当前位置:育文网>教学文档>教案> 圆的面积教案

圆的面积教案

时间:2023-08-04 13:41:26 教案 我要投稿

圆的面积教案汇编(15篇)

  作为一位不辞辛劳的人民教师,可能需要进行教案编写工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。我们应该怎么写教案呢?以下是小编帮大家整理的圆的面积教案,欢迎大家借鉴与参考,希望对大家有所帮助。

圆的面积教案汇编(15篇)

圆的面积教案1

  一、教学目标

  【知识与技能】

  掌握圆的面积计算公式,并能利用公式正确解决简单问题。

  【过程与方法】

  通过操作、观察、比较等活动,自主探索圆的面积计算公式,渗透转化的数学思想方法。

  【情感、态度与价值观】

  感受数学与生活的联系,激发学习兴趣。

  二、教学重难点

  【教学重点】

  圆的面积计算公式。

  【教学难点】

  圆的面积计算公式的推导过程。

  三、教学过程

  (一)导入新课

  创设情境:呈现校园中的圆形草坪,提问学生如何求解圆形草坪的占地面积。引导学生通过已有认知,认识到解决这个问题实际就是求这个圆的面积,从而引出课题。

  (二)讲解新知

  提出问题:之前的图形面积公式是如何推导的?

  学生通过回忆,讨论,得到是通过转换成学过的图形来推导得到的。

  追问:能否将圆的图形转换成之前的图形?

  组织学生动手操作、合作探究,四人为一小组,讨论分享自己的思路与剪拼过程,然后请各组的代表进行全班交流。

  预设1:将圆平均分成4份,剪切拼接之后,没有得到之前图形;

  预设2:将圆平均分成8份,剪切拼接之后,得到一个近似平行四边形;

  预设3:将圆平均分成16份,剪切拼接之后,得到一个近似长方形。

  老师在此基础上进行展示:大屏幕展示将圆平均分为32份,64份,128份,256份……的动图,让学生观察其特点。

  学生能够发现圆平均分的份数越多,拼成的图形越接近于长方形。

  进一步追问:观察原来的.圆和转化后的这个近似长方形,发现他们之前有哪些等量关系?

  预设1:长方形的面积等于圆的面积;

  预设2:长方形的长近似等于圆周长的一半;

  预设3:长方形的宽近似等于圆的半径。

圆的面积教案2

  教学内容

  教材40页、41页例1、例2、例3及做一做,练习十第2-5题。

  素质教育目标

  (一)知识教学点

  1.理解圆柱的侧面积和表面积的含义。

  2.掌握圆柱侧面积和表面积的计算方法。

  3.会正确计算圆柱的侧面积和表面积。

  (二)能力训练点

  能灵活运用求表面积、侧面积的有关知识解决一些实际问题。

  教学重点

  理解求表面积、侧面积的计算方法,并能正确进行计算。

  教学难点

  能灵活运用表面积、侧面积的有关知识解决实际问题。

  教具学具准备

  1.教师、学生每人用硬纸做一个圆柱体模型。

  2.投影片。

  教学步骤

  一、铺垫孕伏

  1.口答下列各题(只列式不计算)。

  (1)圆的半径是5厘米,周长是多少?面积是多少?

  (2)圆的直径是3分米,周长是多少?面积是多少?

  2.长方形的面积计算公式是什么?

  3.教师出示圆柱体模型,指同学说出它有什么特征?

  二、探究新知

  1.利用圆柱体模型的'侧面展开图,引导学生概括出圆柱侧面积的计算方法。

  (1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。

  (2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。

  2.教学例1

  (1)出示例1,指同学读题,找出已知条件和所求问题。

  学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。

  板书:3。14×0。5×1。8

  =1。75×1。8

  ≈2。83(平方米)

  答:它的侧面积约是2。83平方米。

  (2)反馈练习:完成做一做41页第1题。

  学生独立解答,然后订正。

  3.教学

  (1)教师说明:圆柱的侧面积加上两个底面积就是。

  (2)让学生利用圆柱体模型展开图进行比较、区别,从而使学生清楚:是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。

  4.教学例2

  (1)投影片出示例题2、圆柱的几何图形和表面积的展图。

  (2)指同学读题,找出已知条件和所求问题。

  (3)让学生观察圆柱表面积的展开图,并小组议论:让学生理解圆柱表面积的组成部分,再按顺序说出求表面积的具体过程。具体计算由学生完成。

  (4)指学生板演,其他同学在练习本上做,并把计算结果填在书上。

  教师巡视指导,注意检查学生的计算结果和计量单位是否正确。

  做完后订正,订正时让学生说出有关的计算公式。

  (5)反馈练习:完成做一做第2题。

  指一名学生在小黑板上做,其他在练习本上做,然后订正,订正时让学生讲解题方法。

  5.教学例3

  (1)出示例3,指名读题,找出已知条件和所求问题。

  (2)教师提示:解答这道题应注意什么?

  启发学生说出:这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。

  (3)学生在练习本上做,教师巡视指导,注意检查学生的计算结果。如果发现计算结果是1800平方厘米的让该生上黑板上做。

  (4)订正,让板演的学生讲解题的思路和计算结果取近似值的方法。

  (5)教师说明:这里不能用“四舍五入”法取近似值。在实际中,制作水桶使用的材料要比计算得到的数多一些,这样才能保证原材料够用。那么保留整百平方厘米时,十位上即使是4或比4小,也要向前一位进1。这种取近似值的方法叫做进一法,所以这题的计算结果应是1900平方厘米。

  (6)“四舍五入”法与“进一法”有什么不同。

  通过比较,使学生明白:“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数

圆的面积教案3

  教学内容:教材第68—69页含有圆的组合图形的面积。

  教学目标:

  1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。

  2、通过自主合作,培养学生独立思考、合作探究的意识。

  3、让学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的举和学习好数学的自信心。

  教学重难点:组合图形的认识及面积计算、图形分析。

  教具学具准备:多媒体课件、各种基本图形纸片。

  教学设计:

  ⊙创设情境,认识圆环

  1.师:我们来欣赏一组美丽的图片。

  课件出示圆形花坛、圆形水池外的圆形甬路、奥运五环标志、光盘……

  2.同学们,你们从图中发现了什么?(它们都是环形的)

  3.教师拿出环形光盘说明:像这样的图形,我们称它为圆环或环形。

  你还知道生活中有哪些环形的物体?它们给我们的生活带来了怎样的变化?

  (学生结合生活实际谈谈已经知道的环形物体以及它给我们的生活带来的乐趣)

  4.导入新课:这节课我们一起来探讨环形的知识。(板书课题:圆环的面积)

  设计意图:从学生掌握的常识和熟悉的事物入手,使其感受到数学就在我们身边,学生从直观上也感受到了环形的特点,为后面学习环形的面积奠定基础。

  ⊙探索交流,解决问题

  1.画一画,剪一剪,发现环形特点。

  (1)画一画。

  让学生在硬纸板上用同一个圆心分别画一个半径为10厘米和5厘米的圆。

  (学生按照要求画圆)

  (2)剪一剪。

  指导学生先剪下所画的大圆,再剪下所画的小圆。

  问:剩下的部分是什么图形?(环形)

  师:我们也称它为圆环。

  (3)教师手拿学生剪的圆环提问:这个圆环是怎样得到的?

  生明确:圆环是从外圆中去掉一个内圆得到的。

  (4)借助图示认识圆环的各部分名称。

  你知道圆环各部分的名称吗?(出示图示引导学生明确相关内容并板书)

  ①外圆:又名大圆,它的半径用R表示。

  ②内圆:又名小圆,它的半径用r表示。

  ③环宽:指外圆半径和内圆半径相差的宽度。

  2.探究圆环面积的计算方法。

  (1)小组讨论,怎样求圆环的面积?

  (2)汇报讨论结果。

  (3)小结:环形的面积=外圆面积-内圆面积。

  设计意图:以学生的亲身实践贯穿始终,同时在这一过程中渗透一些方法,如动手操作、合作交流、观察、分析等,使学生在学习中运用、在运用中掌握,学生通过自己动手操作,把环形从一般图形中分离出来,快速地抓住了环形的本质特征,形成环形的概念,并顺利推导出圆环面积的计算公式,发展了学生的空间观念。

  3.课件出示例2。

  光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。圆环的面积是多少?

  (1)学生读题。

  观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的?哪里是环形面积?你打算怎样求出环形的面积?

  (2)学生试做,指生板演。

  (3)交流算法,学生将列式板书:

  解法一

  外圆的面积:πR2=3。14×62

  =3。14×36

  =113。04(cm2)

  内圆的面积:πr2=3。14×22

  =3。14×4

  =12。56(cm2)

  圆环的面积:πR2-πr2=113。04-12。56

  =100。48(cm2)

  解法二

  π×(R2-r2)=3。14×(62-22)=100。48(cm2)

  答:圆环的面积是100。48cm2。

  (4)比较两种算法的不同。

  (5)小结:圆环的面积计算公式:S=πR2-πr2或

  S=π×(R2-r2)(板书公式)

  (6)讨论。

  知道什么条件可以计算圆环的面积?怎样计算?(给学生充分的`思考时间,引导学生结合图示多角度解答)

  ①知道内、外圆的面积,可以计算圆环的面积。

  S环=S外圆-S内圆

  ②知道内、外圆的半径,可以计算圆环的面积。

  S环=πR2-πr2或S环=π×(R2-r2)

  ③知道内、外圆的直径,可以计算圆环的面积。

  ④知道内、外圆的周长,也可以计算圆环的面积。

  S环=π×(C外÷π÷2)2-π×(C内÷π÷2)2

  或S环=π×[(C外÷π÷2)2-(C内÷π÷2)2]

  ⑤知道内、外圆的直径或半径及环宽,也可以计算圆环的面积。

  S环=π×[(r+环宽)2-r2]

  或S环=π×[R2-(R-环宽)2]

  ……

  设计意图:联系生活,进一步认识圆环;结合图示理解圆环面积的计算公式。例题主要由学生自己完成,最后老师引导学生列出综合算式,使学生领会两种方法间的区别,好中选优,展现学生的创新精神。在合作讨论中进一步弄清求圆环面积所需要的条件,培养学生多角度思考的习惯。

  ⊙巩固练习,拓展提高

  1.完成教材68页1题。

  学生独立完成,然后在班内说一说解题思路。

  2.一个环形铁片,外圆直径是20dm,内圆半径是7dm,这个环形铁片的面积是多少?

  3.已知阴影部分的面积是75cm2,求圆环的面积。

  [引导学生理解阴影部分的面积为R2-r2=75(cm2),圆环的面积=π(R2-r2)=3。14×75=235。5(cm2)]

  设计意图:练习设计突出重点,由浅入深,由易到难。通过练习不仅巩固了所学知识,又让学生把获得的知识应用于实际生活,提高了学生应用知识解决实际问题的能力,增强了学生的数学应用意识。

  ⊙反思体验,总结提高

  这节课我们学习了什么?你有哪些收获?还有什么问题?

  ⊙布置作业,巩固应用

  1.完成教材72页8题。

  2.找一些关于环形的资料读一读。

  板书设计

  圆环的面积

  圆环面积=外圆面积-内圆面积

  S环=πR2-πr2或S环=π×(R2-r2)

圆的面积教案4

  【教学理念】

  精讲是根底,还需精练,只有精讲精练相结合才能达到最优的教学效果,而精练在选择有代表性的练习内容根底上还要进展科学的指导,有效的订正,才能使我们的练习达到真正的效果。

  【教学分析】

  教材在强调学生掌握圆面积的计算公式的根底上,尤其关注到解决实际问题的练习,在解决问题的过程中,加深对于求圆面积的知识的掌握。在面对众多的数据和文字当中,理清楚数据之间隐含的数量关系,明确解题的目标和思路,从而确定解题方法,其中着重练习给出周长求面积的训练。

  学生通过上节课的学习,对于给出半径求面积已经有了比拟好的认识,并且能够准确的列出算式并计算。同时对于给出周长求半径也有了一定的认识,但并不熟练,同时计算能力还需加强。

  【教学目标】

  1、在解决简单问题的过程中,进一步巩固圆的面积公式,自主探索圆的周长计算圆面积的方法。

  2、进一步体会在解决实际问题的过程中把圆的面积和周长公式进展比拟,提高灵活应用公式解决问题的能力。

  3、进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。

  【教学重难点】

  教学重点:进一步巩固圆的面积公式,能够根据圆的周长计算圆的面积。教学难点:会根据圆的周长求圆的面积,正确的计算。

  【教学课时】

  1课时

  【教学课型】

  练习

  【教学流程】

  回顾整理自主练习深入探究达标练习全课总结

  【教学过程】

  一、回顾整理

  求圆形面积的`公式是怎样的?要求面积需要知道什么条件?

  【设计意图:回顾整理求圆面积的公式,为接下来的自主练习作准备。】

  二、自主练习

  独立完成书上107页第2~5题,可以使用计算器。

  【设计意图:通过学生独立探究,让学生遇到问题,初步感受,激起深入思考的愿望。同时,使用计算器能够降低学生计算上的难度,使其将注意力更多的转移到知识的探究上来。】

  三、深入探究

  1、圆的半径、直径、周长分别应该怎样求圆面积?

  〔1〕直径除以2得到半径

  〔2〕周长除以π再除以2或者先除以2再除以π得到半径。

  【设计意图:让学生理解,不管题目给出什么条件,都要先求出半径再求面积。同时明确周长求面积的方法。】

  2、教学107页第2题,出示题目。

  〔1〕要解决题目中的问题需要知道哪些条件?

  〔2〕直径求圆面积的计算公式是什么?师板书公式与计算过程

  【设计意图:明确解题思路。】

  〔3〕谁还有其它的方法吗?

  【设计意图:引导出简便方法。】

  3、出示107页第3、4题

  〔1〕这两题的题目有什么一样之处?有什么不同之处?

  〔2〕计算过程有什么一样之处?有什么不同之处?师板书计算过程。

  〔3〕求圆面积的过程中,应该注意哪些问题

  【设计意图:通过比照,让学生进一步理解周长求面积的方法。】

  4、出示第5题

  〔1〕什么叫占地面积?

  〔2〕天坛的面积指什么?周长指什么?通过举例加以说明。

圆的面积教案5

  教学目标

  (1)知识与技能目标:学生结合具体情境认识组和图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。

  (2)过程与方法目标:通过自主合作,培养学生独立思考、合作探究的意识。

  (3)情感态度与价值观目标:学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高学习好数学的自信心。

  教学重难点

  教学重点:组合图形的认识及面积计算。

  教学难点:对组合图形的分析。

  教学工具

  多媒体课件,各种基本图形纸片

  教学过程

  一、创设情境,谈话引入

  同学们,在中国古代的建筑中我们经常会见到“外放内圆”“外圆内方”的设计,下面请同学们欣赏几组图片。(生欣赏完后)师提问:这些图片美吗?(生:美)

  师:这些图片的设计中包含了我们学过的哪些平面图形?(生:圆、正方形、长方形等)

  师:这些不同的几何图形拼在一起能构成精美的图案,给我们以美的享受,这说明我们的数学和现实生活联系密切。今天,我们就来学习会有圆的组合图形的面积。(板书课题)二、提出问题,自主探究

  1、教师出示例3的两幅图并出示自学提示出示自学提示:

  (1)上面两幅图有什么不同之处?

  (2)右图中的正方形的对角线和圆得直径有什么关系?

  (3)上图中两个圆的`半径都是r,你能求出正方形和圆之间的半部分的面积吗?

  2、请同学们带着问题认真阅读P69-70页的内容,独立思考自学提示中的问题,若有困难可以小组内讨论。(自学时间:4分钟)三、师生联动,合作探究1、汇报交流,师生互动

  生汇报问题(1):这两幅图都是由圆和正方形组成,左图是外圆内方,右图是外方内圆。

  生汇报问题(2):右图中的正方形的对角线和圆得直径相等。生汇报问题(3):左图阴影面积=正方形的面积-圆的面积列式为:S正=2×2=4(m2 ) S圆=3.14×12=3.14(m2 ) 4-3.14=0、86(m2 )左图:圆的面积减去正方形的面积

  ( 1/2 ×2×1)×2=2(m2 ) 3.14×12=3.14(m2 ) 3.14-2=1.14(m2 )

  师:同学们做的很好!可我又有问题了,若两个圆的半径都是r,那结果又是如何呢?生派代表回答:

  左图;(2r)-3.14r =0.86r

  右图:3.14r-( 1/2 ×2r×r)×2=1.14r当r=1m时,和前面的结果完全一致

  答:左图中正方形和圆之间的面积是0、86m、右图中圆与正方形之间的面积是1.14m。

  四、总结引导,知识生成这节课你有什么收获?

  师顺便对生进行德育教育:在我们今后的人生道路中,我们为人处事,必须能屈能伸,可方可圆,外在大度圆融,内在正直公正。五、科学训练,提高能力1、出示教材P70做一做2、完成教材P72第9题六、堂清作业

  七、作业布置P73第10、11、

  课后小结

  这节课你有什么收获?

  课后习题

  1、出示教材P70做一做

  2、完成教材P72第9题

  板书

  含有圆的组合图形的面积

  左图:S正=2×2=4(m2 )右图:( 1/2 ×2×1)×2=2(m2 )

  S圆=3.14×12=3.14(m2 ) 3.14×12=3.14(m2 )

  4-3.14=0.86(m2 ) 3.14-2=1.14(m2 )

圆的面积教案6

  教学内容:课本例3,第115页练习二十七的第1~5题。

  教学目的通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

  点:圆面积计算公式。

  难点:圆面积计算公式的推导。

  教具、学具:圆的面积演示教具及平行四边形拼割教具;厚纸做的圆及剪刀与胶布。

  教学过程():

  一、复习。

  1.口算:

  2.已知圆的半径是2.5分米,它的周长是多少?

  3.一个长方形的长是6.2米,宽是4米,它的面积是多少?

  4.说出平行四边形的面积公式是怎样推导出来的?

  我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。(板书课题:圆的面积)

  二、新授。

  1.圆的面积的含义。

  问:面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)

  以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)

  2.圆的面积公式的推导。

  怎样求圆的面积呢?如果用面积单位直接去度量显然是行不通的。但我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形——长方形。怎样分割呢?教师拿出圆的面积教具进行演示:

  先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)

  再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

  向学生说明:如果分的等份越多所拼的图形就越接近长方形。

  教师边提问边完成圆面积公式的推导:

  拼成的.图形近似于什么图形?

  原来圆的面积与这个长方形的面积是否相等?

  长方形的长相当于圆的哪部分的长?

  长方形的宽是圆的哪部分?

  长方形的面积=长×宽

  圆的面积 = ×

  = ×

  = ×

  =

  用S表示圆的面积,那么圆的面积可以写成:

  3.圆面积公式的应用。

  出示例1:一个圆的半径是4厘米。它的面积是多少平方厘米?

  学生读题,问:要求圆的面积的条件是否具备?怎样列式?学生回答,教师板书:

  =3.14×

  =3.14×16

  =50.24(平方厘米)

  答:它的面积是50.24平方厘米。

  三、巩固练习。

  1.根据下面所给的条件,求圆的面积。

  半径2分米。

  直径10厘米。(先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)

  2.练习二十七的第1~4题。

  强调书写格式,运算顺序与单位名称。

  总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式 计算。

  四、作业。

  练习二十七第5、6题。

圆的面积教案7

  教学目标:

  1、在复习巩固圆面积、扇形面积的计算的基础上,会计算弓形面积;

  2、培养学生观察、理解能力,综合运用知识分析问题和解决问题的能力;

  3、通过面积问题实际应用题的解决,向学生渗透理论联系实际的观点.

  教学重点:扇形面积公式的导出及应用.

  教学难点:对图形的分解和组合、实际问题数学模型的建立.

  教学活动设计:

  (一)概念与认识

  弓形:由弦及其所对的弧组成的图形叫做弓形.

  弦AB把圆分成两部分,这两部分都是弓形.弓形是一个最简单的组合图形之一.

  (二)弓形的面积

  提出问题:怎样求弓形的面积呢?

  学生以小组的形式研究,交流归纳出结论:

  (1)当弓形的弧小于半圆时,弓形的面积等于扇形面积与三角形面积的差;

  (2)当弓形的弧大于半圆时,它的面积等于扇形面积与三角的面积的和;

  (3)当弓形弧是半圆时,它的面积是圆面积的一半.

  理解:如果组成弓形的弧是半圆,则此弓形面积是圆面积的一半;如果组成弓形的弧是劣弧则它的面积等于以此劣弧为弧的扇形面积减去三角形的面积;如果组成弓形的弧是优弧,则它的面积等于以此优弧为弧的扇形面积加上三角形的面积.也就是说:要计算弓形的面积,首先观察它的弧属于半圆?劣弧?优弧?只有对它分解正确才能保证计算结果的正确.

  (三)应用与反思

  练习:

  (1)如果弓形的弧所对的圆心角为60°,弓形的弦长为a,那么这个弓形的.面积等于_______;

  (2)如果弓形的弧所对的圆心角为300°,弓形的弦长为a,那么这个弓形的面积等于_______.

  (学生独立完成,巩固新知识)

  例3、水平放着的圆柱形排水管的截面半径是0.6m,其中水面高是0.3m.求截面上有水的弓形的面积.(精确到0.01m2)

  教师引导学生并渗透数学建模思想,分析:

  (1)“水平放着的圆柱形排水管的截面半径是0.6m”为你提供了什么数学信息?

  (2)求截面上有水的弓形的面积为你提供什么信息?

  (3)扇形、三角形、弓形是什么关系,选择什么公式计算?

  学生完成解题过程,并归纳三角形OAB的面积的求解方法.

  反思:①要注重题目的信息,处理信息;②归纳三角形OAB的面积的求解方法,根据条件特征,灵活应用公式;③弓形的面积可以选用图形分解法,将它转化为扇形与三角形的和或差来解决.

  例4、已知:⊙O的半径为R,直径AB⊥CD,以B为圆心,以BC为半径作 .求 与 围成的新月牙形ACED的面积S.

  解:∵ ,

  有∵ ,

  , ,

  ∴ .

  组织学生反思解题方法:图形的分解与组合;公式的灵活应用.

  (四)总结

  1、弓形面积的计算:首先看弓形弧是半圆、优弧还是劣弧,从而选择分解方案;

  2、应用弓形面积解决实际问题;

  3、分解简单组合图形为规则圆形的和与差.

  (五)作业 教材P183练习2;P188中12.

圆的面积教案8

  教学理念:

  本课时是在学生掌握了直线图形的面积计算的基础上教学的,主要是对圆的面积计算公式进行推导,正确计算圆的面积。教学圆的面积时,教材首先通过圆形草坪的实际情境提出圆面积的概念,使学生在以前所学知识的基础上理解“圆的面积就是它所占平面的大小”。

  接着教材启发学生寻找解决问题的思路和方法,回忆以前在研究多边行的面积时,主要采用了割补、拼组等方法,将多边行的面积转化成更熟悉和更简单的图形来解决,那么,在这里也可以用转化方法,让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆的面积转化为熟悉的直线图形的面积来计算,引导学生推导圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂的问题的策略。教学时,还要让学生认识到转化是一种很重要的数学思想方法,在解决日常问题以及在科学研究中,人们常常就是把复杂转化为简单,未知转化为已知、抽象转化为具体等方式来处理的。

  教学目标:

  1、通过动手操作、认真观察,让学生经历圆面积计算公式的推导过程,理解掌握圆面积公式,并能正确计算圆的面积。

  2、学生能综合运用所学的知识解决有关的问题,培养学生的应用意识。

  3、利用已有知识迁移,类推,使学生感受数学知识间的联系与区别。培养学生的观察、分析、质疑、概括的能力,发展学生的空间观念。

  4、通过学生小组合作交流,互相学习,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣和成功。

  教学重点:

  运用圆的面积计算公式解决实际问题。

  教学难点:

  理解把圆转化为长方形推导出计算公式的过程。

  教学准备:

  多媒体课件及圆的分解教具,学生准备圆纸片和圆形物品。

  教学过程:

  一、创设问题情境,激发学生学习兴趣。

  1、请同学们指出这些平面图形的周长和面积,并说说它们的区别。

  2、你会计算它们的面积吗?想一想,我们是怎样推导出它们面积的计算公式的?(电脑课件演示)

  [设计意图:创设问题情境,启发学生回忆长方形、平行四边形、三角形和梯形周长和面积的概念。再利用电脑课件演示,让学生对已经学过的平面图形面积公式的推导有更清晰的认识,从而激起学生从旧知识探索新知识的.兴趣,并明确思想方向,有利于学生想象能力的培养。]

  二、合作交流,探究新知。

  1、出示圆:

  (1)让学生说出圆周长的概念,并指出来。

  (2)想一想:圆的面积指什么?让学生动手摸一摸。

  (揭示:圆所占平面的大小叫做圆的面积。)

  (3)对比圆的周长和面积,让学生感受他们的区别。

  同时引出课题——圆的面积。

  [设计意图:通过学生动手摸一摸,使学生能够大胆地概括圆的面积,为开展学生想象力提供了广阔的空间。另外,让学生比较圆的周长和面积,让学生充分感知圆面积的含义,为概括圆面积的意义打下良好的基础。

  2、推导圆面积的计算公式。

  (1)学生观察书本P67主题图,思考:这个圆形草坪的占地面积是多少平方米?也就是要求什么?怎样计算一个圆的面积呢?

  (2)刚才我们已经回顾了利用平移、割、补等方法推导平行四边形、三角形和梯形的面积计算公式的方法,那能不能把圆也转化成学过的图形来计算?猜一猜,圆可以转化成什么图形来推导面积公式呢?你打算用什么方式进行转化?

  [设计意图:通过提问,让学生对圆的面积公式的推导先进行预测,引导学生大胆寻找求圆面积的方法,激发学生的创作灵感,提高学生的求知欲望与探究兴趣。

  (3)请各小组先商量一下,你们想拼成什么图形,打算怎么剪拼,然后动手操作。

  ①分小组动手操作,把圆平均分成若干(偶数)等份,剪开后,拼成其他图形,看谁拼得又快又好?

  ②展示交流并介绍:小组代表给大家介绍一下你们组拼出来的图形近似于什么?是用什么方法剪拼的?为什么只能说是“近似”?能不能把拼出的图形的边变直一点?

  [设计意图:给学生充分的时间动手操作,放手让学生自己动手把圆剪拼成各种图形,鼓励不同拼法,引导发挥联想,让学生通过比较得出沿半径剪拼的方法是较为科学的。教学中注重对学生进行思维方法的指导,给学生提供了自行探究,创造性寻找解决问题的方法和途径,让学生在合作交流中获取经验,这一过程为学生提供了个体发展的空间,每个人有着不同的收获和体验。

  ③当圆转化成近似长方形时,你们发现它们之间有什么联系?

  课件演示:

  师:现在,老师把圆平均分成16份,可以拼出这个近似长方形的图。想象一下,如果平均分成64份、126份?又会是什么情形?

  ④小结:如果分的份数越多,每一份就会越小,拼成的图形就会越接近于长方形。

  [设计意图:通过电脑课件演示,生动形象地展示了化圆为方,化曲为直的剪拼过程。使学生进一步明确拼成的长方形与圆之间的对应关系,有效地认识和理解圆转化成长方形的演变过程。

  (4)以拼成的近似长方形为例,认真观看课件,师生共同推导圆的面积计算公式。

  ①引导:当圆转化成近似的长方形后,圆的面积与长方形面积有什么关系?并且指出拼出来的长方形的长和宽。

  ②长方形的长和宽与圆的周长、半径有什么关系?如果圆的半径是r,这个近似长方形的长和宽各是多少?如何根据已经学过的长方形的面积公式,推导出所要研究的圆的面积公式?

  ③学生讨论交流:长方形的长是圆周长的一半,即a=C/2=2πr/2=πr,宽是圆的半径,即b=r。教师板书如下:

  (5)小结:如果用S表示圆的面积,r表示圆的半径,那么圆的面积计算公式就是。同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!

  (6)学生打开书本P68补充圆面积的计算公式的推导过程。思考:计算圆的面积需要什么条件?

  [设计意图:在推导过程中给学生创设讨论交流的学习机会,通过观看电脑课件的演示,引导式提问、试写推导过程等不同形式,来调动学生参与学习的积极性,发挥学生的主体作用,培养了学生操作、观察、分析、概括的能力。最后进行小结,巩固学生对圆面积计算公式的认识。另外通过提出问题,强调学生计算圆面积时需要的条件。

  三、实践运用,巩固知识。

  1、已知圆的半径,求圆的面积。

  判断对错:已知一个圆形花坛的半径是5米,它的面积是多少平方米?

  =3.14×5×2=31.4(米)

  (学生先独立思考,再汇报交流,共同修改。)

  强调:半径的平方是指两个半径相乘。

  2、已知圆的直径,求圆的面积。(教学例1)

  ①师:把第一题的“半径是5米”改成“直径是20米”,那么这个圆形花坛的面积又怎样算呢?(小组合作交流,探讨计算方法。)

  ②学生汇报计算方法,要强调首先算什么?

  ③打开书本P68补充例1。

  3、已知圆的周长,求圆的面积。(书本P70练习十六第3题)

  小刚量得一棵树干的周长是125.6cm。这棵树干的横截面的面积是多少?

  ①引导提问:要求树干的横截面积,必须先求出树干的什么?你打算怎样求树干的半径呢?

  ②根据圆的周长公式,师生间推导出求半径的计算方法。

  ③学生独立完成,教师巡查给于适当的指导。另外请两位学生上台板演,共同订正,并且指出计算中容易出现错误的地方。

  4、一个圆形溜冰场,半径30米。

  (1)这个溜冰场的面积是多少平方米?

  (2)沿着溜冰场的四周围上栏杆,栏杆长多少米?

  提问:知道圆的半径用什么方法求圆的面积?第(2)个问题求栏杆的长度也就是求这个圆形溜冰场的什么?用什么方法求圆的周长?

  [设计意图:学生已经推导出圆面积的计算公式,以上的四道题的作用是巩固圆面积计算公式的运用,使学生对圆面积的计算方法有更深刻的理解。在练习时,大胆放手让学生进行计算,同桌间合作探讨,经过学生多次尝试解答,使他们的观察力、动手操作能力、想象力都能够得到进一步的发展,从而促进了理论与实践相结合,培养了学生灵活运用所学知识解决实际问题的能力。其中第3题通过周长求面积的计算和第4题知道圆的半径求圆的面积和周长,让学生体会到圆的周长和面积有着紧密的联系和根本的区别,使新旧知识有更好的连接,并且让学生感受到几何图形计算的灵活性。

  四、总结评价,拓展延伸。

  1、今天我们学了什么知识?一起闭上眼睛回忆我们整节课的学习过程,你有什么感受啊?在计算圆的面积时有什么地方值得注意的?

  2、在生活中还有很多关于圆面积的知识,老师出一个题目给同学们课后进行思考:有一个圆形花坛,中间建了一个圆形的喷水池,其他地方是草坪,求草坪的面积是多少?

圆的面积教案9

  教学目标

  1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。

  2.能正确地计算圆柱的表面积。

  3会解决简单的实际问题。

  4.初步培养学生抽象的逻辑思维能力。

  教学重点

  理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。

  教学难点

  能充分运用圆柱表面积的相关知识灵活的解决实际问题。

  教学过程

  一复习旧知。

  1计算下面圆柱的侧面积。

  (1)底面周长2.5米,高0.6米。

  (2)底面直径4厘米,高10厘米。

  (3)底面半径1.5分米,高8分米。

  2求出下面长方体、正方体的表面积。

  (1)长方体的长为4厘米,宽为7厘米,高为9厘米。

  (2)正方体的棱长为6分米。

  3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。

  学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。

  学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。

  二新课导入。

  1教师:以前我们学习了长方体、正方体的`表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)

  2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?

  (1)学生分组讨论。

  (2)学生汇报讨论结果。

  3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)

  4教师进行圆柱模型表面展开演示。

  (1)学生说说展开的侧面是什么图形。

  学生:圆柱展开的侧面是一个长方形。

  (2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?

  学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。

  (3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)

  (3)圆柱的底面积怎么计算?(复习底面积的计算方法)。

  5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?

  学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。

  教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。

  三新课教学。

  1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)

  2学生尝试练习,教师巡回检查、指导。

  3反馈评价:

  (1)侧面积:2×2×3.14=56.52(平方分米)

  (2)底面积:3.14×2×2=12.56(平方分米)

  (3)表面积:56.52+12.56=81.64(平方分米)

  答:它的表面积是81.64平方分米。

  4学生质疑。

  5教师强调答题过程的清楚完整和计算的正确。

  6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?

  四反馈练习:试一试。

  1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)

  2学生交流练习结果(注意计算结果的要求)。

  3教师评议。

  教师:在实际运用中四舍五入法和进一法有什么不同?

  学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。

  五拓展练习

  1教师发给学生教具,学生分组进行数据测量。

  2学生自行计算所需的材料。

  3计算结果汇报。

  教师:同学们的答案为什么会有不同?哪里出现偏差了?

  学生甲:可能是数据的测量不准确。

  学生乙:可能是计算出现错误。

  教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。

  六巩固练习。

  1计算下面图形的表面积(单位:厘米)(略)

  2计算下面各圆柱的表面积。

  (1)底面周长是21.52厘米,高2.5分米。

  (2)底面半径0.6米,高2米。

  (3)底面直径10分米,高80厘米。

  3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?

  4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)

圆的面积教案10

  1、教学目标

  1.理解和掌握圆面积的计算公式,沟通圆与其它图形之间的联系,增强观察、操作、分析、概括的能力以及逻辑推理能力。

  2.学会利用已有的知识,运用数学思想方法,推导出圆面积计算公式;感受极限、转化、以直代曲等数学思想方法。

  3.认真观察、深入思考,面对困难勇于克服、弃而不舍。

  2、学情分析

  《圆的面积》一课是小学数学第十一册第五单元第四小节的起始课。本课的教学要求主要是帮助学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括等能力。以往主要教学方法是:教师先带领学生将圆沿半径剪开,将若干个小扇形拼成长方形,借助长方形面积公式来推导圆面积的公式。然后在教师的引导下部分学生再将圆转化成平行四边形,甚至梯形、三角形,借助已知图形的面积公式推导圆面积的公式。一节课至少展现三、四种转化方法,教学容量较大、内容较难。

  看到这样的教学过程我产生了一些困惑:

  1.学生能想到这样的转化的方法吗?——这使我想到了学生学习平面图形的历程。学生第一次学习最基本的图形的面积:长、正方形。可以看出使用面积单位拼摆的方法得到的图形面积其实是最为直接的方式。学生学习的所有直线段图形,可以看出它们之间有着非常直观地联系,易于转化。作为第一个曲边图形“圆”,面对以上学习的转化发过程,学生怎么就能想到把圆等分成小扇形并拼出学过的图形呢?这无疑需要一个思维的飞跃,如果这个飞跃的过程是属于学生自己的,那样才是真正有价值的。

  2.在老师的讲授下又有多少学生能理解多种转化方法呢?

  我先在自己班进行了多种转化方法的试验,发现还真有孩子的思维水平让我刮目相看,可我也发现有80%的孩子这节课没有参与真正的实验研究,只是跟着别人看、听,下课时有一半的孩子还不认可圆面积转化的过程。

  一节课是只为20%的孩子服务,还是应尽可能让每一个孩子都有不同层次的体验与收获呢?

  3、重点难点

  教学重点:运用转化思想探索圆面积的解决办法。

  教学难点:如何将曲线图型转化成直线型图形以及对极限思想的渗透。

  4、教学过程

  活动1【导入】引入课题

  同学们圆是我们在小学阶段接触的第一个曲边图形,它在生活中也有广泛的应用,我们来欣赏一下生活中的圆吧!(ppt到泳池)

  今天我们一起要来研究的是圆的面积。(板书课题:圆的面积)

  活动2【导入】交流困难

  我看到有同学已经有了自己的想法,但是,面对“圆”这么特殊的图形也有了一些问题,我们先暂停手中试验,一起来分享一下!

  (1)有同学在圆里画出了一个正方形,请这样的同学来介绍一下?教师操作

  ppt提问:我们学过了这么多种平面图形,可你们怎么就想到在圆里画正方形了。

  生1:因为他和圆最接近,

  师:你能想一想,为什么说正方形和圆最接近吗?

  生2:正方形正正方方的,四边都一样长,

  生3:在圆中画正方形会让剩下的部分最少,而且剩下的部分都是一样的。

  生4:正方形和圆最像了,正方形的对称轴最多,圆有无数条对称轴。

  师:看看同学们多么善于思考呀,通过你们的发言让我感受到,和其他学过的图形相比正方形和圆真的非常接近,你们的数学直觉真敏锐,太了不起了。

  (2)在圆里画出了很多的小方格,请这样的同学来介绍一下?。

  提问:看看同学们的想法多有创意呀,但是你们是怎样想到用小方格来解决问题的呢?

  生1:我们最开始学习长方形、正方形的面积时就是用面积单位拼摆的方法研究。

  生2:我们以前学习的很多图形的面积,比如平行四边形、三角形、梯形其实都可以用方格来计算,可以数有多少1平方厘米的小方格,就可知道图形的面积了。

  师:你们真是了不起,我们最初学习的面积单位,它是一个最基本的研究图形面积的方法,后来我们又学习了不同的研究图形面积的方法,比如像拼摆、割补等方法,运用面积单位寻找图形面积就不太常用了,今天同学们面对圆面积的时候又想到了它,你们的好方法让我想起了我的一位老师说过的话:退回到原始,不失其本质!

  (3)还有一种想法也来和大家分享。

  他发现原来学习的图形之间都是有关系的,可以相互转化。想到了我们在研究图形面积时最常用的方法“转化”,你们认为转化不精确是吗?

  活动3【讲授】小结

  同学们你们开动脑筋,用你们的智慧已经能够解决圆面积中绝大部分的问题,同时也遇到了想要更精确地得到圆的面积,需要解决剩余面积的问题。对于这些不可知的地方,我们是否可以继续去研究它,让这些不可知的地方越来越小,是否就越来越接近圆的面积了呢?困难就摆在这里,但研究的智慧与方法在你们的头脑中。选择你感兴趣的研究方案,赶快动手试试吧!回到Iteach,可以继续研究,也可以删除重画。完成之后拍照提交到讨论二!学生操作

  活动4【活动】全班交流

  师:我想同学们一定像数学家一样非常投入地在研究圆的面积,老师从心里钦佩你们。有句话说:倾听是分享成功的最好方法,那么我们就一起来看看同学们是如何来解决圆面积的问题。教师操作

  (1)刚才在圆中画正方形的同学先让我们看看他们后续的研究吧!

  生1:我在空余部分补了补了三角形。

  还有同学发现空余的部分还可以继续在上面补三角形会更接近圆。

  师:看来他真的有了属于自己的研究成果。对于这位同学的研究过程,同学们有什么疑问或是感想吗?

  生1:总是这样补三角形真的可以越来越接近圆的面积,就是有点麻烦。

  生2:如果只看图形最外面一圈,我发现是一个正多边形。

  师:同学们仔细观察一下,最外面一圈是一个什么样的图形?这个图形有什么特点吗?你还有其他的发现吗?

  生:的确是正多边形,如果正多边形的边数更多一些,几乎就是一个圆了。

  师:这位同学用了“几乎”,你们能想象到了吗?请看投影,看到这样的变化过程能谈谈谈你们有什么感受吗?

  同学们一定发现了多边形边数越多越接近圆。

  ppt有这样一句名言:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣。这句话是什么意思呢?这里“割”就是分割的意思;“失”指误差。这就是说,圆内接正多边形的边数无限增加的时候,它的周长会越来越接近直到等于圆周长,它的面积也会越来越接近直到等于圆面积。这句话出自我国魏晋时期的数学家刘徽,曾用圆内接正多边形计算出π的近似值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形。短暂的时间你们都和大数学家有了相同的发现,多了不起呀!(贴)

  (2)我们再来看看刚才画小方格的同学们后面的研究吧!

  生:可以把剩下的地方画更小的方格就可以算出准确的面积了。

  师:这位同学也有了自己的研究成果,可以非常准确的解决圆面积的问题了。对于这位同学的研究过程,你有什么疑问或是感想吗?

  生:有同学会问:这样就真准确了吗?是不是永远都会有曲边存在呢?

  小结:同学们想一想,既然可以画更小的格,曲边小了方格可以画的更小,是不是可以这样无限的画下去呢?

  生:这样画下去倒是可以,但是算起来太麻烦了。

  师:的确会让我们感觉计算起来比较麻烦,但其实只是我们缺少一些更好的计算方法而已,等你们以后学了更多的知识,计算就不再是问题了。同学们用了最为普遍的`方法,虽然看似简单,却能解决这个很难的曲边图形的面积,如果以后再遇到更特殊的图形面积,你们有没有信心解决呢?我想一定是没问题的。

  (3)我们再来看看第三位同学又有了什么新的发现吧!

  生1:将圆等分成16分,拼成一个近似的平行四边形,平行四边形的底边长度其实就是圆周长的一半,而平行四边形的高就是圆的半径,所以,平行四边形的面积是底乘高,那么圆的面积就可以用圆周长的一半乘半径得到。

  师:对于他们的方法你有什么疑问或是受到什么启发吗?

  生:圆看似很特殊,其实和其他图形也是有联系的,

  生:这是真正的平行四边形吗?他的上下两条底边都是弯弯曲曲的。教师操作

  的确现在看来还是有点曲边的,但要是细分下去,16份,32份、64份,你觉得会怎样?

  Ppt:那样就会越来越行四边形,曲边越来越直。但是无论分多少份其实道理是一样的,平行四边形的底是圆周长的一半,平行四边形的高是圆的半径。

  师:让我们再来看一看圆面积的转化过程,将圆沿半径剪开,拼成平行四边形,圆的面积等于平行四边形的面积。平行四边形的底是圆周长的一半,平行四边形的高是圆的半径,圆周长的一半可以表示为c/2=2

  活动5【讲授】总结

  看看你们是多么的了不起呀,对于圆这么特殊的图形,同样能够找到它与学过图形之间的联系,从而寻找到圆面积的计算公式,可以帮助我们方便快捷的得到圆的面积。面对这样的方法对你有什么启发吗?你还有其他的想法吗?

  前几节课我们已经认识了圆并学习圆的周长,那么对于圆你能说说你的感受吗?

  我们曾经感受到了圆的圆润和完美,在今天这个探究的过程中,我们不仅再一次体会到圆的完美和神奇,而且还发现了圆和正方形、正多边形,以及学过的很多图形之间有着千丝万缕的联系。其实在圆中还有许多的美妙与神奇,有待我们今后继续探索。

圆的面积教案11

  教学目标:

  1、学生通过观察、操作、分析和讨论,推导出圆的面积公式。

  2、能够利用公式进行简单的面积计算。

  3、渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

  教学重难点:渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

  教学过程

  一、尝试转化,推导公式

  1、确定“转化”的策略。

  师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?

  引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。

  师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?

  师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。

  2、尝试“转化”。

  师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)

  请大家看屏幕(利用课件演示),老师先给大家一点提示。

  师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份(如图三),其中的每一份(如图四,课件闪烁其中1份)都是这个样子的。同学们,你们觉得它像一个什么图形呢?

  师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示)跟圆形有什么关系呢?

  引导学生观察,明确这个近似三角形的两条边其实都是圆的半径。

  师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!

  预设:学生利用这种近似三角形拼组图形会有一定的难度,教师要加强巡视和有针对性的指导,既鼓励学生拼出自己想象中的图形,又要引导他们拼出最简单、最容易计算面积的图形。一般情况下,学生会拼出如下几种图形(如图五、图六、图七)。

  3、探究联系。

  师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。

  预设:

  分组逐个展示,并将其中“转化”成长方形的一组的作品贴在黑板上。如果有小组转化成了不规则的图形,教师应及时引导他们转化为我们已学过的平面图形。

  师:好,各个小组都不错。现在请同学们思考一个问题:你们把一个圆形“转化”成了现在的图形之后,它们的面积有没有改变?请小组内讨论。

  师:谁来告诉大家,它们的面积有没有改变?

  师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。

  师:虽然我们现在拼成的是一个近似的长方形,但是如果把圆等分成32份、64份、128份、256份……一直这样下去分成很多很多份,拼成的图形就变为真正的长方形(课件演示,如图八)。

  4、推导公式。

  师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。

  师:好,同学们,谁能首先告诉老师,这个长方形的宽是多少?

  预设:

  根据学生的回答,教师演示课件,同时闪烁圆的半径和长方形的宽,并标示字母r,如图九。

  师:那这个长方形的长是多少呢?(教师边演示课件边说明)这个长方形是由两个半圆展开后拼成的.,请大家看屏幕,这个红色的半圆展开后,其中这条黄色的线段就是长方形的长(如图十),请同学们仔细观察(课件继续演示如图十一,半圆展开后再还原,再展开,),这个长方形的长究竟与圆的什么有关?究竟是多少呢?

  预设:

  教师引导学生明白:这个长方形的长与圆的周长有关,并且是圆的周长的一半(如果学生有困难的话,教师利用课件演示,如图十二)。并且让学生通过计算得出长方形的长就是πr。

  师:现在我们已经知道了这个长方形的长和宽(如图十三),它的面积应该是多少?那圆的面积呢?

  预设:

  老师根据学生的回答进行相关的板书。

  师:你们真了不起,学会了“转化”的方法推导出圆的面积计算公式。现在请大家读一读,记一记,写一写圆的面积计算公式。

  二、运用公式,解决问题

  1、教学例1。

  师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!

  预设:

  教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。

  2、完成做一做。

  师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。

  订正。

  3、教学例2。

  师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!

  师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!

  师:找到解决问题的方法了吗?

  师:好的,就按同学们想到的方法算一算这个圆环的面积吧!

  预设:

  教师继续对学困生加强巡视,如果还有问题的学生并给予指导。

  交流,订正。

  三、课堂作业。

  教材第70页第2、3、4题。

  四、课堂小结

  师:同学们,通过这节课的学习,你有什么收获?

  课后作业:完成数练第31页。

圆的面积教案12

  教学内容:圆的面积第67—68页圆面积公式的推导。例1及做一做的第1题。练习十六的第1、2、5题。

  教学目标:

  ⒈使学生理解圆面积的含义,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  ⒉培养学生动手操作、抽象概括的能力,运用所学知识解决简单实际问题。

  ⒊渗透转化的数学思想。

  教学重点:圆面积的含义。圆面积的推导过程。

  教学难点:圆面积的推导过程。

  教学过程:

  一、复习。

  1、已知r,周长的一半怎样求?

  2、用手中的三角板拼三角形,长方形、正方形、平行四边形等,并说出这

  些图形的面积计算公式。

  s=abs=a2s=ahs=ahs=(a+b)h

  二、新课。

  1、什么是圆的面积?(出示纸片圆让生摸一摸)

  圆所占平面大小叫做圆的面积。

  2、推导圆的面积公式。

  (1)演示:将等分成16份的.圆展开,问可拼成一个什么样的图形?

  若分的分数越多,这个图形越接近长方形。

  (1)找:找出拼出的图形与圆的周长和半径有什么关系?

  圆的半径=长方形的宽

  圆的周长的一半=长方形的长

  长方形面积=长宽

  所以:圆的面积=圆的周长的一半圆的半径

  S=r

  S圆=r=r2

  3、你还能用其他方法推算出圆的面积公式吗?

  (1)将圆16等份,取其中一份,看作是一个近似的三角形,三角形的面积是这个圆面积的。这个三角形底是圆周长的,三角形的高是圆的半径。

  因为:三角形面积=底高

  圆面积=

  =rr

  =r2

  (2)将圆16等分,取其中两份,可以拼成一个近似的平行四边形。平行四边形面积是圆面积的,平行四边形的底是,三角形的高即一个半径,

  因为:平行四边形面积=底高

  圆面积=r

  =r8

  =r2

  还可以取3份、4份等,同学们可以一一推算。

  三、运用知识解决实际问题。

  1、例1一个圆的直径是20m,它的面积是多少平方米?

  已知:d=20厘米求:s=?

  r=d2202=10(m)

  s=Лr2

  3。14102

  =3。14100

  =314(平方厘米)

  2、根据下面所给的条件,求圆的面积。

  r=5cmd=0。8dm

  3、解答下列各题。

  (1)一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?

  (2)公园草地上一个自动旋转喷灌装置的射程是10m。它能喷灌的面积是多少?

  四、作业。

  课本P70第1、5题。

圆的面积教案13

  第一课时

  教学内容

  圆的面积

  教材第67、第68页的内容。

  教学要求

  1.使学生理解圆的面积公式的推导过程,掌握求圆的面积的方法并能正确计算。

  2.培养学生运用转化的思想解决问题的能力。

  重点难点

  重点:掌握圆的面积的计算公式,能够正确地计算圆的面积。

  难点:理解圆的面积公式的推导过程。

  教具学具

  实物投影,各种图形的纸片。

  教学过程

  一导入

  1.我们学过哪些平面图形的面积公式?

  2.长方形、平行四边形和三角形的面积公式分别是什么?

  3.平行四边形的面积公式是如何推导的?小结:平行四边形面积公式的推导,提供给我们一种研究平面图形的面积的方法,即把所学的图形进行分割、拼摆,转化成学过的图形,用旧知识解决新问题。今天,我们还要用转化的思想研究圆的面积。

  二教学实施

  1.明确圆的面积的概念。

  (1)老师出示一个圆,提问:谁能联系我们学过的图形的面积说一说圆的面积是什么?

  学生回答,老师归纳:圆所围成的平面的大小叫做圆的面积。

  (2)圆的大小是由什么决定的?

  (3)展示由“曲”变“直”的渐变图。

  引导学生逐层观察圆周曲线的变化情况,把圆等分的份数越多,圆周曲线就越来越直,当我们继续分下去……圆周曲线就变成一条近似的直线段了,用这样的小块拼摆的图形就更近似于我们学过的图形。

  2.学生动手操作,推导圆的面积公式。

  为了研究方便,我们把圆等分成16份,圆周部分近似看作线段,其中的一份是个近似的三角形,

  (1)指导学生动手摆学具,并思考几个问题:

  你摆的是什么图形?

  你摆的图形的面积与圆的面积有什么关系?

  所摆图形的各部分相当于圆的什么?

  你如何推导出圆的面积?

  (2)学生动手摆学具,然后发言。

  拼成长方形:

  老师说明:如果分的份数越多,每一份就会越小,拼成的图形就会越接近长方形。

  出示教材第67页上面的图加以说明。

  拼成的近似长方形的长和宽与圆的各部分有什么关系?

  从图中可以看出圆的半径是r,长方形的长是πr,宽是r。

  长方形的面积=长×宽

  ↓ ↓↓

  圆的面积=πr×r=πr2

  如果用S表示圆的面积,那么圆的面积计算公式就是S=πr2。

  3.利用公式计算圆的'面积。

  出示例1:圆形草坪的直径是20m,每平方米草皮8元。铺满草坪需要多少钱?

  指名读题,让学生试做,提醒学生不用写公式,直接列算式就可以。

  板书:20÷2=10(m)

  3.14×102

  =3.14×100

  =314(m2)

  314×8=2512(元)

  答:铺满草坪需要2512元。

  老师强调指出:列出算式后,要先算平方,再与π相乘。

  三课堂作业新设计

  1.直接写出得数。

  22= 32= 42= 52= 62= 72=

  82= 92= 102= 0.22=0.72= 0.92=

  2.求下面各圆的面积。

  3.一块圆形铁板的半径是3分米。它的面积是多少平方分米?

  4.一个圆桌桌面的直径是1.2米。它的面积是多少平方米?

  四思维训练

  计算阴影部分的面积。(单位:分米)参考答案

  课堂作业新设计

  1.491625364964811000.040.490.81

  2.12.56平方分米28.26平方分米1256平方厘米28.26平方米

  3.28.26平方分米

  4.1.1304平方米

  思维训练

  3.44平方分米

  板书设计

  圆的面积

  长方形的面积=长×宽

  ↓ ↓↓

  圆的面积=πr×r=πr2

  20÷2=10(m)

  3.14×102

  =3.14×100

  =314(m2)

  314×8=2512(元)

  答:铺满草坪需要2512元。

  备课参考教材与学情分析

  本部分内容是在初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形的面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。

  课堂设计说明

  1.通过实际情境,一方面使学生了解圆的面积的含义,另一方面使学生体会到在实际生活中计算圆面积的必要性。

  2.教学时,强调知识迁移的过程。

  平行四边形、三角形和梯形的面积公式推导过程是学生知识迁移的基础,这一环节的设计既能勾起学生对已有知识的回忆,又能启发学生运用转化的思想解决数学问题。

  3.组织学生观察猜想。

  先观察再猜想的方法既培养了学生的空间想象力,又发展了学生的逻辑推理能力。

圆的面积教案14

  【教学目标】

  知识技能:让学生理解圆面积的含义,经历猜想、操作、验证、讨论和归纳等过程,探索并掌握圆的面积计算公式的推导过程及其公式的应用。

  数学思考:经历自主探索圆的面积计算公式的推导过程,体会和掌握“转化”和“极限”的数学思想方法,发展空间观念。

  问题解决:培养学生发现和提出问题,分析和解决问题的能力。

  情感态度:培养学习数学的兴趣,增强合作交流的意识,在提升自我的同时,尊重他人,在表现自我的同时,心中有他人。

  【教学重点】

  掌握圆的面积计算公式,能够正确地计算圆的面积。

  【教学难点】

  理解圆的面积计算公式的推导过程。

  【教学准备】

  (1)软硬件设备:多媒体教学课件、平板互动系统、教师和学生平板终端,

  (2)教具:圆纸片、不同等分的圆卡片

  (3)学具:剪刀、圆纸片、不同等分的圆卡片。

  【教学过程】

  学生课前完成课前导学案(后附课前导学案的内容)

  一、课前互动:

  师:同学们,前段时间我看到了一个很有意思绘本故事,想看吗?大家请看,其中一张图片是这样的,猜一猜最后的这一棵盆栽会长出怎样的图形呢?为什么?

  生:越来越接近圆形。

  生:圆形,因为从三角形开始,然后到正方形、正五边形……图形越来越接近圆形。

  师:说的太好,看来我们班的同学们都是观察能力强,思维敏捷的同学。随着正多边形边数越来越多,越来越多,这个图形就会越来越接近一个圆了

  师:哪一个图形最特别。

  生:圆形,因为它是曲线围成的图形,其它是由线段围成的图形。

  师:真棒,其实这一张图片蕴藏着一个非常重要的数学思想,这个思想帮助我们解决了一个历史难题,想知道是什么思想吗?

  生:想。

  师:那么希望通过这节课的学习,大家会有所感悟。下面我们就开始上课了。上课。

  二、创设情境,引发问题

  师:同学们,我们已经认识了圆,知道了怎样求圆的周长,今天这节课我们要研究的内容是圆的面积。(板书课题)

  师:看到课题你最想研究什么问题?

  (预设)生:什么是圆的面积?

  (预设)生:如何求圆的面积?

  师:问的好,能提出问题的一定是会思考的同学,很多伟大的发明往往从提问开始,我们来整理一下提出的问题,主要是:圆的面积是什么?如何求圆的面积?(教师板书:是什么?如何求?)

  【设计意图】数学课程标准提出四基和四能,其中一项是培养学生提出问题的能力,这也是很多教师所忽视的环节,通常让学生提问题的环节让本课的研究更能激发学生的兴趣,针对性更强。

  师:现在我们逐个问题来解决。请看,这里有一个圆(出示一个圆的方框)谁来说一说什么是这个圆的面积?

  (预设)生:圆的大小就是它的面积,

  师:说的对,是这一部分的大小吗?(课件把圆填充颜色)

  师:(拿出手表)那么,什么是这个圆形手表镜面的面积?(手表镜面占平面的大小),所以圆占平面的大小就是它的面积,看来,“什么是圆的面积”这个问题大家很容易就解决了。

  (课件出示)

  师:接着我们来研究如何求圆的面积。请看,第一个正方形是由四个小正方形组成的,每个小正方形的边长是r,那么每个小正方形的面积大家会求吗?(会,是r×r,也就是r2),这个大正方形的面积就是4

  r2,等于4个小正方形的面积之和,大家猜一猜第二个正方形的面积大约等于几个这样的小正方形的面积呢?

  (预设)生:2个小正方形的面积

  (预设)生:3个小正方形的面积

  师:这样猜还是有一点困难,根据我们以前的经验,可以把第二个正方形重叠到第一个图像上来比比。

  (预设)生:等于两个正方形的面积之和,也就是2r2,。

  师:那么这个圆的面积呢?还要重叠过来吗?

  师:原来这个圆的半径和小正方形的边长是相等的。谁来说说这个圆的面积是多少?

  (预设)生:大约是3r2

  师:能确定?为什么不估2r2和4r2

  (预设)生:因为里面这个绿色的正方形的面积是2r2,圆的面积比它大,而蓝色大正方形的面积是4r2,圆的面积比它小。所以我估算是3r2.

  师:分析得有道理,太棒了,通过这比较的办法,我们知道了圆的面积的范围,就是大于2个以圆的半径为边长的正方形面积之和,小于4个小正方形面积之和。这也是数学上经常说的“内外逼近”的方法。

  (课件出示)两个正方形的面积<圆的面积<4个正方形的面积

  2r2<S圆<4r2

  师:那么圆的面积与r2(也就是与以圆的半径为边长的这个小正方形的面积),是否存在一个固定的倍数关系呢?如果有,又是几倍的关系呢?根据课前我对多个学校六年级学生的调查,发现主要有以下的几种想法。

  (平板电脑出示题目和选项:那么圆的面积与它的r2是否存在一个固定的倍数关系呢?如果存在,它是几倍的关系呢?

  A:圆的面积是它的r2的3倍

  B:圆的面积是它的r2的3.5倍

  C:圆的面积是它的r2的π倍

  D:圆的面积是它的r2存在其他的倍数关系

  D:圆的面积与它的r2不存在固定的倍数关系)

  师:你认同哪一种呢?请大家根据刚才的分析和昨天课前的思考,在平板电脑上独立作出选择。(学生选完后系统对数据进行统计,并出示条形统计图)

  师:有30%的同学认为圆的面积是它的r2的3倍

  ,有50%的同学认为圆的面积是它的r2的π倍,还有少部分同学有其他的想法。太棒了,这些都是我们自己珍贵的猜想,很多伟大的发明都是来源于猜想,至于这些猜想是否正确呢?就要进行验证,最后得出结论(板书:猜想、验证、结论)现在我们一起进入验证的环节,请大家先思考一下,你打算怎样验证自己的猜想,可以独立思考或小组合作,也可以结合昨天的课前小研究、还可以利用桌面的圆纸片。比一比谁最快有思路。开始吧!

  【设计意图】通过比较圆与小正方形的面积关系,不仅让学生巩固了圆面积的概念,初步了解圆的面积在2

  r2与4

  r2之间,还体会了“内外逼近”的数学思想。另外,在学生提出猜想的环节加入平板互动系统的统计,更加清晰和全面地反映了学生的思维困惑,更加直面学生的认知基础,既关注了全体学生的培养,又重视了学生的个性化发展,给学生提供了一个更大的学习空间,充分地体现先学后教的教学理念。

  三、启发探究,尝试验证

  (一)数格子验证

  师:谁来说说你的想法?

  (预设)生:可以利用数格子的方法。

  (学生的课前研究单上有一个半径是3厘米的圆)

  (预设)生:我数了半径是3厘米的圆,不满一个的算半格,每个格子是1平方厘米,圆的面积大约26格。所以面积大约是26平方厘米。

  师:数格子(板书:数格子),很好的思路,数出圆的面积再除以半径的平方就可以知道它们之间的倍数关系了。26除以半径的平方大约等于3,大家觉得这个思路怎样?这样数出来的得数有误差吗?

  (预设)生:有,这些不满格的要估算。

  师:有道理,你看,这些不满格的还有这么大面积需要估算(指着图),那么,有什么办法提高数格子的精准度?如果把格子变小一点,像这样(课件出示下图)估算的误差会不会小一点。

  (预设)生:会,因为这样需要估算的面积就会越少,所以更准确。

  (课件展示)

  师:如果继续把格子变小,无限地变小,想象一下,这样数出来的结果就会(就会很准确了)。

  师:讲得太棒了,像这样把格子无限地平均分,其实相当于把圆平均分成无数个格子,这种思想就是我们数学常说的极限思想。(板书:数格子

  极限思想)

  师:但是,如果格子分得太细的话,我们能数得过来吗?(不能),看来,通过数格子的办法也很难准确地求出圆的面积,还有没有别的思路?

  【设计意图】数格子是学生计算新图形面积的常用办法,通过汇报“课前研究单”中数圆的面积,并比较格子的大小对估算圆面积大小的影响,让学生初步感受数格子中的极限思想,同时引出了数格子的不足,为下一步把圆平均分成无数个近似三角形埋下伏笔。

  (二)“对折”验证

  (预设)生:我用对折的办法,把圆对折、再对折、再对折,折到这么小,就很像一个三角形,这样就可以求出三角形的面积,再乘以三角形的数量就是圆的面积了。

  师:真棒,思路非常独特,你觉得同学们都听懂了吗?你觉得哪个地方同学们不是很理解,还要重点再讲讲?

  (预设)生:要尽量折得小一点,这样圆的这条曲边就会越来越直(边操作,边说),这样就会越来越近似于三角形。

  师:大家同意吗?太厉害了,我觉得这里应该有掌声。这个同学用对折的办法,相当于把圆平均分成若干份,(拿着学生的圆)平均分成4份的时候,这个近似三角形的底边还是比较弯曲的,对折几次后这个近似三角形的底边就会越来直了,如果让这条边变得更直的话,我们要怎样做?

  (预设)生:再对折。

  师:折一折,看一看,这条边是不是更直了,再对折看看

  (预设)生:太小了,折不了,

  师:没关系,纸片折不了,我们可以利用平板电脑帮忙,请大家打开平板,继续把圆平均分,看看有什么发现(学生利用平板电脑点击把圆平均分成32、64、128份)

  师:(学生展示平均分成128份)这是大家平板上的画面,你来说说。

  (预设)生:随着平均分的分数越多,这条边就会越直,128等分的时候,这条边已经很直了。

  师:请大家闭上眼睛想象一下,如果继续无限地平均分,这条底边就会(简直就变成直线了)

  师:太棒了,刚才同学们想到了,把圆平均分(板书:平均分)成无限个近似的三角形,这样每个近似三角形的这条曲边就会无限的接近于直线,这就是极限思想的魅力,它能画曲为直(板书:化曲为直),然后只要求出一个近似三角形的面积,再乘三角形的数量就等于圆的面积了。

  【设计意图】这一环节很多教师的做法是让学生折纸以后再用课件展示,这种做法中学生的体验是不足的,因此在这里引入平板电脑的手段,让学生不但可以通过折一折,还能利用平板电脑把圆平均分成更多等分,再结合分享和展示,增加学生在操作中的体会和经历,更加直观地理解化曲为直和极限数学思想。

  (三)等积转化验证

  师:还有其他的思路吗?

  (预设)生:把圆平均分后再拼成我们学过的图形,就像把平行四边形剪拼成长方形。

  师:说得好,你的思维很敏锐,厉害,转化,把未知转化成已知,像求平行四边形面积的时候,把它剪拼转化成长方形,然后再推导出计算公式,这样就不用数近似三角形的数量了,直接就能求出圆的面积就,不如我们一起来试试看。(板书:转化

  、推导)

  师:在每人的平板电脑上里都有4等分、8等分、16等分的圆,也可以利用等分圆的学具,还可以利用圆纸片进行任意的剪拼,请以小组为单位展开探索

  活动要求:1.拼一拼。将等分后的圆拼成一个我们学过的图形。

  2.比一比,拼成的图形中哪一个更接近于我们学过的图形。

  (学生在小组内操作的画面在讲台的一体机中流动显示)

  师:谁来说说你的发现,你是几号平板(马上在一体机中调出学生的画面)

  (预设)生:16等分的圆拼成的图形更接近于我们学过的平行四边形。因为16等分拼成的图形的底边是最直的。

  师:为什么会最直呢?

  (预设)生:像刚才一样,平均分成的分数越多,每一份就越近似于一个三角形,底边就越直,拼成的图形就越近似于平行四边形。

  师:如果像这样继续平均分,会变成怎样呢?请打开平板系统,继续试一试(每人的平板出示32、64、128等分的圆)

  师:谁来讲讲发现。

  (预设)生:你看,等分圆的份数越多,拼成的图形的底边会越来越直,而且(指着图形的两条宽)左右两条边跟底边就越接近于垂直,所拼成的图形越接近于长方形。

  师:请大家闭上眼睛想象一下,如果像这样继续无限地平均分,平均分成256分等等……,然后再拼起来,拼成的图形就会无限的接近一个长方形了,这个极限思想太了不起了,不仅能画曲为直,还能化圆为方。(板书:化圆为方)

  我建议我们要把这个过程留在板书上,我们通过把圆平均分成若干个近似的小三角形,然后拼成近似的长方形,随着无限地平均分,这样拼成的.图形就会无限地接近一个真正的长方形。(板书:16等分的圆拼成的图形和一个长方形)

  【设计意图】这一环节融合信息技术手段能有效打破传统学具的限制,传统的学具最多把圆平均分成32份,这样拼起来的图形与长方形还是有很大的区别,理解化圆为方的思想有些困难。当信息技术与传统学具融合后,学生不仅能更直观、更方便地探究,而且又避免了信息化手段容易固化学生研究思维的缺点,让学生还能利用常规学具进行随意剪拼,这样学生研究的素材更多元化。另外,通过平板系统,学生在探究和分享、师生互动、学生间互相学习的过程中都能随时调用画面到屏幕上进行互动。让教学更加直观形象,让交流分享更加充分和完善,让学生的互相学习更加有效。

  师:研究到这里,到了最关键的一步了,就是推导计算公式,这个过程是老师教你,还是大家自己来。

  (预设)生:自己来。

  师:真的,我就站在旁边,有困难就举手。

  四、寻找联系、推导公式

  要求:

  想一想:近似长方形的长和宽与圆的什么有关呢?

  试一试:把推导的过程写下来。

  师:我把这个画面(圆形转化成长方形的过程的画面)发到大家的平板上,大家可以结合我们刚刚的发现来推导。

  学生分享:

  (预设)生:因为拼成的长方形的面积等于圆的面积,拼成的长方形的长近似于圆周长的一半,宽近似于圆的半径,而且长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即S圆=C÷2×r。

  因为C=2πr,所以S圆=πr×r,S圆=πr2。

  师:我真没想到我们班同学能把这个问题讲的这么清楚,你觉得大家在哪一部分的理解还是有点欠缺呢?要不要再讲讲?

  (预设)生:我觉得长方形的长近似于圆周长的一半这点是比较难发现的,要这样来看,在圆平均分成若干份后,把这些近似的小三角形分成了上下两部分,例如下面这部分,这些小三角形的底边就是原来圆的边,它们的总长就是原来圆的周长的一半。

  【设计意图】通过平板系统的引入,在推导公式的过程中,每个小组不仅可以把推导的过程发送到互动平台让其他小组互相学习,而且在分享中也能随时调出其他小组的作品加以质疑和评价,从而提高了学习的深度学习。

  师:太棒了,见过厉害的,但是没见过这么厉害的,掌声鼓励一下。

  师:经过大家的研究我们似乎把公式推导出来了,我们一起来整理一下,

  师:拼成的近似长方形的面积等于圆的面积,长方形的长近似于圆周长的一半,宽近似于圆的半径,长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即S圆=C÷2×r。

  因为C=2πr,所以S圆=πr×r,S圆=πr2。

  (板书)

  S长方形=长×宽

  S圆=周长的一半×半径=C÷2×r=2πr÷2×r=πr2

  师:太好了,终于把公式推导出来了,原来圆的面积就等于它半径的平方再乘π,圆的面积与它半径的平方之间是π倍的关系,哪些同学猜对了(学生举手),掌声表扬,你们有数学家的眼光。没猜对的同学也不要紧,因为你们已经把公式推导出来了,也掌声鼓励。你知道吗,在古代,曾经有很多的数学家对圆的面积做了详细的研究,其中比较著名的就是魏晋数学家刘徽的千古绝技

  “割圆术”请看。

  五、感受数学文化的魅力

  (展示魏晋数学家刘徽割圆术视频)

  师:刘徽在当时这么简单的条件下计算了正3072边形面积。他提出的计算圆周率的科学方法,奠定了此后一千多年来,中国圆周率计算在世界上的领先地位。此时此刻我再一次为我国古代的数学文化感到震撼和自豪。而且,这也是我们课前小游戏的奥秘,无限分割和极限思想。所以我也为大家在这节课上的发现和总结感到骄傲。

  【设计意图:通过介绍魏晋数学家刘徽的割圆术,让学生进一步感受优秀传统中国数学文化,不仅增加了民族自豪感,还培养了数学素养】

  六、巩固知识,实际应用

  师:既然已经我们推导出圆的面积公式,接着来尝试运用公式来解决实际的问题(板书:运用),你会吗?(会)

  1.一个圆形沙井盖的半径是30厘米,这是沙井盖表面的面积是多少?

  2.一个圆形花坛的周长是12.56米,这个花坛的面积是多少?

  七、全课总结,课堂延伸

  师:大家请看(指着板书),我们班的同学太棒了,一节课下来有了那么多的总结,如果要圈出本课的重点,你觉得要圈什么?(圈出本课的核心)

  (预设)生:S圆=πr2

  、转化、化曲为直、极限……

  师:刚才我们遇到问题的时候,采取了什么策略,(猜想、验证、结论、运用),在验证的过程中运用了什么方法(转化、化曲为直、极限思想)

  师:对于圆的面积你有什么新的思考。

  (预设)生:圆的面积还有其他的推导方法吗?

  师:问的好,生活中还有很多的有趣的推导圆面积的方法,例如可以把它拼成一个三角形甚至是拼成梯形,大家可以带着这个问题回去继续探索,只要大家用数学的眼光和数学解决问题的方法去研究,你会有更多的发现。这节课就上到这里,下课。

  八、布置作业

  书本第68页做一做的第一题。

  (题目:一个圆形茶几的直径是1M,它的面积是多少平方米?)

  2、书本71页第4题。

  (题目:小刚量得一颗树干的周长是125.6cm,这棵树干的横截面近似于圆,它的面积大约是多少?)

  3、尝试用不同的方法推导出圆的面积计算公式,下一节课与同学们分享。

  九、板书设计

  附录:《课前导学案》

  《圆的面积》课前小研究工作纸

  班别:

  学号:

  姓名:

  同学们!大家好,上一节课我们已经学习了圆的周长,接着要学习什么呢?当然是圆的面积啦!还等什么呢,赶快出发吧,马上进入数学的神奇世界……

  同学们,看到《圆的面积》这个课题,你想到什么问题?请把它写下来。(写2-3个问题)

  2、请大家先观察下面图,你知道圆的面积和这个小正方形的面积有什么关系?

  圆的面积小于于()个小正方形的面积

  我们可以这样分析:

  圆的面积大于()个小正方形的面积

  ()<圆的面积<()

  3、我们还可以通过数格子的办法数出圆的面积,试试看吧!

  图中每个格子的面积是1平方厘米,圆的半径是3厘米,请你数一数,这个圆形的面积大约占了()个格子,所以圆的面积大约是()平方厘米。

  (为了方便数数,你可以在格子中写数字或作记号)

  4、圆可以转化成我们学过的图形吗?

  (1)圆可以转化成()形,请画图说明。转化后的图形与圆有什么关系?你能尝试推导圆的面积计算公式吗?

  (2)除了书本的推导办法,还有其它的办法推导出圆的面积吗?可以和家长一起探索,也可以上网搜索查询。

圆的面积教案15

  圆是小学阶段最后学的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。

  教学内容

  教科书第94页圆面积公式的推导,第95页的例3,练习二十四的第1~5题.

  教学目的

  使学生知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确地计算圆的面积.

  教具、学具准备

  教师仿照教科书第94页上的图用木板制作教具,准备长方形、平行四边形、梯形和圆形纸片各一个;学生把教科书第187页上面的图剪下来贴在纸板上,作为操作用的学具.

  教学过程

  一、复习

  1.教师:什么叫做面积?长方形的面积计算公式是什么?

  2.教师:请同学们回忆一下平行四边形、三角形和梯形的面积计算公式的推导过程.想一想这些推导过程有什么共同点?

  二、新课

  1.教学圆面积的含义及计算公式.

  教师依次拿出长方形、平行四边形、三角形和梯形图,边演示(然后贴在黑板上)边说:“我们已经学过这些图形的面积,请同学们说一说这些图形的面积有什么共同的地方?”使学生明确:这些图形的面积都是由边所围成的平面的大小.

  教师再出示圆,提问:这是一个圆,谁能联系前面这些图形的面积说一说圆的面积是什么?让大家讨论.最后教师归纳出:圆所围平面的大小叫做圆的面积.

  教师:我们已经知道了什么是圆的面积,请同学们联系前面一些图形的面积公式的推导过程想一想,怎样能计算圆的面积呢?使学生初步领会到可以把圆转化成一个已学过的图形来推导圆面积的计算公式.

  教师出示把圆平均分成16份的教具,让学生想一想,能不能把这个圆拼成一个近似什么形状的图形.如果学生回答有困难,可提示学生看教科书第10页上面的图,并让学生拿出学具,试着拼一拼,然后让拼得正确的同学到前面演示一下拼的过程,再让不会拼的同学拼一遍.

  然后教师直接拿出把圆平均分成32份的教具拼成一个近似长方形,提问:“我们刚才把这个圆拼成了近似什么形状的图形?”(长方形.)请同学们观察一下,把这个圆平均分的份数越多,这个图形越怎么样?(引导学生看出平均分的份数越多,这个图形越近似于长方形.)拼成的近似长方形与原来的圆相比,什么变了?什么没变?(使学生看出形状变了,但面积没有变,圆的面积等于近似长方形的面积.)

  教师在拼成的近似长方形的右边画一个长方形,指出:如果平均分的份数越多,拼成的近似长方形就越接近长方形.提问:“请同学们观察一下,这个长方形的长与宽和原来的圆的周长与半径之间有什么关系?”使学生在教师的引导下看出:这个近似长方形的长相当于圆的周长的`一半,如果圆的半径是r,即==πr;长方形的宽就是圆的半径.接着提问:这个长方形的面积是多少?这个圆的面积呢?

  学生说,教师板书:圆的面积=πr×r=πr2

  教师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2.

  教师:我们现在已经知道了圆面积的计算公式,我们现在只要知道圆的什么就可以求出圆的面积?然后再让学生说一说圆面积计算公式的推导过程.

  2.教学例3.

  教师出示例3,指名读题,让学生试着做,提醒学生不用写公式,直接列算式就可以.

  然后让学生对照书上的解题过程,看自己做得对不对;如果错了,错在什么地方.教师要强调指出:列出算式后,要先算平方,再与π相乘.最后小结一下解题过程.

  三、课堂练习

  做练习二十四的第1~5题.

  1.第1题,让学生直接列式计算,指名板演,教师巡视,检查学生有没有把圆的面积公式写成圆的周长公式来计算,书写格式对不对,写没写单位名称.订正时了解学生还存在什么问题,及时纠正.

  2.第2题,让学生独立做,教师巡视,除了注意学生在做第1题时易犯的错误外,还要检查学生有没有把第(2)小题的直径当半径直接计算的,订正时提醒学生做题时要认真审题.

  3.第3题,让学生自己做,集体订正.

  4.第4题,指名读题,让学生说一说这道题与第3题有什么不同的地方,能不能直接计算.使学生明确要先算出半径,再计算.

  5.第5题,让学生读题,看着右面的示意图说一说题意,再让学生做,集体订正.

【圆的面积教案】相关文章:

圆的面积教案03-23

圆的面积教案09-20

《圆的面积》教案03-06

【热】圆的面积教案03-31

人教版圆的面积教案02-19

圆的面积教案优秀07-27

圆的面积计算教案01-02

数学圆的面积教案02-16

圆的面积教案9篇02-12

圆的面积教案精选15篇03-12