乘法分配律教案
在教学工作者实际的教学活动中,时常会需要准备好教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么应当如何写教案呢?下面是小编为大家收集的乘法分配律教案,希望对大家有所帮助。
乘法分配律教案1
教学目标
1.使学生理解乘法分配律的好处.
2.掌握乘法分配律的应用.
3.透过观察、分析、比较,培养学生的分析、推理和概括潜力.
教学重点
乘法分配律的好处及应用.
教学难点
乘法分配律的反应用.
教具学具准备
口算卡片、投影仪.
教学步骤
一、铺垫孕伏
1.口算.
(27+73)8409+40114(10+2)106+104
2.用简便方法计算.(说明根据什么简算的) 25634
3.师生比赛,看谁算得又对又快.
205+580(1250+125)8
让学生说明是怎样算的?
二、探究新知
1.导入:
刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,明白了乘法的又一个定律能够使运算简便,你们想明白吗?这就是我们这天要研究的资料.(板书课题:乘法分配律).
2.教学例6:
(1)出示例6:演示课件乘法分配律出示例6下载
(2)引导学生观察每组的两个算式.
(3)教师提问:从上方的例子你发现了什么规律? (4)学生明确:每组中的两个算式都能够用等号连接.
教师板书:(18+7)6=150
186+76=150
(18+7)6=186+76
(5)教师出示:20(15+9)=480
20xx+209=480
20(15+9)=20xx+209
学生分组讨论:每组中算式所表示的好处.
(6)反馈练习:按题要求,请你说出一个等式.(投影出示)
(__+__)__=__+__
教师提问:像贴合这种条件的式子还有许多,那么这些算式到底有什么规律呢?
引导学生观察:等号左右两边算式的规律性
启发学生回答:首先是等号左边两个数的和同一个数相乘.
其次是等号右边两个加数分别同一个数相乘再把两个积相加.
最后是等号左右两边的两个算式相等.
3.教师概括运算定律:两个数的和同一个数相乘,能够把两个加数分别同这个数相乘,再把两个积相加,结果不变.这叫做乘法分配律.
4.反馈练习:
横线上能填几?为什么?
(32+35)4=__4+__4 (62+12)3=____+____
教师:为了简便易记,如果用a、b、c表示3个数,乘法分配律用字母怎样表示?
根据练习学生从而得出:(a+b)c=ac+bc
使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便.
5.教学例7:演示课件乘法分配律出示例7下载
(1)出示例7:10243
启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?
引导学生比较:(100+2)43,102(40+3)这两种算式哪种比较简便?
使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的.和,再应用乘法分配律能够使计算简便.
教师板书:
(2)出示937+963
引导学生观察:这类题目的结构形式是怎样的?有什么特点?
教师提问:根据乘法分配律,能够把原式改写成什么形式?
根据学生的回答教师板书:937+963
=9(37+63)
=9100 =900
学生讨论:这样算为什么简便?
师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是、+、的形式,也就是两个积的和.
②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数.
③另外两个不一样的因数,是两个能凑成整十、整百、整千的加数.
(3)揭示教师算得快的奥秘
上课开始时,我们已经比赛看谁算得快,如(1250+125)8,老师就是应用的乘法分配律使计算简便。此刻你们会了吗? 三、巩固发展演示课件乘法分配律出示练习下载 1.练习十四第1题.
根据运算定律在□里填上适当的数. (43+25)2=□□+□□
847+853=□(□+□)
36+67=□(□+□)
8(7+6)=8□+□□
2.在横线上填上适当的数.
(1)(24+8)125=____+__
(2)25(20+4)=25__+25__
(3)459+559=(__+__)__ (4)827+738=8(__+__)
其中做(3)、(4)题之前教师要提醒学生明确此类题,务必是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写.
3.把相等的算式用等号连接起来:
(1)3248+325232(48+52)
(2)(24+8)8245+248
(3)20(l+15)017+20xx
(4)(40+28)5405+28
(5)(10125)8108+1258
(6)4(30+25)430425
学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?
4.选取题:
(1)28(42+29)与下方的()相等
①2842+2829②(28+42)(28+29)③284229
(2)与a8-b8相等的式于是()
①(a+b)8②(a-b)(8+8)③(a-b)8 (3)与(10+8+9)5相等的式子是()
①105+85+95②10+58+59③105+58+9
5.练习十四第4题,投影出示.
一辆凤凰牌自行车420元,一辆永久牌自行车405元.此刻各买三辆.买凤凰车和永久车一共用多少元?
四、课堂小结
这天我们学习了乘法分配律,明白了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加.期望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便.
五、布置作业
练习十四第3题.
用简便方法计算下方各题.
(80+8)253537+6537
32(200+3)3829+38
乘法分配律教案2
设计说明
教材中本单元的一个鲜明特点是不仅给出一些数值计算的实例,让学生通过计算发现规律,而且结合学生熟悉的问题情境,帮助学生体会运算定律在现实生活中的应用。这样便于学生依据已有的知识经验,分析比较不同的解决问题的方法,从而引出运算定律。因此,对于乘法分配律的教学,本教学设计注重体现以下三点:
1.游戏激趣,设置悬念。
在游戏中学习,体现了玩中学,做中学的理念,让学生体会到玩中有乐,乐中有疑。上课伊始,通过游戏创设情境,设置悬念,把全班学生分成两组进行计算比赛,通过对比赛结果的质疑引发学生对新知的探究欲望。
2.观察、比较,举例验证猜想。
在学习新知的过程中,我把乘法分配律的知识放在具体的生活情境中,让学生通过运用多种计算方法去感知解决问题的多样化,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证,在这样的学习过程中,让学生感受数学家发现规律的过程,从而积累丰富的探究数学知识的.经验。
3.多角度练习,强化认识和理解。
小学数学练习题在整个数学教学中所占的比重很大,数学基础知识的巩固和掌握,解题技能、技巧的形成,以及思维能力的培养等都离不开练习题。因此,在本节课的练习设计上,我力求有针对性、有梯度地设题,同时也注重知识的延伸。
课前准备
教师准备 多媒体课件
教学过程
⊙游戏激趣
1.比赛热身。
师:同学们,请大家准备好纸和笔,在学习新内容前,我们先进行一个小小的数学热身赛。
师:请看大屏幕,左边的两组同学计算大屏幕上第(1)小题,右边的两组同学计算大屏幕上第(2)小题,看哪边的同学计算得又对又快。
(1)9×37+9×63 (2)9×(37+63)
2.评出胜负。
师:做完的同学请举手,汇报计算过程。
师:通过同学们的汇报,可以看出右边的同学做得比较快,你们知道这是为什么吗?这两道题有什么联系吗?
预设
生:虽然这两道题的算式和运算顺序不同,但计算结果相同,可以用等号连接这两道算式,即9×37+9×63=9×(37+63)。
师:同学们说得非常好,尤其是××,我们就先将他的这个发现命名为××猜想。
设计意图:借助数学热身赛激发学生的学习兴趣,让学生感知简算方法,猜测其中可能存在的数学规律,从而激发学生探究的欲望,为学习新知做好了情感铺垫。
⊙引导探究,发现规律
1.课件出示例7。
一共有多少名同学参加了这次植树活动?
(1)需要知道哪些条件?请在情境图里找一找。(出示情境图)
(2)把相关信息组织起来编成一道实际问题,并口述出来。(我校学生参加植树活动,一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。一共有多少名同学参加了这次植树活动)
(3)小组讨论,尝试用不同的方法解决问题并板书。
引导各小组汇报解题方法,并说明这样解题的理由。
解法一 (4+2)×25
=6×25
=150(名)
(4+2是求每组一共有多少名同学,再乘25就求出了25个小组一共有多少名同学)
解法二 4×25+2×25
=100+50
=150(名)
(4×25是求25个小组一共有多少名同学负责挖坑、种树,2×25是求25个小组一共有多少名同学负责抬水、浇树,再把它们加起来就是求一共有多少名同学)
2.观察算式,探究发现。(见课堂活动卡)
(1)小组合作,讨论探究。
①两道算式有什么相同点?
②两道算式有什么不同点?
③两道算式有什么联系?
乘法分配律教案3
素质教育目标
(一)知识教学点
1.使学生理解乘法分配律的好处。
2.掌握乘法分配律的应用。
(二)潜力训练点
透过观察、分析、比较培养学生的分析、推理和概括潜力。
(三)德育渗透点
透过乘法分配律的应用,激发学习兴趣。 教学重点:乘法分配律的好处及应用。
教学难点:乘法分配律的反应用。
教具学具准备:小黑板、(转板)口算卡片、投影仪、投影片、红、白方木块
教学步骤
一、铺垫孕伏
1.口算:(卡片)
25×17×4 125×24
引导学生说一说运用了什么运算定律,这样计算有什么好处。
2.先口算,再把得数相同的两个算式用等号连接起来。(投影片)
(6+4)×56×4+4×5
(8+12)×4 8×4+12×4
8×(7+3) 8×7+8×3
二、探究新知
1.导入新课
前面我们已经学习了乘法的交换律、结合律,并且明白应用这些定律可使一些计算简便。这天这节课,我们再学习乘法的分配律。(板书课题)
2.教学例5
(1)出示例题:(小黑板)
小强摆小木块,每行摆5个白木块,3个红木块,摆了4行。小强一共摆了多少木块?(两种方法解答) (2)指名读题并使学生明确题中已知条件和问题。
(3)让学生拿出学具红、白小木块,按照要求摆一摆,并计算。(启发学生用两种方法解答,教师巡视)
(4)学生试做后,引导回答如何列式解答,并说出解题思路。
根据学生回答教师板书:
(5+3)×4
=8×4
=32(个)
5×4+3×4
=20×12
=32(个)
教师引导学生分析,使学生明确:不一样解法的不一样解题思路。
解题思路:
①先算出每行红、白木块共摆多少个,再算出4行一共摆木块多少个。
②先求出4行白木块和4行红木块各摆多少个,再算一共摆了多少个。
(5)教师引导学生观察两种算式发现了什么?使学生懂得: ①两个算式相等。
②两个算式可用等号连接。
学生答教师板书:
(5+3)×4=32
5×4+3×4=32
(5+3)×4=5×4+3×4
(6)教师出示:
(18+7)×6=
18×6+7×6=
(18+7)×6○18×6+7×6
20×(5+2)=
20×5+20×2=
20×(5+2)○20×5+20×2
组织学生分组讨论,使学生明确:每组中算式所表示的'好处。(学生答教师用色粉笔描4、6、20这些数,从而渗透“一个数”) 反馈练习:按题目要求,请你说出一个等式。(投影出示) (________+________)×________=________×________+________×________
学生答教师填写投影。
【透过学生的观察、分析、实践,使学生初感乘法分配律的知识,填空题的发散思维训练,让学生拥有足量的感性材料,使得学生对乘法分配律知识的获得到达水到渠成。】
教师:像贴合这种条件的式子,还有许多,那么这些算式到底有什么规律呢?教师进一步引导学生观察等号左右两边算式的规律性,使学生明确:
①两个数的和同一个数相乘。(教师引导学生明确:“相乘”指不固定被乘数和乘数的位置。)
②两个加数分别同一个数相乘再把两个积相加。 ③等号左右两边两个算式相等。
3.概括定律:
透过学生观察比较,启发学生用数学语言概括乘法分配律资料。(转板出示)让学生结合板书理解乘法分配律的概念,然后再引导学生回答其资料,加以巩固。
4.反馈练习做一做:
横线上能填几?为什么?
(32+35)×4=________×4+________×4
(62+12)×3=________×________+________×________
教师:启发学生用字母表示乘法分配律资料并指名板演,提示学生3个数可分别用a、b、c表示,然后,让学生说明算式的好处。这时,教师再提醒学生还有没有别的写法。透过教师引导学生答出c×(a+b)=c×a+c×b,并问学生根据什么?(乘法交换律,或用相乘来解释)
三、巩固发展
1.练习十四第1题
2.在横线上填上适当的数
(1)(24+8)×125=________×________+
________×________
(2)25×(20+4)=25×________+25×________
(3)45×9+55×9=(________+________)×________ (4)8×27+73×8=8×(________+________)
其中做(3)、(4)题之前教师要提醒学生明确此类题,务必是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写。
3.把相等的算式用等号连接起来: (1)32×48+32×52 32×(48+52)
(2)(24+8)×524×5+24×8
(3)20×(17+15) 20×17+20×15
(4)(40+28)×5 40×5+28
(5)(10×125)×810×8+125×8
(6)4×(30+25)4×30×4×25
学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?
4.选取题:
(1)28×(42+29)与下方的(相等
①28×42+28×29
②(28+42)×(28+29)
③28×42×29
(2)与a×8-b×8相等的式子是(。
①(a+b)×8
②(a-b)×(8+8)
③(a-b)×8
(3)与(10+8+9)×5相等的式子是(。 ①10×5+8×5+9×5
②5×10+5×8+5×9
③10×5+5×8+9
四、课堂小结:这天学习了乘法分配律,明白了两个数的和与一个数相乘,等于两个数分别与一个数相乘,再把两个积相加。 五、课堂作业:练习十四第2题。 六、板书设计
乘法分配律
例5.… (5+3)×4 =8×4 =32(个) 5×4+3×4) =20×12 = 32(个) 答:小强一共摆了32个木块。 (5+3)×4=32 4×4+3×4=32 (5+3)×4=5×4+3×4 (18+7)×6=150 18×6+7×6=150 (18+7)×6=18×6+7×6 20×(15+9)=20×15+20×9 (a+b)×c=ac+bc c×(a+b)=ca+cb
乘法分配律教案4
教学目标:
1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。
2、透过观察、分析、比较,培养学生的分析、推理和概括潜力。
3、发挥学生主体作用,体验探究学习的快乐。 教学重点:指导学生探索乘法的分配律。 教学难点:乘法分配律的应用。
教学准备:课件、口算题、例题、练习题等。 教学策略:本节课的学习我主要采取自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、勇敢地体验尝试和实践活动来进行综合学习。 教学流程:
一、设疑导入
师:同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么作用? 生:能够使计算简便。
师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速决定。(生口算。)
二、探究发现
1。猜想。
师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)
师:这道题算得怎样不如刚才的快啊? 生:它和前面的题目不一样。
师:好,我们来看一下它与前面的题目有什么不一样? 生:前面的题都是乘号,这道题既有乘号还有加号。 生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。
师:这道题内含不一样运算符号了,有能口算出来的吗?说说你的想法。
生:(10+4)×25=10×25+4×25。
师:为什么这样算哪?
生:我是根据乘法分配律算的。
师:你是怎样明白的?你明白什么是乘法分配律吗? 生:我是从书上明白的,我明白它的字母公式(a+b)×c=a×c+b×c。
师:你自学潜力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)
2。验证。
师:同学们看两个数的和同一个数相乘,如果能够这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)
师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)
小结:透过验证,这道题确实能够这样算,那是不是所有的两个数的'和同一个数相乘的算式都能够这样计算呢?透过这一个例子能下结论吗?(不能。)那怎样办?(再举几个例子。)好,下方请每个同学再举几个这样的例子,看看是不是所有的两个数的和同一个数相乘都能够这样计算?
(学生计算,并汇报。)
……
师:由于时光关系,老师就写到那里,透过举例我们能够发现,两个数的和同一个数相乘都能够这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下方请同学们观察黑板上的几组等式,看看你们得到的结论是什么?
3。结论。
生:两个数的和同一个数相乘,能够用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。
师:同学们真聪明,你们明白吗?这就是乘法的第三个运算定律“乘法分配律”。(出示课件,学生齐读分配律的好处。) 师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗?
(a+b)×c=a×c+b×c
师:回到第一题,看来利用乘法分配律,确实能够使一些计算简便。接下来,我们利用乘法分配律计算几道题。
【设计意图:在探究乘法分配律的过程中,让学生经历了一次严密的科学发现过程:猜想——验证——结论。为学生的可持续学习奠定了基础。】
三、练习应用
(生练习应用定律。)
师:透过这两道题的计算,我们能够看出,乘法分配律是互逆的。为了使计算简便,我们既能够从左边算式得到右边算式,又能够从右边算式得到左边算式。但遇到实际计算时,要因题而异。
四、总结
师:本节课我们学习了乘法分配律,看到乘法分配律,你们能联想到什么呢?(两个数的差,同一个数相除都能够应用这样的方法。)
乘法分配律教案5
【教学目标】
1.理解并掌握乘法分配律的内容和字母表达式,运用乘法分配律进行计算,知道它的一些应用。
2.经历从现实背景中抽象出乘法分配律的过程,通过计算、观察、举例、验证、概括、说理等活动,积累数学探究活动经验。
3.体会乘法分配律的现实背景,了解乘法分配律的作用、意义及价值,初步感受转化、归纳等数学思想。
【教学重点】
理解、掌握并运用乘法分配律。
【教学难点】
从现实背景中抽象概括出乘法分配律。
【教学过程】
一、课前谈话,导入新课。
不知道同学们注意过没有,我们说的话中存在着一种有趣的分配现象。比如说:“我爱爸爸和妈妈。”可以把它分成两句来说:“我爱爸爸,我也爱妈妈。”照这样“我爱吃苹果和西瓜”可以怎样说?(我爱吃苹果,我也爱吃西瓜。)当然,也可以反过来,将两句话合成一句话来表述。“我爱看漫画书,我也爱看故事书。”可以这样说“我爱看漫画书和故事书。”今天中午我吃了米饭、青菜和鱼可以怎样说?是不是挺有趣的?其实在我们的数学中,也存在着这种有趣的分配现象,想不想一起去研究?
通过前几节课的探索,我们已经发现了乘法交换律和乘法结合律,这一节课,咱们再继续探索,看看又会发现什么新的规律。(板书:探索与发现(三))
二、探索交流,发现规律。
1、初步感知。
(1)(出示长方形草坪图)课件演示。
师:我们宝鸡的人民公园最近正在改建,大家看,这是一块草坪,工人叔叔准备在草坪的四周围上栅栏。看图,你发现了哪些数学信息??
(2)师:求栅栏长多少米?就是求长方形的什么呢?请同学们算一算。(生计算,师巡视)
(3)师:谁来说说自己的算法?(根据学生回答板书算式A)
师:像这样算的同学请举手。谁来说说,先算的什么?再算的什么?
(4)师:有没有不一样的想法?(根据学生回答板书算式B)
师:这样算的同学请举手。这种算法先算的什么,再算的'什么呢?
A: B:
(61+39)×2 61×2+39×2
=100×2 =122+78
=200(米) =200(块)
(5)师:这两个算式,解决了同一问题。计算的结果也相等。那么,这两个算式之间可以用什么符号连接?(根据学生回答板书“=”)
(6)师:这两个算式真有趣,明明是不同的算式,却能得到相等的结果。它们之间一定有什么内在的联系与区别。观察,看看你能发现什么?同桌之间说一说。(生讨论,师巡视)
(7)师:说说你们的想法。
(8)师根据学生发言引导学生发现:
相同点:都使用了乘法和加法 ;
参与运算的数是相同的;
意义相同(都算了长方形的2条长与2条宽之和。)
不同点:运算顺序不同
左边先算和,再算积;右边先算积,再算和
2、再次感知。
你们帮老师解决了一个实际问题,老师奖励给大家一些笑脸,(出示笑脸图,每行有五个黄色笑脸图,三个红色笑脸图,共四行。)
(图略)
知道这上面一共有多少个笑脸吗?你能用几种方法解答?
学生再次各自列式计算,并很快说出两种不同的思考方法和算式,结合学生回答教师接着上题板书如下:
(5+3)×4=5×4+3×4
3、概括定律。
我们现在已经得到了两个等式:
(61+39)×2=61×2+39×2
(5+3)×4=5×4+3×4
从上面的算式中你有没有发现什么规律?
师:(惊奇地)你们真的发现了这些算式中隐含着的规律,请与你的同桌交流一下,好吗?
师:从大家的神态和脸部表情中,老师知道你们一定觉得自己发现了什么规律。同学们,你们发现了什么,我能猜到。不过,你们所看到的也许只是一种偶然现象,是一种猜想而已。你们能再举些例子对自己的猜想进行验证吗?
生在练习本上举例验证。
师:从同学们举的大量的例子中,可以确定你们的发现是正确的。 还有不同意见吗?
师:你们发现的这个知识规律,叫做乘法分配律。什么叫乘法分配律?请同桌再交流一下。
学生积极地与同桌交流着,又踊跃地参加集体交流。
生1:把括号里的两个数加起来后乘以一个数,等于把括号里的两个数都去乘以一个数,再把乘出来的积加起来。
生2:乘法分配律是:左边把两个数加起来乘以乘数,等于括号里的一个加数乘以乘数加上括号里的另一个加数乘以乘数。
师:你们想表达的是这样的意思吗?(教师出示幻灯:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。)
师:这叫做乘法分配律。能用字母来表示乘法分配律吗?
结合学生回答,教师板书:
(a+b)×c=a×c+b×c
师:对于乘法分配律,用字母来表示,感觉怎样——(稍等)简洁、明了。这就是数学的美。
三、应用规律,解决问题。
1、师:看来你们已经发现了规律,下面根据你们发现的规律,来做一个“找朋友”的游戏。
小黑板出示:(25+36)×4 ,谁是它的好朋友?
6×(20+30)
(a+50)×6
45×8+55×8
7×16+7×184
2、根据运算定律,在□中填上合适的数。
①(12+50)×3= □×3+□×3
②15×(40 + 23) = 15×□+15×□
③78×20+22×20=(□+□)×20
④▲×+●×=(□+□)×□
⑤66×28 + 66×32 + 66×40=(□+□+□)×66
3、选择。请用手势表示正确答案的编号。
与 25×(4×8)相等的算式是( )。
①25×4+25×8; ②25×4×25×8; ③25×4×8
全班学生中有一位选①,三位选②,其余都选③。通过辨析,学生更加清楚乘法分配律的内涵及与乘法结合律的区别。
(学生独立在作业纸上完成后,集体订正,电脑逐个显示订正后的答案。
4、选择其中一组题目来计算
甲组乙组
①100×13+2×13 ① 102 ×13
②(63+37)×39 ②63×39+37×39
③ 9×(46+54) ③ 9×46+ 9× 54
师:先观察,确定一下你做哪一组。(先选好要做的内容,并说明理由。最后总结出:利用乘法分配律可以使一些计算简便。然后学生独立做题,完成后交流答案。)
5、实际应用。
足球比赛的时候,学校为同学们准备了饮料。准备了24箱苹果汁和26箱橘子汁,每箱都是24瓶,你知道一共有多少瓶饮料吗?(学生独立解答,再集体交流。)
师:每箱饮料36元,付1500元够吗?(学生完成后,交流)
四、全课总结,布置作业。
1、通过这节课的学习,你有什么收获和感受?
2、你觉得自己的表现哪里最好?
3、老师小结:今天同学们通过自己的探索,发现了乘法分配律,真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。同学们要在理解的基础上牢牢记住它,希望它永远成为你的好朋友,伴你生活、成长。
4、作业(略)
乘法分配律教案6
教学内容:人教社教材四年级下册P26页例7
教学目标:
1、通过自主探索及与同伴交流,使学生亲历观察、猜测、验证、归纳、建构乘法分配律的全过程。理解乘法分配律的意义。
2、会应用乘法分配律,使某些运算简便。
3、使学生感受数学与现实生活的联系,在知识的形成过程中,培养学生的观察能力、概括能力和语言表达能力。
教学重点:
让学生积极的动手实践、自主探索及与同伴交流,亲历观察、归纳、猜测、验证、推理等探索发现的全过程,学习科学探究方法。
教学难点:理解和掌握乘法分配律的推导过程。
教学设计思路:
1、通过买衣服的情境转入乘法分配律。
2、通过观察、分析、比较几组不同的算式,引导学生发现一般规律,然后归纳总结出字母公式,并能用语言表述出来,使学生理解乘法分配律的意义。
3、会用乘法分配律进行简单的计算。
教学过程:
一、创设情境,生成问题
1、生活引入,激发兴趣
今年十月,县里准备举行中小学生田径运动会,我们学校准备派5个同学参加比赛,学校准备为这5位同学选一套运动服装。老师在商店逛来逛去选了几件衣服和几条裤子,请看大屏幕。
出示:两件上衣(价格分别是100元、80元)
两条裤子(价格分别是70元、50元)
2、提出问题,独立思考
出示:(1)一共有几种搭配方法?
(2)选择你自己喜欢的一种方案计算出总价(用多种方法计算)。
二、探索交流,建构规律
1、生选择搭配方案并计算。
2、组内研讨,并出示:
(1)一共有几种搭配方案?
(2)介绍自己的方案,并说一说需要花多少钱?你是怎么算的?
3、汇报交流:
(1)探讨第一种方案。
师:哪一个同学想先来给项老师推荐他的方案?
(预设学生回答:A:要求5套衣服多少钱,就要先求出1套多少钱。即:一套的价钱×套数=总价。列式为:(100 70)×5
B:要求5套衣服多少钱,就要先求出5件上衣的价钱和5条裤子的价钱。即:上衣价钱 裤子价钱=总价.列式为:100×5 70×5)
(2)探讨第二种方案。
(3)探讨第三种方案。
(4)探讨第四种方案。
教师板书:
一套 ×套数 = 5件上衣 5条裤子
(150 100)× 5 = 150×5 100×5
(150 70)× 5 = 150×5 70×5
(100 100)× 5 = 100×5 100×5
(100 70)× 5 = 100×5 70×5
4、生列举例子。
(1)出示:活动要求
A、写出三个这个的算式。
B、交流:你怎么来说明你写的`算式左右两边是相等的?
(2)汇报、师板书学生说的等式,并让学生说一说怎样证明算式左右两边是相等的。
5、用字母表示乘法分配律。
问:谁能用一个算式表示全班所有同学的算式?
6、学生归纳概括:乘法分配律的意义。
三、巩固应用,训练提升
1、在□里填上适当的数。
(15 20)×12=□×12 □×12
25×(4 9)=□×4 □×9
8×(10 5)=□×□ □×□
30×24=30×□ 30×□
2、把左右两边相等的算式用线连接起来。
48×12 52×12 15×18 26×18
(15 18)×26 25×40 25×4
25×(40 4) (48 52)×12
14×(45-5) 11×4 25×4
(11×25)×4 14×45-14×5
四、全课小结:今天这节课我们学习了什么内容?还记得我们是怎样学的吗?
乘法分配律教案7
教学目标:1、透过经历探索乘法分配律的活动,发现并理解乘法分配律。
2、透过观察、分析、比较,培养学生初步的分析、推理、抽象概括潜力。
3、渗透“从特殊到一般”的数学思想和方法。
教学重点:指导探索乘法分配律。
教学难点:发现并归纳乘法分配律。
教 具: 课 件
教学过程:
一、创设情境,生成问题。
师:同学们,上节课我们研究了乘法的交换律和结合律,那乘法还有其他的运算律吗?期望这天透过我们的努力,能有新的发现。
出示问题一、一个长方形的长是72米,宽是28米,这个长方形的周长是多少?
师:你能用几种方法解答?
生1:(72+28)×2
生2:72×2+28×2(板书两个算式)
师:同学们给出了两种办法,那这个长方形的周长到底是多少呢?选取其中的一个算式计算一下。
生计算。
师:请选取第一个算式的同学,说出你的计算结果。
生:长方形的周长是200米。
师:谁选取的第二个算式,结果又是多少呢?
生:我算的结果也是200米。
师:透过大家的计算,这两个数算式的结果相同,我能不能在这两个算式之间写上“=”?
生:能够出示问题二:学校要换夏季校服了,上衣每件32元,裤子每件18元,四年级一班共64人,一共需要多少元?
师:这道题你有能用几种方法解答?结果是多少?(生计算,汇报)
生1:我列的算式是32×64+18×64,结果是6400元。 师:有没有用不一样的方法的?
生2:我列的算式是:(32+18)×64,结果也是6400元。 师:两种不一样的方法,得出的结果却是相同,那这两个算式看来也是相等的。
板书:(32+18)×64=32×64+18×32
师:请同学们观察我们刚才得到的两个等式,你有怎样的感觉?
生:可能有规律。
师:真的有规律吗?
【评析:教师创设了求长方形的周长和学校买校服的情境,提出“你能用几种方法解答?学生很快地按要求用两种不一样的方法列出算式,并且能够轻而易举地得出两式相等。在以上两个问题的解决中,让学生在经历了两种不一样思考方法的计算后,便于学生发现新的知识规律。同时,产生这样一种数学体验,即乘法分配律的知识存在于实际问题的解决中。】
二、探索交流,归纳规律。
师:刚才同学们感觉到这两个等式中内含规律,下方把你的想法在小组内交流一下吧。
师:对于可能存在的规律,仅凭这两个等式就能说明它是成立的吗?
生:不能。
师:那该怎样办?
生:找更多的这样的等式。
师:既然找到了方法,那就请同学们,再找出一些这样的式子,验证它们的结果是否相等。
(生举例验证)
汇报:
生1:(3+2)×5=3×2+2×5
师:你计算过了吗?
生1:算了,两边的结果都是30。
师:很好,其他同学还有吗?
生2:(30+50)×5=30×5+50×5
生3:(24+76)×2=24×2+76×2
……
师:同学们都找到了这样的式子吗?
生:是。
师:看来同学们头脑中的那个规律可能真的存在。我们举了这么多的例子,两边的结果都是相等的,但是,万一除了咱们举得这些例子外有一个不能成立?那我们举得这么多例子也就失败了。我们能不能换个角度去看,我们不去计算,就能够决定两个式子的结果是否相同?
(生思考)
生:老师,我能。
师:你说说看。
生:比如(72+28)×2=72×2+28×2,左边括号里算出是100,就表示100个2,右边是72个2加上28个2,也是100个2,所以两边的结果必须是相等的。
师:同学们,你听明白了吗?
生:明白了。
师:那你能用这个思路说说你举得例子吗?
生1:我写的是(53+22)×4=53×4+22×4,左边是75个4,右边是53个4加上22个4,也是75个4
……
师:此刻我们再来思考,有没有可能像这样的式子两边不相等?
生:不可能,两边的结果必须相等。
【评析:学生在已经初步得出规律的基础上,教师并没有急于让学生说出规律,而是继续为学生带给具有挑战性的研究机会:“请你再举出一些贴合自我心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。这样既培养了学生的猜想潜力,又培养了学生验证猜想的潜力。学生透过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的发挥。】
师:这么看来,同学们猜测的那个规律是真的存在,你能用自我的方式表示出你认为的规律吗?
生1:(我+你)×他=我×他+你×他 ,我和你都是他的好朋友,也就是我是他的朋友,你也是他的朋友。
生2:(爸爸+妈妈)×我=爸爸×我+妈妈×我。
生3:(A+B)×C=A×C+B×C
生4、(a+b)×c=a×b+a×c
生5、(○+□)×◎=○×◎+□×◎
师:同学们真了不起,透过努力验证了这个规律,你觉得用那一种表示这个规律更好一些?
生:第三个用小写字母的那一个。
师:你为什么觉得这个好?
生:这样简单好记,而且前面学的交换律和结合律也是用字母表示的。
师:我也同意你的观点,这就是咱们数学的简洁美的体现。这个规律就是乘法的分配律。读一读这个式子。
(透过读式子,完善语言表达)
【评析:教师对于乘法分配律的教学,教师不是把重点放在数学语言的表达上,而是把重点放在让学生在多个算式的计算中去完整地感知,透过观察、比较和归纳,大胆用自我喜欢的方式表示出来……。学生经过这样的探究活动,才能建构对自我有好处的知识,用语言表达乘法分配律也就水到渠成】
三、巩固应用,内化提高
1、火眼金睛,判对错。
56×(19+28)=56×19+28
64×64+36×64=(64+36)×64
32×(3×7)=32×7+32×3
2、思维敏捷,连一连。(把结果相同的两个式子连起来) ①(42+25+33)×26 ①20×25+4×25
②36×15-26×15 ②(66+34)×66
③66×66+66×34 ③42×26+25×26+33×26
④38×99+38×1 ④(36-26)×15
⑤(20+4)×25 ⑤38×(99+1)
师:相等的式子我们都找到了,请你选取其中的一组计算出它们的结果。
生1、我算的是(20+4)×5=20×25+4×25,结果是600。 师:你是把两边的式子都计算了吗?
生1:没有,我是算的右边的那个式子。
师:你为什么没用左边的式子计算呢?
生1:右边的那个式子计算起来简单。
师:看来乘法分配律还能够用来简便计算,提高我们的计算速度。
生2:我算的是38×99+38=38×(99+1),结果是3800,我算的是右边的那个式子,右边的括号里是100,38×100好算。 师:大家来观察这个式子,这是我们发现的那个乘法分配律吗?
生1:不是。
生2:是,就是把它给倒过来用的。
师:是的,这是乘法分配律的逆应用,也能够用来简化计算。
生3:我算的是36×15-26×15=(36-26)×15,结果是150,是透过右边的式子计算出来的,那样简便。
师:看了这个等式,你有什么想说的?
生:我们刚才做的都是带“+”的,但是这个是“-”。 师:看来我们的乘法分配律还有新的内涵呢。 补充板书:(a-b)×c=a×c-b×c
师:有没有计算(42+25+33)×26=42×26+25×26+33×26这个等式的?
生4:我算了,结果是2600,算的是左边的那个式子。 师:看了它,你有没有想说的?
生:刚才我们做的都是两个数的和与一个数相乘,这个题是三个数的'和与一个数相乘。
师:如果是4个、5个数、更多数的和与一个数相乘,还能用分配律吗?
生:能。
3、合理选取,算一算。
312×12+188×12
101×87
(53+47)×23
【评析:练习题的设计综合性、层次性强,个性是第2题设计的十分巧妙,既对乘法分配律的基本形式进行了练习,又对乘法分配律能够使计算简便和乘法分配律的拓展形式,让学生有了初步感知,把学生引入更广阔的数学探索空间。让学生体验到数学知识内在的魅力,培养了学生的数学学习兴趣。】
四、拓展延伸,引发思考。
这节课我们共同来研究了乘法分配律,除法有没有分配律呢?
板书:(a+b)÷c=a÷c+b÷c ?
同学们能够课后用我们这天研究乘法分配律的方法进行验证,总结。
【总评:乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是学生较难理解和叙述的定律。在本节课教学设计上教师注重了从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。注重引导学生在自主探索的活动中,感悟和发现乘法分配律,变教学生“学会”为指导学生“会学”。教学中,透过让学生用两种不一样的方法解决实际问题,在两个不一样的算式之间建立起联系,让学生初步感知乘法分配律。之后,给学生带给体验感悟的空间,让学生写出贴合规律的式子,引导学生在研究讨论中,进一步构成清晰的表象。在此基础上,让学生自我再写出一些贴合乘法分配律的等式,既为概括乘法分配律带给更丰富的素材,又加深了对乘法分配律的认识。随后的练习设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。这些教学活动使学生经历了知识的构成过程,有利于学生改善学习方式。让学生亲历观察、归纳、猜测、验证、推理等探究发现的全过程,学生不仅仅发现乘法分配律的知识,而且学习到了科学探究的方法,数学思维潜力得到了发展。】
乘法分配律教案8
教学内容:
教科书第69页例6,练习十四的第310题。
教学目的:
使学生学会应用乘法分配律进行简便计算,提高学生的逻辑思维能力。
教具准备:
复习中的题目写在小黑板上。
教学过程 :
一、复习。
教师出示式题:
1.(35+65)37 2.3537+6537
3.85(174+26) 4.85174+8526
5.(80+8)25 6.8025+825
7.32(200+3) 8.32300+323
根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?
教师:根据乘法分配律,第1个算式和第2个算式的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1组、3组的同学算第1题和第3题,第2、4组的同学算第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。
哪几组的同学做得快?想一想,为什么第l、3组的大部分同学都那么快就算出了得数?多让几个学生说一说。
教师:第1题和第3题中,两个数的和都是整百数;整百数乘以一个数当然是很方便的。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。
教师:下面还有两组等式,大家再来计算一下,第1、3组做第5、7题,第2、4组做第6、8题。
这次哪几组的同学做得快?想一想,这次为什么第2、4组的大部分同学都做得快了?
教师:第6题和第8题分别乘得的`两个积,都有整百数,计算比较方便。从上面的计算可以看出,应用乘法分配律可以使一些计算简便。
二、新课
1.教学例6。
(1)教师出示例题,计算937+963。
教师:这道题是要计算两个乘积的和。
仔细看一看这道题里的两个乘法计算中的因数有什么特点?
(两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100)
联系上面的复习题,想一想这道题怎样做才能使计算简便呢?(先把37和63加起来,是100,再同9相乘,得900。)
这是应用了什么运算定律?
教师:这道道告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。
教师概括:首先要计算的是是两个乘积的和;两个乘法计算要有一个相同的因数,另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。
(2)教师出示例题:10243。
教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。
想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?(给学生留出思考时间。)
教师:从上面的复习题我们可以看出,如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便,现在的题目是102乘以43,想一想:能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后,
板书:10243
=(100+2)43
=10043+243
=4386
上面计算中的第二步根据是什么?(乘法分配律。)
教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便;
三、课堂练习
做练习十四的题目。
1.第3题,让学生口算。
2.第4题,先让学生自己计算。核对时让学生回答一如果按运算顺序计算,应该先算什么?怎样计算简便?根据是什么?
3.第7题,先让学生独立做,然后集体核对,核对时要让学生说一说是怎样做的。
4.第9题和第lo题。先让学生独立做,核对时要让学生说出每个算式的意义。
5.提前做完的学生做第19*题。
乘法分配律教案9
教材分析
乘法分配律是北师大版小学数学四年级的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的`生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
学情分析
学生具有了很好的自主探究、团结合作、与人交流的习惯,学生在学习了探究(一)和探索(二)后,掌握了一些算式的规律 ,有了一些探索规律的方法和经验,有了一定的基础,本节课注重引导,指点,会收到很好的效果。
知识与技能:
1、在探索的过程中,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
过程与方法:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
情感态度价值观:
1、在这些学习活动中,使学生感受到他们的身边处处有数学。
2、增加学生之间的了解、同时体会到小伙伴合作的重要。
3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学重点和难点:
教学重点:理解并掌握乘法的分配律。
教学难点:乘法的分配律的推理及运用。
乘法分配律教案10
教学目标
1.使学生理解乘法分配律的意义.
2.掌握乘法分配律的应用.
3.通过观察、分析、比较,培养学生的分析、推理和概括能力.
教学重点
乘法分配律的意义及应用.
教学难点
乘法分配律的反应用.
教具学具准备
口算卡片、投影仪.
教学步骤
一、铺垫孕伏
1. 口算.
(27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4
2. 用简便方法计算.(说明根据什么简算的)
25×63×4
3. 师生比赛,看谁算得又对又快.
20×5+5×80 (1250+125)×8
让学生说明是怎样算的?
二、探究新知
1.导入:
刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容.(板书课题:乘法分配律).
2.教学例6:
(1)出示例6:演示课件“乘法分配律”出示例6 下载
(2)引导学生观察每组的两个算式.
(3)教师提问:从上面的例子你发现了什么规律?
(4)学生明确:每组中的'两个算式都可以用等号连接.
教师板书:(18+7)×6=150
18×6+7×6=150
(18+7)×6=18×6+7×6
(5)教师出示:20×(15+9)=480
20×15+20×9=480
20×(15+9)=20×15+20×9
学生分组讨论:每组中算式所表示的意义.
(6)反馈练习:按题要求,请你说出一个等式.(投影出示)
(__+__)×__=__+__×
教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?
引导学生观察:等号左右两边算式的规律性
启发学生回答:首先是等号左边两个数的和同一个数相乘.
其次是等号右边两个加数分别同一个数相乘再把两个积相加.
最后是等号左右两边的两个算式相等.
3.教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.这叫做乘法分配律.
4.反馈练习:
横线上能填几?为什么?
(32+35)×4=__×4+__×4
(62+12)×3=__×__+__×__
教师:为了简便易记,如果用a、b、c表示3个数, 乘法分配律用字母怎样表示?
根据练习学生从而得出: (a+b)×c=a×c+b×c
使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便.
5.教学例7:演示课件“乘法分配律”出示例7 下载
(1)出示例7:102×43
启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?
引导学生对比:(100+2)×43,102×(40+3)这两种算式哪种比较简便?
使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.
教师板书:
(2)出示9×37+9×63
引导学生观察:这类题目的结构形式是怎样的?有什么特点?
教师提问:根据乘法分配律,可以把原式改写成什么形式?
根据学生的回答教师板书:9×37+9×63
=9×(37+63)
=9×100
=900
学生讨论:这样算为什么简便?
师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和.
②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数.
③另外两个不同的因数,是两个能凑成整十、整百、整千的加数.
(3)揭示教师算得快的奥秘
上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的乘法分配律使计算简便.现在你们会了吗?
三、巩固发展 演示课件“乘法分配律”出示练习 下载
1. 练习十四第1题.
根据运算定律在□里填上适当的数.
(43+25)×2=□×□+□×□
8×47+8×53=□×(□+□)
3×6+6×7=□×(□+□)
8×(7+6)=8×□+□×□
2.在横线上填上适当的数.
(1)(24+8)×125=__×__+__×
(2)25×(20+4)=25×__+25×__
(3)45×9+ 55×9=(__+__) ×__
(4)8×27+73×8=8×(__+__)
其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写.
3.把相等的算式用等号连接起来:
(1)32×48+32×52 32×(48+52)
(2)(24+8)×8 24×5+24×8
(3)20×(l+15) 0×17+20×15
(4)(40+28)×5 40×5+ 28
(5)(10×125)×8 10×8+125×8
(6)4×(30+25) 4×30×4×25
学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?
4.选择题:
(1)28×(42+29)与下面的( )相等
①28×42+28×29 ②(28+42)×(28+29) ③28×42×29
(2)与a×8-b×8相等的式于是( )
①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8
(3)与(10+8+9)×5相等的式子是( )
①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9
5.练习十四第4题,投影出示.
一辆凤凰牌自行车420元,一辆永久牌自行车405元.现在各买三辆.买凤凰车和永久车一共用多少元?
四、课堂小结
今天我们学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加.希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便.
五、布置作业
练习十四第3题.
用简便方法计算下面各题.
(80+8)×25 35×37+65×37
32×(200+3) 38×29+38
乘法分配律教案11
教学目标
1.使学生理解乘法分配律的好处.
2.掌握乘法分配律的应用.
3.透过观察、分析、比较,培养学生的分析、推理和概括潜力.
教学重点
乘法分配律的好处及应用.
教学难点
乘法分配律的反应用.
教具学具准备
口算卡片、投影仪.
教学步骤
一、铺垫孕伏
1. 口算.
(27+73)×8 40×9+40×1 14×
(10+2) 10×6+10×4
2. 用简便方法计算.(说明根据什么简算的) 25×63×4
3. 师生比赛,看谁算得又对又快. 20×5+5×80 (1250+125)×8
让学生说明是怎样算的?
二、探究新知
1.导入:
刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,明白了乘法的又一个定律能够使运算简便,你们想明白吗?这就是我们这天要研究的资料.(板书课题:乘法分配律).
2.教学例6:
(1)出示例6:演示课件“乘法分配律”出示例6下载 (2)引导学生观察每组的两个算式.
(3)教师提问:从上方的例子你发现了什么规律? (4)学生明确:每组中的两个算式都能够用等号连接.
教师板书:(18+7)×6=150
18×6+7×6=150
(18+7)×6=18×6+7×6
(5)教师出示:20×(15+9)=480
20×15+20×9=480
20×(15+9)=20×15+20×9
学生分组讨论:每组中算式所表示的好处.
(6)反馈练习:按题要求,请你说出一个等式.(投影出示) (__+__)×__=__+__×
教师提问:像贴合这种条件的式子还有许多,那么这些算式到底有什么规律呢?
引导学生观察:等号左右两边算式的规律性
启发学生回答:首先是等号左边两个数的和同一个数相乘. 其次是等号右边两个加数分别同一个数相乘再把两个积相加. 最后是等号左右两边的两个算式相等.
3.教师概括运算定律:两个数的和同一个数相乘,能够把两个加数分别同这个数相乘,再把两个积相加,结果不变.这叫做乘法分配律.
4.反馈练习:
横线上能填几?为什么?
(32+35)×4=__×4+__×4
(62+12)×3=__×__+__×__
教师:为了简便易记,如果用a、b、c表示3个数, 乘法分配律用字母怎样表示?
根据练习学生从而得出: (a+b)×c=a×c+b×c 使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便.
5.教学例7:演示课件“乘法分配律”出示例7下载 (1)出示例7:102×43
启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?
引导学生比较:(100+2)×43,102×(40+3)这两种算式哪种比较简便?
使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律能够使计算简便.
教师板书:
(2)出示9×37+9×63
引导学生观察:这类题目的结构形式是怎样的?有什么特点?
教师提问:根据乘法分配律,能够把原式改写成什么形式? 根据学生的回答教师板书:9×37+9×63 =9×(37+63)
=9×100
=900
学生讨论:这样算为什么简便?
师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和
②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数
③另外两个不一样的'因数,是两个能凑成整十、整百、整千的加数
(3)揭示教师算得快的奥秘
上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的乘法分配律使计算简便。此刻你们会了吗?
三、巩固发展
演示课件“乘法分配律”出示练习 下载
1. 练习十四第1题.
根据运算定律在□里填上适当的数. (43+25)×2=□×□+□×□
8×47+8×53=□×(□+□)
3×6+6×7=□×(□+□)
8×(7+6)=8×□+□×□
2.在横线上填上适当的数.
(1)(24+8)×125=__×__+__×
(2)25×(20+4)=25×__+25×__
(3)45×9+ 55×9=(__+__) ×__
(4)8×27+73×8=8×(__+__)
其中做(3)、(4)题之前教师要提醒学生明确此类题,务必是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写.
3.把相等的算式用等号连接起来: (1)32×48+32×5232×(48+52)
(2)(24+8)×824×5+24×8
(3)20×(l+15)0×17+20×15
(4)(40+28)×540×5+ 28
(5)(10×125)×810×8+125×8
(6)4×(30+25)4×30×4×25
学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?
4.选取题:
(1)28×(42+29)与下方的()相等
①28×42+28×29②(28+42)×(28+29)③28×42×29 (2)与a×8-b×8相等的式于是()
①(a+b)×8②(a-b)×(8+8)③(a-b)×8 (3)与(10+8+9)×5相等的式子是()
①10×5+8×5+9×5②10+5×8+5×9③10×5+5×8+9 5.练习十四第4题,投影出示.
一辆凤凰牌自行车420元,一辆永久牌自行车405元.此刻各买三辆.买凤凰车和永久车一共用多少元?
四、课堂小结
这天我们学习了乘法分配律,明白了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加.期望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便.
五、布置作业
练习十四第3题.
用简便方法计算下方各题.
(80+8)×2535×37+65×37
32×(200+3)38×29+38
乘法分配律教案12
教学内容:
数学四年级上册P48探索与发现(三)乘法分配律
教学目标:
1、使学生理解并掌握乘法分配律,并会用字母表示。
2、能够运用乘法的分配律进行简便计算。
3、培养学生观察发现、猜想、举例验证,得出结论等初步的逻辑思维能力。
4、培养学生独立自主、主动探索、自己得出结论的学习意识。
教学重点:
理解并掌握乘法分配律。
教学难点:
乘法分配律的推理及运用。
教学准备:
多媒体,题单
教学过程:
一、创设情境,调动参与。
师:以往上课只有老师和同学们,今天还有谁来了?
生:爸爸妈妈
师:爱爸爸妈妈吗?
生:爱。
师:把这一句话,分成两句话,怎么说。(我爱爸爸和妈妈)
生:我爱爸爸,我爱妈妈。
师:能把下面两句话合成一句话吗?(我喜欢语文课,我喜欢数学课。)
师:中国语言真神奇,同样的意思,可以一句话来说,也可以两句话来说。而在数学中,也有类似的思考方法。今天,就让我们一起走进探索与发现(三)。
二、新授,根据两种计算方法探索形成等式。
1、出示例1,学生独立计算,然后上台板演两种不同的方法。
(市场上的苹果每千克8元,罗老师先买了6千克,又买了4千克,罗老师一共花了多少钱?)
2、读每种方法的算式,说一说每一步在算什么。
3、口答。
4、算式答案一样,用等号连接,写成一个等式。
5、生读一读等式。
6、观察这个等式,从等式中你发现了什么?
7、出示例2。这个组合图形的面积是多少平方厘米?(A长方形:长7厘米,宽5厘米;B长方形:长3厘米,宽5厘米。)
默读题目,用两种方法计算。
8、展示学生的算法。
第一个算式每一步分别在算什么?
第二个算式每一步分别在算什么?
这两个算式都在算组合图形的面积。答案相同,这两个算式也可以写成一个等式,((7+3)X5=7X5+3X5)
三、观察等式,发现规律。
1、师:下面,请大家带着这两个问题,仔细观察这两个等式。(“观察发现”)
1、等号左右两边算式有什么相同的地方?有什么不同的地方?
2、你能从乘法的意义来说明左边和右边的算式结果为什么会相等吗?
2、先独立思考,然后和四人小组的同学交流你的想法。
3、汇报。
(1)数字相同,符号相同。运算顺序不同。(运算顺序是怎样的不同)
(2)第一个等式的左边和右边都表示10个8相加是多少,第二个等式的左边和右边都表示10个5相加是多少,所以结果相同。
4、根据这些特点,你有什么发现。
生汇报自己的想法。
师:我听明白了,大家发现了这个规律:两个数的和乘一个数,等于把这两个加数分别乘这个数,再把积相加。是这个意思吧?这只是我们的猜想。(“猜想”)
你能举出一些有这样规律的例子吗?(“举例”)
5、你们在草稿本上举个例子来试试,为了方便计算和节约时间,大家可以选择小一点的数字。
6、学生汇报。
生口答,师板书学生的两个例子。
还能举出其他的例子吗?(能)刚才我们用举例的方法验证了这个猜想,在举例的过程中有没有发现结果不一样的例子。(没有)
看来这个规律是普遍存在的`,在数学上,我们把这个规律叫做乘法分配律。(板书)(“得出结论”)
读一读乘法分配律。
刚才我们举了很多有这个规律的例子,这样的例子能举完吗?(不能)加上省略号。
四、得出结论,揭示课题。
用字母表示。
师:如果用a,b,c三个字母代替数字,你能表示出乘法分配律吗?
学生口答:(a+b)xc=axc+bxc
这个等式反过来也成立。学生从左往右读一次,再从右往左读一次。
师:a和b都与哪个数相乘了?(C),C就是a和b共同的乘数。
五、运用。
师:运用乘法分配律,我们来练一练。
1、判断下面各题。
(25+8)x4=25x4+8x4
(10+5)x18=10x18+5
6x(a+b)=6xa+axb
生口答,错在哪儿?
2、运用乘法分配律填一填。
师:我们来运用乘法分配律填一填。
课件出示:(10+7)x6=()x6+()x6
8x(125+9)=8x()+8x()
7x48+7x52=()x(+)
学生口答,1、2题学生直接做判断。3题追问,48和52都同(7)相乘了,那么(7)就是48和52共同的乘数。
3、计算。
出示练习题:(40+4)X25 34X72+34X28
第一题:展示两种算法。比较算法,用乘法分配律,可以使计算更简便。
第二题:展示算法。
为什么大多数同学都使用乘法分配律来计算了?
小结:运用乘法分配律,可以使一些计算更简便。以后再遇到这样的题目时,我们就要先思考,是直接按题目的运算顺序算呢,还是可以用简便方法来算。
六、课堂小结
师:通过今天的学习,大家有收获吗?你学到了什么?还有其他的收获吗?
生谈谈自己的收获。
师:是的,今天我们学习了乘法分配律,利用这个规律,可以使一些计算变得更简便。在学习乘法分配律时,我们的学习方法是:先观察发现,然后猜想,再举例验证,最后得出结论。学习数学知识,可以使我们的学习和生活变得更简单。
七、回归课本,翻书阅读,完成课堂作业。
今天我们学习的内容在数学书48页和49页,同学们翻书仔细看一看。看完后在课堂本上完成今天的课堂作业49页,练一练2题的第1列和第2列
乘法分配律教案13
教学目标
1.使学生理解的好处.
2.掌握的应用.
3.透过观察、分析、比较,培养学生的分析、推理和概括潜力.
教学重点
的好处及应用.
教学难点
的反应用.
教具学具准备
口算卡片、投影仪.
教学步骤
一、铺垫孕伏
1. 口算.
(27+73)×8 40×9+40×1 14×
(10+2) 10×6+10×4
2. 用简便方法计算.(说明根据什么简算的) 25×63×4
3. 师生比赛,看谁算得又对又快. 20×5+5×80 (1250+125)×8
让学生说明是怎样算的?
二、探究新知
1.导入 :
刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,明白了乘法的又一个定律能够使运算简便,你们想明白吗?这就是我们这天要研究的资料.(板书课题:).
2.教学例6:
(1)出示例6:演示课件“”出示例6 下载 (2)引导学生观察每组的两个算式.
(3)教师提问:从上方的例子你发现了什么规律? (4)学生明确:每组中的两个算式都能够用等号连接.
教师板书:(18+7)×6=150
18×6+7×6=150
(18+7)×6=18×6+7×6
(5)教师出示:20×(15+9)=480
20×15+20×9=480
20×(15+9)=20×15+20×9
学生分组讨论:每组中算式所表示的好处.
(6)反馈练习:按题要求,请你说出一个等式.(投影出示) (__+__)×__=__+__×
教师提问:像贴合这种条件的式子还有许多,那么这些算式到底有什么规律呢?
引导学生观察:等号左右两边算式的规律性
启发学生回答:首先是等号左边两个数的和同一个数相乘. 其次是等号右边两个加数分别同一个数相乘再把两个积相加. 最后是等号左右两边的两个算式相等.
3.教师概括运算定律:两个数的和同一个数相乘,能够把两个加数分别同这个数相乘,再把两个积相加,结果不变.这叫做.
4.反馈练习:
横线上能填几?为什么?
(32+35)×4=__×4+__×4
(62+12)×3=__×__+__×__
教师:为了简便易记,如果用a、b、c表示3个数, 用字母怎样表示?
根据练习学生从而得出: (a+b)×c=a×c+b×c 使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便.
5.教学例7:演示课件“”出示例7 下载 (1)出示例7:102×43
启发学生想:能否把算式改成的形式,然后应用运算定律进行简算?
引导学生比较:(100+2)×43,102×(40+3)这两种算式哪种比较简便?
使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的`数改写成一个整十、整百、整千的数与一个数的和,再应用能够使计算简便.
教师板书:
(2)出示9×37+9×63
引导学生观察:这类题目的结构形式是怎样的?有什么特点? 教师提问:根据,能够把原式改写成什么形式? 根据学生的回答教师板书:9×37+9×63 =9×(37+63)
=9×100
=900 学生讨论:这样算为什么简便?
师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和.
②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数.
③另外两个不一样的因数,是两个能凑成整十、整百、整千的加数.
(3)揭示教师算得快的奥秘
上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的使计算简便。此刻你们会了吗?
三、巩固发展 演示课件“”出示练习 下载
1. 练习十四第1题.
根据运算定律在□里填上适当的数. (43+25)×2=□×□+□×□
8×47+8×53=□×(□+□)
3×6+6×7=□×(□+□)
8×(7+6)=8×□+□×□
2.在横线上填上适当的数.
(1)(24+8)×125=__×__+__×
(2)25×(20+4)=25×__+25×__
(3)45×9+ 55×9=(__+__) ×__
(4)8×27+73×8=8×(__+__)
其中做(3)、(4)题之前教师要提醒学生明确此类题,务必是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写.
3.把相等的算式用等号连接起来: (1)32×48+32×52 32×(48+52)
(2)(24+8)×8 24×5+24×8
(3)20×(l+15) 0×17+20×15
(4)(40+28)×5 40×5+ 28
(5)(10×125)×8 10×8+125×8
(6)4×(30+25) 4×30×4×25
学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?
4.选取题:
(1)28×(42+29)与下方的( )相等
①28×42+28×29 ②(28+42)×(28+29) ③28×42×29 (2)与a×8-b×8相等的式于是( )
①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8 (3)与(10+8+9)×5相等的式子是( )
①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9 5.练习十四第4题,投影出示.
一辆凤凰牌自行车420元,一辆永久牌自行车405元.此刻各买三辆.买凤凰车和永久车一共用多少元?
四、课堂小结
这天我们学习了,明白了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加.期望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便. 五、布置作业
练习十四第3题.
用简便方法计算下方各题.
(80+8)×25 35×37+65×37
32×(200+3) 38×29+38
板书设计
乘法分配律教案14
学情分析:
乘法分配律这个知识点在本节课以前学生已经有一些潜移默化的理解,在实际计算中也有应用,如:本单元第一课时的《卫星运行时间》乘数是两位的乘法中,“114×21=” 不论是第一种“114×20=2280,114×1=114, 2280+114=2394 ”还是第四种用竖式计算,其实质都是在利用乘法分配律这一理论依据,即将21个114,分成20个114和1个114的和,只是表达形式不同罢了。因此,基于这些基础,我教学时特别注重与旧知的联系和在意义上的沟通。
教学目标:
1.理解并掌握乘法分配律并会用字母表示。
2.能够运用乘法分配律进行简便计算。
3.在乘法分配律的发现过程中训练学生观察、归纳、概括等能力。
4.感受“由特殊到一般,再由一般到特殊”的认识事物的方法,增强独立自主、主动探索、自己得出结论的学习意识。
教学重点:
理解并掌握乘法分配律。
教学难点:
乘法分配律的推理及运用。
教学过程:
一、情景激趣,提出猜想
1.情景
暑假中,我们谕小娃娃表演的《阳光羌娃》在比赛中获得了巨大的成功,而且,他们马上还要到香港参加演出。(出示照片)
出示资料: 他们每天都在辛苦地训练着,有时会练得吃饭的时间都没有,昨天晚上,王老师就给参加训练的18个男生和23个女生每人准备了一份8元的快餐,你知道王老师一共用了多少钱吗?
(设计意图:以学生熟悉的学校中的大事作为问题背景,可以让学生切实的感受到数学的广泛应用性,也利于学生主动解决问题。)
①整理条件、问题
从这段资料中你知道了那些信息?王老师遇到了哪些问题?
②学生列式,抽生回答: (18+23)×8, 18×8+23×8
③交流算式的意义
第一个算式先算什么?再算什么?第二个算式呢?
④计算:(发现两个算式结果相等)
⑤观察、分析算式特点
咦,我发现这两个算式非常有意思。你看看,这是两个不同的'算式,很多地方都不相同,仔细看看,又有相同的地方,对吧!
现在,就来仔细观察一下这两个算式,看看它们到底有哪些相同点?又有哪些不同点?
⑥全班交流,引导学生从下面几个方面进行思考
A.涉及到得运算及顺序:都包含了+、×这两种运算,左边是先算加法,合起来以后再乘;右边是分别先乘,然后再加。
B.涉及到的数:都用到了18、23和8这三个数,其中8在左边出现了一次,在右边出现了两次。
C.计算结果:结果相等。
(设计意图:对算式意义的分析让学生明白这两个算式相等的道理,而从外在特点的分析则让学生初步感知乘法分配律的特点。同时,细致的特点分析也为学生后面的举例验证打下基础)
2.提出猜想
真有趣,运算顺序不同,数据也有不一样的,结果却一样,那是不是只有这一个算式才是这样呢?还是像这样的算式都有这样的规律呢?
怎样才能知道像这样的算式都有这样的规律?
引导学生想到用举例的方法进行验证。
师小结:要想知道这是不是一个普遍的规律,那我们就举出一些这样的例子,再看看它们的结果想不想等就可以了。
(设计意图:对一个人而言,记忆一个知识、规律并不是最重要的,最重要的是他要知道从哪里去寻找知识和规律,要知道他的发现如何去获得证明。本节课就是要以乘法分配律的学习为载体,培养学生这方面的能力,这才是真正的立足于学生一生的发展而在教学。)
二、举例验证,证明合理性
1.全班举例:抽生举例,全班进行判断,看所举的算式是否符合猜想的特征。
2.分组举例
两个孩子为一组,一起举一个例子,再一起计算验证,看结果是否相等。
3.交流:谁愿意把你举的例子和大家一起分享?
A.这个式子符合要求吗?
B.这些式子都有一个共同的规律,这个共同的规律是什么?
教师引导学生小结:左边都是把两个数合起来再与第三个数相乘,右边是分开乘,再把两个积相加,右边算式中这个相同的乘数,在左边算式中放在了括号的外面。
(设计意图:让学生经历举例验证的过程,经历归纳概括的过程。)
三、概括归纳,建立模型
1.个性概括
这样的式子你们还能写吗?能写完吗?
强调这样的例子还有很多很多,是写不完的。
你能用一个式子将所有的像这样的式子都概括出来吗?
学生用自己的方法概括规律。(学生可能用文字概括,可能用图形符号概括,可能用字母概括)。
2.统一认识
教师指出一般用a、b、c表示式子中的三个数,这个规律可以表示成
(a+b)×c=a×c+b×c
给出规律的名称:今天,我们一起动手动脑发现了这个非常有趣的规律,这个规律是四则运算中一个非常重要的规律,叫做乘法分配律。
3.进一步认识
这个式子表示两个数合起来与第三个数相乘的结果与用这两个数分别与第三个数相乘,再把两个积相加的结果相等。反之,两个数都与同一个数相乘,再把积相加所得到的结果与先把这两个数合起来再与第三个数相乘,所得到的结果相等。
齐读式子。
(设计意图:学生通过不完全归纳法,得出规律。在这个过程中,通过不同方法的概括,培养学生的抽象能力,尤其是分析与综合的能力,归纳与概括的能力。)
四、巩固应用,深化认识
1.哪些算式与72×35相等
72×30+72×5
72×35 72×30+5
70×35+2×35
70×35+2
问:为什么相等?
(设计意图:让学生理解乘法分配律的本质意义)
2.你会填吗?
(10+7)×6= ×6+ ×6
8×(125+9)=8× +8×
7×48+7×52= ×( + )
问:订正时强调第一小题为什么这样填?第三个式子中括号外面为什么要写7。
(设计意图:学生进一步深刻理解乘法分配律)
3. 7×48+7×52 7×(48+52)
这两个式子你想选择哪个进行计算?为什么?
如果只给你第一个式子,你会想办法让你的计算变得简便吗?
小结:利用乘法分配律有时候可以使计算变得更简便。
(设计意图:通过学生的观察,明白乘法分配律在计算中的意义。)
<<<1234>>>
4.先想一想,下列各题怎样计算更简便,把你的简便方法写出来。
①34×72+34×28(订正时问:为什么不直接算)
(80+4)×25
订正时问:把(80+4)×25写成80×25+4×25依据是什么?
如果不用好不好算?
(80+20)×25
问:这道题与(80+4)×25的样子一样,都是两个数的和与第三个数相乘,为什么你们又不用乘法分配律来计算了呢?
教师小结:在计算中要根据数据特点,灵活运用乘法分配律。
②21×25 75×99+75
小结:在计算中遇到不符合乘法分配律特点的式子,可以利用拆数等方法,在不改变原数大小的前提下将式子变成符合乘法分配律特点的式子,然后再进行简算。
(设计意图:通过题组练习,让学生在计算中要根据数据特点,灵活运用乘法分配律,培养学生思维的灵活性,不生搬硬套题型。)
五、全课小结
孩子们,你们今天收获了什么?
当你们在一些具体的问题中发现某些规律,而你又不敢肯定它正确时,你可以怎么办呢?
板书设计
乘法分配律
(18+23)×8 (18+23)×8=18×8+23×8 7×48+7×52=7×(48+52)
=41×8 … … … …
=328(元) 学生举例 … … … … 34×72+34×28 (20+4)×25
18×8+23×8 … … … … (80+20)×25
=144+184 个性概括:… …
=328(元) (a+b)×c=a×c+b×c 21×25 75×99+75
乘法分配律教案15
教材分析
本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便运算的基础上学习的。乘法分配律是本单元的教学重点,也是难点。教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。学习这部分知识有利于提高学生的观察能力、比较能力和概括能力。同时,乘法分配律是学生以后进行简便运算的前提和依据,对提高学生的计算能力有着重要的作用。
学情分析
学生已经学习掌握了乘法交换律、结合律,并能够初步应用这些定律进行一些简便计算,在此基础上来学习乘法分配律应该不会觉着太难。但是学生的概括能力和归纳能力应该是一个薄弱环节。在教学的过程中本着自主探究的`原则,让学生充分的观察、分析、比较、判断、举例、验证,通过大量的感知让学生理解乘法分配律这一运算定律的意义,并在理解的基础上有效的训练,形成数学模型,丰富应用的经验,提高简便运算的能力。
教学目标
1. 使学生进一步体验探索规律的过程,能自主发现乘法分配律,并能用字母表示。会用乘法分配律进行一些简便运算。
2. 经历推导、发现的过程,体验比较、分析、归纳、发现的学习方法,培养学生的分析、比较、综合概括能力。
3.通过自主探索的学习过程,激发学生学习数学的兴趣,培养学生独立思考的良好习惯。
教学重点和难点
教学重点:引导学生探索乘法的分配律。
教学难点:运用乘法分配律进行简便运算。
【乘法分配律教案】相关文章:
《乘法分配律》教案09-04
乘法分配律教案09-04
《乘法分配律》小学教案03-31
小学乘法分配律教案03-17
《乘法分配律》教案15篇02-17
乘法分配律教案15篇02-17
乘法分配律教案(15篇)02-17
乘法分配律教案(通用15篇)03-18
乘法分配律教案合集15篇02-18
乘法分配律教案汇编15篇02-17