。

  对于能组成比例的四个数,把能组成的比例写出来。组成的比例只要能成立就可以。

  第4小题,给出的四个数都是分数,在写比例式时,也要让学生写成分数形式。

  2、教学比例的基本性质

  (1)教学比例各部分的名称。

  教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书P34,看看什么叫比例的项、外项、内项。

  指名让学生指出板书中的比例的外项、内项。

  (2)教学比例的基本性质。

  教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:

  两个外项的积是805=400

  两个内项的积是 2200=400

  你发现了什么?(两个外项的积等于两个内项的积。)板书:805=2200是不是所有的比例都是这样的呢?让学生分组计算前面判断过的比例式。通过计算,大家发现所有的比例式都有这个共同的规律,谁能用一句话把这个规律说出来?

  最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。

  如果把比例写成分数形式,比例的基本性质又是怎样的呢?(指着80:2=200:5)教师边问边改写成: =

  这个比例的外项是哪两个数呢?内项呢?

  因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样?

  学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。

  3.巩固练习。

  前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。

  (1)应用比例的基本性质判断3:4和6:8能不能组成比例。

  (2)P34做一做。

  三、巩固深化,拓展思维

  1、说说比和比例有什么区别?

  2、填空

  5:2=80:( ) 2:7=( ):5 1.2:2.5=( ):4

  3、先应用比例的意义,再应用比例的基本性质,判断下面那组中的两个比可以组成比例。

  (1) 6:9和 9:12 (2)1.4:2 和 7:10 (3) 0.5:0 .2和 :

  4、下面的四个数可以组成比例吗?把组成的比例写出来。

  2 、3 、4和6

  四、全课小结,提高认识

  通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

  五、课堂练习,辅助消化

  P36~37第3~6题。

  六、课外补充,拓展延伸

  1、判断。

  (1)如果3a=5b,那么5:a=3:b。

  (2) : 和 : 中,能与 : 组成比例的是 : 。

  (3)在一个比例中,两个外项分别是7和8,那么两个内项的和一定是15。

  2、用 、8、 、12四个数分别作为比例的项,你能组成几个比例?

  3、请你用20以内的四个合数组成一个两个比的比值都是 的比例。

  教学目的:

  1、使学生理解比例的意义和基本性质,能正确判断两个比是否能组成比例。

  2、通过引导探究、概括归纳、讨论、合作学习,培养学生抽象概括能力。

  3、使学生初步感知事物间是相互联系、变化发展的。

  教学重点:比例的意义和基本性质

  教学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。

小学数学教案 篇9

  教学内容:

  义务教育课程标准实验教科书青岛版第71页《求小数的近似数》。

  教学目标:

  1.借助已有经验,使学生掌握求一个小数近似数的方法,能够正确地求一个小数的近似数。

  2.在解决问题的过程中,培养学生自主学习的能力,初步学习用猜想、比较、归纳等数学方法学习数学知识。

  3.通过独立思考,培养学生认真审题、解题的良好学习习惯。

  教学过程:

  一、创设情景

  1.谈话:同学们,本单元前面几个信息窗我们学习了形形色色的鸟蛋和龟蛋带给我们的数学知识。本节课我们继续来学习本单元最后一个信息窗绿毛龟蛋带给我们的数学知识。

  出示情境图,仔细观察画面,你知道了什么?你又能提出哪些数学问题?

  学生合作交流。

  2.谈话:这节课重点解决他们说的结果为什么不一样和绿毛龟蛋的宽径约是多少这两个问题。其他问题放在问题口袋里以后解决,可以吗?

  [设计意图]激发学生的学习愿望和参与动机是引导学生主动学习的前提,通过清晰生动的情境图中出现的两位同学不同的测量结果让学生观察讨论,学生意见不一,于是需要寻找正确的判断方法,由此激起学生探寻新知的强烈愿望。

  二、探究新知

  1.学生独立思考他们说的结果为什么不一样?这一问题。

  谈话:观察两位同学说的结果,你能发现什么?

  让学生观察,引导学生发现:小华读出的结果是一个一位小数,小明读出的结果是一个整数。

  谈话:对,求3.94的近似数,根据不同的要求,既可以保留一位小数,也可以保留整数。请同学们选择一种情况,根据我们求整数的.近似数的方法,研究一下怎样求一个小数的近似数。

  学生独立研究后,再在小组内交流。

  谈话:哪位同学愿意说说你是怎样求3.94的近似数的?把你的方法向大家介绍一下。

  谈话:你的方法很正确,还有哪位同学与他求得的近似数不同?

  谈话:你的方法也很正确。因此,我们在求一个小数的近似数时,依然运用了四舍五入法,关键是看精确到哪一位。

  2.学生独立思考绿毛龟蛋的宽径约是多少?这一问题

  学生独立思考后,引导学生讨论什么时候小数的近似数的2,什么时候小数的近似数的2.0。

  讨论得出:求一个小数的近似数时,保留小数的数位不同,精确程度也不同。

  [设计意图]这一环节教学时让学生自己去观察,在观察中探究新知,在交流中归纳新知,把学习的主动权交给学生,在观察讨论过程中教谈话为学生创设自由选择的空间,让学生体会自由选择的轻松和快乐。

  三、巩固应用

  1.黄河的流域面积是75.14万平方千米。(保留一位小数)

  2.把1.463保留整数、把1.463保留一位小数和把1.463保留两位小数这三种说法的结果是否是一样的?

  3.小华的体重保留整数是45千克,他的体重可能是多少千克?

  [设计意图]练习中让学生交流不同的思考方法,鼓励学生思维的创新,方法的简洁,但也照顾学生不同的认知水平,尊重学生的学习成果。

  四、感悟收获

  谈话:今天大家学得愉快吗?你们最大的收获是什么?

  (学生自由说说说本课的收获及体验)

  课后反思:

  教师是教学的组织者和引导者,而不仅仅是解题的指导者。本节的教学我通过几个问题,几句话做适当的引导,而留给学生大量的时间让他们去观察,去思考,去交流,在观察中探究新知,在交流中归纳新知,把学习的主动权交给学生。在学习讨论的过程中,教师为学生创设自由选择的空间,引导学生敞开思维,多角度探索,实现高效率学习。

小学数学教案 篇10

  教学内容:教科书第P64-65页

  教学目标:

  1、使同学结合具体情境进一步认识分数,知道把一些物体看作一个整体平均分成若干份,其中的一份可以用几分之一表示;能计算简单的分母在10以内的同分母分数加法。

  2、使同学能运用生活经验和分数的知识,解决简单的实际问题。

  教学重点难点:

  使同学体会分数与实际生活的联系,初步了解分数在实际生活中的应用;积极参与具体的数学活动,获得与他人一起探索解决问题的经历,发生对数学的亲切感。

  教学准备:例图、学具

  教学过程:

  一、复习

  把一张长方形纸平均分成4份,每份是它的( ),3份是它的( )

  二、教学例题

  1、(出示题图)引导同学看图。

  提问:把一盘桃平均分给4只小猴,每只小猴分得这盘桃的几分之几?

  你是怎么想的呢?

  讨论:这盘桃该怎么分?每只小猴分得这样的几份?是这盘桃的几分之几?

  2、上个学期我们认识的分数都是把一个物体平均分成几份,其中的一份是这个物体的几分之一。今天我们学习的内容和以前学的有什么不一样呢?(把一些物体平均分成几份)

  小结:把一些物体平均分成几份,这样的一份也可以用几分之一来表示。

  3、想一想

  假如把这盘桃平均分给2只小猴,每只小猴分得这盘桃的几分之几?

  把你的想法告诉大家。

  提问:把这盘桃平均分成几份?每只小猴分得其中的几份?是这盘桃的几分之几?2个桃是4个桃的几分之几?

  三、想想做做(64-65页)

  1 、你能填一填,说一说吗?

  (上面一排题目都是平均分后每份是1个的情况,第二排都是平均分后每份是几个的'情况。)

  进一步让同学体会到:只要把一些物体看作一个整体,把它平均分成几份,这样的一份就是这个整体的几分之一。

  2、先填写,然后交流。

  把12个小方块平均分成了几份,涂色的有这样的几份,就是占这12个小方块的几分之几。

  3、先分一分,说说每份是几个,再涂一涂。

  4、集体拿一拿这堆小棒的二分之一和三分之一。

  自由拿这堆小棒的几分之几,交流。

  5、计算,说说你是怎么想的。

  四、本课小结。

  把一些物体平均分成几份,这样的一份也可以用几分之一来表示。

  五、作业

  板书

  认识几分之一

  把一些物体平均分成几份,这样的一份也可以用几分之一来表示。

【小学数学教案】相关文章:

小学数学教案02-07

小学数学教案07-19

小学的数学教案03-24

小学数学教案04-07

小学数学教案07-20

《括号》小学数学教案02-15

小学趣味数学教案03-24

【精】小学数学教案07-20

小学数学教案【荐】07-20

小学数学教案【推荐】07-20