当前位置:育文网>教学文档>教案> 高三数学教案

高三数学教案

时间:2023-11-08 07:02:09 教案 我要投稿
  • 相关推荐

高三数学教案

  作为一位优秀的人民教师,往往需要进行教案编写工作,借助教案可以更好地组织教学活动。快来参考教案是怎么写的吧!下面是小编帮大家整理的高三数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

高三数学教案

高三数学教案1

  一、教学目标

  1、理解一次函数和正比例函数的概念,以及它们之间的关系。

  2、能根据所给条件写出简单的一次函数表达式。

  二、能力目标

  1、经历一般规律的探索过程、发展学生的抽象思维能力。

  2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。

  三、情感目标1、通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。

  2、经历利用一次函数解决实际问题的.过程,发展学生的数学应用能力。

  四、教学重难点1、一次函数、正比例函数的概念及关系。   2、会根据已知信息写出一次函数的表达式。

  五、教学过程

  1、新课导入有关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的重量的'增加,弹簧的长度相应的会拉长,那么所挂物体的重量与弹簧的长度之间就存在某种关系,究竟是什么样的关系,请看:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。

  (1)计算所挂物体的质量分别为1千克、 2千克、 3千克、 4千克、 5千克时弹簧的长度,

  (2)你能写出x与y之间的关系式吗?

  分析:当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加0.5厘米,总长度为3.5厘米,当增加1千克物体,即所挂物体为2千克时,弹簧又增加0.5厘米,总共增加1厘米,由此可见,所挂物体每增加1千克,弹簧就伸长0.5厘米,所挂物体为x千克,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x。

  2、做一做某辆汽车油箱中原有汽油100升,汽车每行驶50千克耗油9升。你能写出x与y之间的关系吗?(y=1000.18x或y=100 x)接着看下面这些函数,你能说出这些函数有什么共同的特点吗?上面的几个函数关系式,都是左边是因变量,右边是含自变量的代数式,并且自变量和因变量的指数都是一次。

  3、一次函数,正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

  4、例题讲解例1:下列函数中,y是x的一次函数的是( )   ①y=x6;②y= ;③y= ;④y=7x   A、①②③ B、①③④ C、①②③④ D、②③④分析:这道题考查的是一次函数的概念,特别要强调一次函数自变量与因变量的指数都是1,因而②不是一次函数,答案为B

高三数学教案2

  一、教学内容分析

  本小节是普通高中课程标准实验教科书数学5(必修)第三章第3小节,主要内容是利用平面区域体现二元一次不等式(组)的解集;借助图解法解决在线性约束条件下的二元线性目标函数的最值与解问题;运用线性规划知识解决一些简单的实际问题(如资源利用,人力调配,生产安排等)。突出体现了优化思想,与数形结合的思想。本小节是利用数学知识解决实际问题的典例,它体现了数学源于生活而用于生活的特性。

  二、学生学习情况分析

  本小节内容建立在学生学习了一元不等式(组)及其应用、直线与方程的基础之上,学生对于将实际问题转化为数学问题,数形结合思想有所了解。但从数学知识上看学生对于涉及多个已知数据、多个字母变量,多个不等关系的知识接触尚少,从数学方法上看,学生对于图解法还缺少认识,对数形结合的思想方法的掌握还需时日,而这些都将成为学生学习中的难点。

  三、设计思想

  以问题为载体,以学生为主体,以探究归纳为主要手段,以问题解决为目的,以多媒体为重要工具,激发学生的动手、观察、思考、猜想探究的兴趣。注重引导学生充分体验“从实际问题到数学问题”的数学建模过程,体会“从具体到一般”的抽象思维过程,从“特殊到一般”的探究新知的过程;提高学生应用“数形结合”的思想方法解题的能力;培养学生的分析问题、解决问题的能力。

  四、教学目标

  1、知识与技能:了解二元一次不等式(组)的概念,掌握用平面区域刻画二元一次不等式(组)的方法;了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和解等概念;理解线性规划问题的图解法;会利用图解法求线性目标函数的最值与相应解;

  2、过程与方法:从实际问题中抽象出简单的线性规划问题,提高学生的数学建模能力;在探究的过程中让学生体验到数学活动中充满着探索与创造,培养学生的数据分析能力、化归能力、探索能力、合情推理能力;

  3、情态与价值:在应用图解法解题的过程中,培养学生的化归能力与运用数形结合思想的能力;体会线性规划的基本思想,培养学生的数学应用意识;体验数学来源于生活而服务于生活的特性。

  五、教学重点和难点

  重点:从实际问题中抽象出二元一次不等式(组),用平面区域刻画二元一次不等式组的解集及用图解法解简单的二元线性规划问题;

  难点:二元一次不等式所表示的平面区域的探究,从实际情境中抽象出数学问题的过程探究,简单的二元线性规划问题的图解法的探究。

  六、教学基本流程

  第一课时,利用生动的情景激起学生求知的__,从中抽象出数学问题,引出二元一次不等式(组)的基本概念,并为线性规划问题的引出埋下伏笔。通过学生的自主探究,分类讨论,大胆猜想,细心求证,得出二元一次不等式所表示的平面区域,从而突破本小节的第一个难点;通过例1、例2的.讨论与求解引导学生归纳出画二元一次不等式(组)所表示的平面区域的具体解答步骤(直线定界,特殊点定域);最后通过练习加以巩固。

  第二课时,重现引例,在学生的回顾、探讨中解决引例中的可用方案问题,并由此归纳总结出从实际问题中抽象出数学问题的基本过程:理清数据关系(列表)→设立决策变量→建立数学关系式→画出平面区域。让学生对例3、例4进行分析与讨论进一步完善这一过程,突破本小节的第二个难点。

  第三课时,设计情景,借助前两个课时所学,设立决策变量,画出平面区域并引出新的问题,从中引出线性规划的相关概念,并让学生思考探究,利用特殊值进行猜测,找到方案;再引导学生对目标函数进行变形转化,利用直线的图象对上述问题进行几何探究,把最值问题转化为截距问题,通过几何方法对引例做出完美的解答;回顾整个探究过程,让学生在讨论中达成共识,总结出简单线性规划问题的图解法的基本步骤。通过例5的展示让学生从动态的角度感受图解法。最后再现情景1,并对之作出完美的解答。

  第四课时,给出新的引例,让学生体会到线性规划问题的普遍性。让学生讨论分析,对引例给出解答,并综合前三个课时的教学内容,连缀成线,总结出简单线性规划的应用性问题的一般解答步骤,通过例6,例7的分析与展示进一步完善这一过程。总结线性规划的应用性问题的几种类型,让学生更深入的体会到优化理论,更好的认识到数学来源于生活而运用于生活的特点。

高三数学教案3

  1.导数概念及其几何意义

  (1)了解导数概念的实际背景;

  (2)理解导数的几何意义.

  2.导数的运算

  (1)能根据导数定义,求函数y=c(c为常数),y=x,y=x2,y=x3,y= ,y= 的导数;

  (2)能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.

  3.导数在研究函数中的应用

  (1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次);

  (2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).

  4.生活中的优化问题

  会利用导数解决某些实际问题.

  5.定积分与微积分基本定理

  (1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念;

  (2)了解微积分基本定理的含义. 本章重点:

  1.导数的概念;

  2.利用导数求切线的斜率;

  3.利用导数判断函数单调性或求单调区间;

  4.利用导数求极值或最值;

  5.利用导数求实际问题最优解.

  本章难点:导数的`综合应用. 导数与定积分是微积分的核心概念之一,也是中学选学内容中较为重要的知识之一.由于其应用的广泛性,为我们解决有关函数、数列问题提供了更一般、更有效的方法.因此,本章知识在高考题中常在函数、数列等有关最值不等式问题中有所体现,既考查数形结合思想,分类讨论思想,也考查学生灵活运用所学知识和方法的能力.考题可能以选择题或填空题的形式来考查导数与定积分的基本运算与简单的几何意义,而以解答 题的形式来综合考查学生的分析问题和解决问题的能力.

  知识网络

  3 .1 导数的概念与运算

  典例精析

  题型一 导数 的概念

  【例1】 已知函数f(x)=2ln 3x+8x,

  求 f(1-2Δx)-f(1)Δx的值.

  【解析】由导数的定义知:

  f(1-2Δx)-f(1)Δx=-2 f(1-2Δx)-f(1)-2Δx=-2f′(1)=-20.

  【点拨】导数的实质是求函数值相对于自变量的变化率,即求当Δx→0时, 平均变化率ΔyΔx的极限.

  【变式训练1】某市在一次降雨过程中,降雨量y(mm)与时间t(min)的函数关系可以近似地表示为f(t)=t2100,则在时刻t=10 min的降雨强度为( )

  A.15 mm/min B.14 mm/min

  C.12 mm/min D.1 mm/min

  【解析】选A.

  题型二 求导函数

  【例2】 求下列函数的导数.

  (1)y=ln(x+1+x2);

  (2)y=(x2-2x+3)e2x;

  (3)y=3x1-x.

  【解析】运用求导数公式及复合函数求导数法则.

  (1)y′=1x+1+x2(x+1+x2)′

  =1x+1+x2(1+x1+x2)=11+x2.

  (2)y′=(2x-2)e2x+2(x2-2x+3)e2x

  =2(x2-x+2)e2x.

  (3)y′=13(x1-x 1-x+x(1-x)2

  =13(x1-x 1(1-x)2

  =13x (1-x)

  【变式训练2】如下图,函数f(x)的图象是折线段ABC,其中A、B、C的坐标分别为(0,4),(2,0),(6,4),则f(f(0))= ; f(1+Δx)-f(1)Δx= (用数字作答).

  【解析】f(0)=4,f(f(0))=f(4)=2,

  由导数定义 f(1+Δx)-f(1)Δx=f′(1).

  当0≤x≤2时,f(x)=4-2x,f′(x)=-2,f′(1)=-2.

  题型三 利用导数求切线的斜率

  【例3】 已知曲线C:y=x3-3x2+2x, 直线l:y=kx,且l与C切于点P(x0,y0) (x0≠0),求直线l的方程及切点坐标.

  【解析】由l过原点,知k=y0x0 (x0≠0),又点P(x0,y0) 在曲线C上,y0=x30-3x20+2x0,

  所以 y0x0=x20-3x0+2.

  而y′=3x2-6x+2,k=3x20-6x0+2.

  又 k=y0x0,

  所以3x20-6x0+2=x20-3x0+2,其中x0≠0,

  解得x0=32.

  所以y0=-38,所以k=y0x0=-14,

  所以直线l的方程为y=-14x,切点坐标为(32,-38).

  【点拨】利用切点在曲线上,又曲线在切点处的切线的斜率为曲线在该点处的导数来列方程,即可求得切点的坐标.

  【变式训练3】若函数y=x3-3x+4的切线经过点(-2,2),求此切线方程.

  【解析】设切点为P(x0,y0),则由

  y′=3x2-3得切线的斜率为k=3x20-3.

  所以函数y=x3-3x+4在P(x0,y0)处的切线方程为

  y-y0=(3x20-3)(x-x0).

  又切线经过点(-2,2),得

  2-y0=(3x20-3)(-2-x0),①

  而切点在曲线上,得y0=x30-3x0+4, ②

  由①②解得x0=1或x0=-2.

  则切线方程为y=2 或 9x-y+20=0.

  总结提高

  1.函数y=f(x)在x=x0处的导数通常有以下两种求法:

  (1) 导数的定义,即求 ΔyΔx= f(x0+Δx)-f(x0)Δx的值;

  (2)先求导函数f′(x),再将x=x0的值代入,即得f′(x0)的值.

  2.求y=f(x)的导函数的几种方法:

  (1)利用常见函数的导数公式;

  (2)利用四则运算的导数公式;

  (3)利用复合函数的求导方法.

  3.导数的几何意义:函数y=f(x)在x=x0处的导数f′(x0),就是函数y=f(x)的曲线在点P(x0,y0)处的切线的斜率.

高三数学教案4

  一、教材与学情分析

  《随机抽样》是人教版职教新教材《数学(必修)》下册第六章第一节的内容,“简单随机抽样”是“随机抽样”的基础,“随机抽样”又是“统计学‘的基础,因此,在“统计学”中,“简单随机抽样”是基础的基础针对这样的情况,我做了如下的教学设想。

  二、教学设想

  (一)教学目标:

  (1)理解抽样的必要性,简单随机抽样的概念,掌握简单随机抽样的`两种方法;

  (2)通过实例分析、解决,体验简单随机抽样的科学性及其方法的可靠性,培养分析问题,解决问题的能力;

  (3)通过身边事例研究,体会抽样调查在生活中的应用,培养抽样思考问题意识,养成良好的个性品质。

  (二)教学重点、难点

  重点:掌握简单随机抽样常见的两种方法(抽签法、随机数表法)

  难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性

  为了突出重点,突破难点,达到预期的教学目标,我再从教法、学法上谈谈我的教学思路及设想。

  下面我再具体谈谈教学实施过程,分四步完成。

  三、教学过程

  (一)设置情境,提出问题

  〈屏幕出示〉例1:请问下列调查宜“普查”还是“抽样”调查?

  A、一锅水饺的味道

  B、旅客上飞机前的安全检查

  C、一批炮弹的杀伤半径

  D、一批彩电的质量情况

  E、美国总统的民意支持率

  学生讨论后,教师指出生活中处处有“抽样”,并板书课题——XXXX抽样

  「设计意图」

  生活中处处有“抽样”调查,明确学习“抽样”的必要性。

  (二)主动探究,构建新知

  〈屏幕出示〉例2:语文老师为了了解电(1)班同学对某首诗的背诵情况,应采用下列哪种抽查方式?为什么?

  A、在班级12名班委名单中逐个抽查5位同学进行背诵

  B、在班级45名同学中逐一抽查10位同学进行背诵

  先让学生分析、选择B后,师生一起归纳其特征:

  (1)不放回逐一抽样,

  (2)抽样有代表性(个体被抽到可能性相等),

  学生体验B种抽样的科学性后,教师指出这是简单随机抽样,并复习初中讲过的有关概念,最后教师补充板书课题——(简单随机)抽样及其定义。

  从例1、例2中的正反两方面,让学生体验随机抽样的科学性。这是突破教学难点的重要环节之一。

  复习基本概念,如“总体”、“个体”、“样本”、“样本容量”等。

  〈屏幕出示〉例4我们班有44名学生,现从中抽出5名学生去参加学生座谈会,要使每名学生的机会均等,我们应该怎么做?谈谈你的想法。

  先让学生独立思考,然后分小组合作学习,最后各小组推荐一位同学发言,最后师生一起归纳“抽签法”步骤:

  (1)编号制签

  (2)搅拌均匀

  (3)逐个不放回抽取n次。教师板书上面步骤。

  请一位同学说说例3采用“抽签法”的实施步骤。

  「设计意图」

  1、反馈练习落实知识点突出重点。

  2、体会“抽签法”具有“简单、易行”的优点。

  〈屏幕出示〉例5、第07374期特等奖号码为08+25+09+21+32+27+13,本期销售金额19872409元,中奖金额500万。

  提问:特等奖号码如何确定呢?彩票中奖号码适合用抽签法确定吗?

  让学生观看观看电视摇奖过程,分析抽签法的局限性,从而引入随机数表法。教师出示一份随机数表,并介绍随机数表,强调数表上的数字都是随机的,各个数字出现的可能性均等,结合上例让学生讨论随机数表法的步骤,最后师生一起归纳步骤:

  (1)编号

  (2)在随机数表上确定起始位置

  (3)取数。教师板书上面步骤。

  请一位同学说说例3采用“随机数表法”的实施步骤。

高三数学教案5

  【教学目标】

  1.初步理解集合的概念,知道常用数集的概念及其记法.

  2.理解集合的三个特征,能判断集合与元素之间的关系,正确使用符号 .

  3.能根据集合中元素的特点,使用适当的方法和准确的语言将其表示出来,并从中体会到用数学抽象符号刻画客观事物的优越性.

  【考纲要求】

  1. 知道常用数集的概念及其记法.

  2. 理解集合的三个特征,能判断集合与元素之间的关系,正确使用符号 .

  【课前导学】

  1.集合的含义: 构成一个集合.

  (1)集合中的元素及其表示: .

  (2)集合中的.元素的特性: .

  (3)元素与集合的关系:

  (i)如果a是集合A的元素,就记作__________读作“___________________”;

  (ii)如果a不是集合A的元素,就记作______或______读作“_______________”.

  【思考】构成集合的元素是不是只能是数或点?

  【答】

  2.常用数集及其记法:

  一般地,自然数集记作____________,正整数集记作__________或___________,

  整数集记作________,有理数记作_______,实数集记作________.

  3.集合的分类:

  按它的元素个数多少来分:

  (1)________________________叫做有限集;

  (2)___________________ _____叫做无限集;

  (3)______________ _叫做空集,记为_____________

  4.集合的表示方法:

  (1)______ __________________叫做列举法;

  (2)________________ ________叫做描述法.

  (3)______ _________叫做文氏图

  【例题讲解】

  例1、 下列每组对象能否构成一个集合?

  (1) 高一年级所有高个子的学生;(2)平面上到原点的距离等于2的点的全体;

  (3)所有正三角形的全体; (4)方程 的实数解;(5)不等式 的所有实数解.

  例2、用适当的方法表示下列集合

  ①由所有大于10且小于20的整数组成的集合记作 ;

  ②直线 上点的集合记作 ;

  ③不等式 的解组成的集合记作 ;

  ④方程组 的解组成的集合记作 ;

  ⑤第一象限的点组成的集合记作 ;

  ⑥坐标轴上的点的集合记作 .

  例3、已知集合 ,若 中至多只有一个元素,求实数 的取值范围.

  【课堂检测】

  1.下列对象组成的集体:①不超过45的正整数;②鲜艳的颜色;③中国的大城市;④绝对值最小的实数;⑤高一(2)班中考500分以上的学生,其中为集合的是____________

  2.已知2a∈A,a2-a∈A,若A含2个元素,则下列说法中正确的是

  ①a取全体实数; ②a取除去0以外的所有实数;

  ③a取除去3以外的所有实数;④a取除去0和3以外的所有实数

  3.已知集合 ,则满足条件的实数x组成的集合

  【教学反思】

  §1.1 集合的含义及其表示

高三数学教案6

 本文题目:高三数学教案:三角函数的周期性

  一、学习目标与自我评估

  1 掌握利用单位圆的几何方法作函数 的图象

  2 结合 的图象及函数周期性的定义了解三角函数的周期性,及最小正周期

  3 会用代数方法求 等函数的周期

  4 理解周期性的几何意义

  二、学习重点与难点

  周期函数的概念, 周期的求解。

  三、学法指导

  1、 是周期函数是指对定义域中所有 都有

  ,即 应是恒等式。

  2、周期函数一定会有周期,但不一定存在最小正周期。

  四、学习活动与意义建构

  五、重点与难点探究

  例1、若钟摆的高度 与时间 之间的函数关系如图所示

  (1)求该函数的周期;

  (2)求 时钟摆的高度。

  例2、求下列函数的周期。

  (1) (2)

  总结:(1)函数 (其中 均为常数,且

  的周期T= 。

  (2)函数 (其中 均为常数,且

  的周期T= 。

  例3、求证: 的周期为 。

  例4、(1)研究 和 函数的图象,分析其周期性。

  (2)求证: 的.周期为 (其中 均为常数,

  且

  总结:函数 (其中 均为常数,且

  的周期T= 。

  例5、(1)求 的周期。

  (2)已知 满足 ,求证: 是周期函数

  课后思考:能否利用单位圆作函数 的图象。

  六、作业:

  七、自主体验与运用

  1、函数 的周期为 ( )

  A、 B、 C、 D、

  2、函数 的最小正周期是 ( )

  A、 B、 C、 D、

  3、函数 的最小正周期是 ( )

  A、 B、 C、 D、

  4、函数 的周期是 ( )

  A、 B、 C、 D、

  5、设 是定义域为R,最小正周期为 的函数,

  若 ,则 的值等于 ()

  A、1 B、 C、0 D、

  6、函数 的最小正周期是 ,则

  7、已知函数 的最小正周期不大于2,则正整数

  的最小值是

  8、求函数 的最小正周期为T,且 ,则正整数

  的最大值是

  9、已知函数 是周期为6的奇函数,且 则

  10、若函数 ,则

  11、用周期的定义分析 的周期。

  12、已知函数 ,如果使 的周期在 内,求

  正整数 的值

  13、一机械振动中,某质子离开平衡位置的位移 与时间 之间的

  函数关系如图所示:

  (1) 求该函数的周期;

  (2) 求 时,该质点离开平衡位置的位移。

  14、已知 是定义在R上的函数,且对任意 有

  成立,

  (1) 证明: 是周期函数;

  (2) 若 求 的值。

高三数学教案7

  一、教学内容分析

  二面角是我们日常生活中经常见到的一个图形,它是在学生学过空间异面直线所成的角、直线和平面所成角之后,研究的一种空间的角,二面角进一步完善了空间角的概念.掌握好本节课的知识,对学生系统地理解直线和平面的知识、空间想象能力的培养,乃至创新能力的培养都具有十分重要的意义.

  二、教学目标设计

  理解二面角及其平面角的概念;能确认图形中的已知角是否为二面角的平面角;能作出二面角的平面角,并能初步运用它们解决相关问题.

  三、教学重点及难点

  二面角的平面角的概念的形成以及二面角的平面角的作法.

  四、教学流程设计

  五、教学过程设计

  一、 新课引入

  1.复习和回顾平面角的有关知识.

  平面中的角

  定义 从一个顶点出发的两条射线所组成的图形,叫做角

  图形

  结构 射线—点—射线

  表示法 ∠AOB,∠O等

  2.复习和回顾异面直线所成的角、直线和平面所成的角的定义,及其共同特征.(空间角转化为平面角)

  3.观察:陡峭与否,跟山坡面与水平面所成的角大小有关,而山坡面与水平面所成的角就是两个平面所成的角.在实际生活当中,能够转化为两个平面所成角例子非常多,比如在这间教室里,谁能举出能够体现两个平面所成角的实例?(如图1,课本的开合、门或窗的开关.)从而,引出“二面角”的定义及相关内容.

  二、学习新课

  (一)二面角的定义

  平面中的角 二面角

  定义 从一个顶点出发的两条射线所组成的图形,叫做角 课本P17

  图形

  结构 射线—点—射线 半平面—直线—半平面

  表示法 ∠AOB,∠O等 二面角α—a—β或α-AB-β

  (二)二面角的图示

  1.画出直立式、平卧式二面角各一个,并分别给予表示.

  2.在正方体中认识二面角.

  (三)二面角的平面角

  平面几何中的`“角”可以看作是一条射线绕其端点旋转而成,它有一个旋转量,它的大小可以度量,类似地,"二面角"也可以看作是一个半平面以其棱为轴旋转而成,它也有一个旋转量,那么,二面角的大小应该怎样度量?

  1.二面角的平面角的定义(课本P17).

  2.∠AOB的大小与点O在棱上的位置无关.

  [说明]①平面与平面的位置关系,只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,有必要来研究二面角的度量问题.

  ②与两条异面直线所成的角、直线和平面所成的角做类比,用“平面角”去度量.

  ③二面角的平面角的三个主要特征:角的顶点在棱上;角的两边分别在两个半平面内;角的两边分别与棱垂直.

  3.二面角的平面角的范围:

  (四)例题分析

  例1 一张边长为a的正三角形纸片ABC,以它的高AD为折痕,将其折成一个 的二面角,求此时B、C两点间的距离.

  [说明] ①检查学生对二面角的平面角的定义的掌握情况.

  ②翻折前后应注意哪些量的位置和数量发生了变化, 哪些没变?

  例2 如图,已知边长为a的等边三角形 所在平面外有一点P,使PA=PB=PC=a,求二面角 的大小.

  [说明] ①求二面角的步骤:作—证—算—答.

  ②引导学生掌握解题可操作性的通法(定义法和线面垂直法).

  例3 已知正方体 ,求二面角 的大小.(课本P18例1)

  [说明] 使学生进一步熟悉作二面角的平面角的方法.

  (五)问题拓展

  例4 如图,山坡的倾斜度(坡面与水平面所成二面角的度数)是 ,山坡上有一条直道CD,它和坡脚的水平线AB的夹角是 ,沿这条路上山,行走100米后升高多少米?

  [说明]使学生明白数学既来源于实际又服务于实际.

  三、巩固练习

  1.在棱长为1的正方体 中,求二面角 的大小.

  2. 若二面角 的大小为 ,P在平面 上,点P到 的距离为h,求点P到棱l的距离.

  四、课堂小结

  1.二面角的定义

  2.二面角的平面角的定义及其范围

  3.二面角的平面角的常用作图方法

  4.求二面角的大小(作—证—算—答)

高三数学教案8

  一、导入新课,探究标准方程

  二、掌握知识,巩固练习

  练习:

  1、说出下列圆的方程

  ⑴圆心(3,—2)半径为5

  ⑵圆心(0,3)半径为3

  2、指出下列圆的圆心和半径

  ⑴(x—2)2+(y+3)2=3

  ⑵x2+y2=2

  ⑶x2+y2—6x+4y+12=0

  3、判断3x—4y—10=0和x2+y2=4的位置关系

  4、圆心为(1,3),并与3x—4y—7=0相切,求这个圆的方程

  三、引伸提高,讲解例题

  例1、圆心在y=—2x上,过p(2,—1)且与x—y=1相切求圆的方程(突出待定系数的数学方法)

  练习:

  1、某圆过(—2,1)、(2,3),圆心在x轴上,求其方程。

  2、某圆过A(—10,0)、B(10,0)、C(0,4),求圆的方程。

  例2:某圆拱桥的`跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。

  例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)

  四、小结练习P771,2,3,4

  五、作业P811,2,3,4

高三数学教案9

  教学目标:

  1、知识与技能:

  1)了解导数概念的实际背景;

  2)理解导数的概念、掌握简单函数导数符号表示和基本导数求解方法;

  3)理解导数的几何意义;

  4)能进行简单的导数四则运算。

  2、过程与方法:

  先理解导数概念背景,培养观察问题的.能力;再掌握定义和几何意义,培养转化问题的能力;最后求切线方程及运算,培养解决问题的能力。

  3、情态及价值观;

  让学生感受数学与生活之间的联系,体会数学的美,激发学生学习兴趣与主动性。

  教学重点:

  1、导数的求解方法和过程;

  2、导数公式及运算法则的熟练运用。

  教学难点:

  1、导数概念及其几何意义的理解;

  2、数形结合思想的灵活运用。

  教学课型:复习课(高三一轮)

  教学课时:约1课时

高三数学教案10

  内容提要:本文把常见的排列问题归纳成三种典型问题,并在排列的一般规定性下,对每一种类型的问题通过典型例题归纳出相应的解决方案,并附以近年的高考原题及解析,使我们对排列问题的认识更深入本质,对排列问题的解决更有章法可寻。

  关键词: 特殊优先,大元素,捆绑法,插空法,等机率法

  排列问题的应用题是学生学习的难点,也是高考的必考内容,笔者在教学中尝试将排列

  问题归纳为三种类型来解决:

  下面就每一种题型结合例题总结其特点和解法,并附以近年的高考原题供读者参研。

  一、能排不能排排列问题(即特殊元素在特殊位置上有特别要求的排列问题)

  解决此类问题的关键是特殊元素或特殊位置优先。或使用间接法。

  例1:(1)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?

  (2)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?

  (3)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?

  (4)7位同学站成一排,其中甲不能在排头、乙不能站排尾的排法共有多少种?

  解析:

  (1)先考虑甲站在中间有1种方法,再在余下的6个位置排另外6位同学,共 种方法;

  (2)先考虑甲、乙站在两端的排法有 种,再在余下的5个位置排另外5位同学的排法有 种,共 种方法;

  (3) 先考虑在除两端外的5个位置选2个安排甲、乙有 种,再在余下的5个位置排另外5位同学排法有 种,共 种方法;本题也可考虑特殊位置优先,即两端的排法有 ,中间5个位置有 种,共 种方法;

  (4)分两类乙站在排头和乙不站在排头,乙站在排头的排法共有 种,乙不站在排头的排法总数为:先在除甲、乙外的5人中选1人安排在排头的方法有 种,中间5个位置选1个安排乙的方法有 ,再在余下的5个位置排另外5位同学的排法有 ,故共有 种方法;本题也可考虑间接法,总排法为 ,不符合条件的甲在排头和乙站排尾的排法均为 ,但这两种情况均包含了甲在排头和乙站排尾的情况,故共有 种。

  例2。某天课表共六节课,要排政治、语文、数学、物理、化学、体育共六门课程,如果第一节不排体育,最后一节不排数学,共有多少种不同的排课方法?

  解法1:对特殊元素数学和体育进行分类解决

  (1)数学、体育均不排在第一节和第六节,有 种,其他有 种,共有 种;

  (2)数学排在第一节、体育排在第六节有一种,其他有 种,共有 种;

  (3)数学排在第一节、体育不在第六节有 种,其他有 种,共有 种;

  (4)数学不排在第一节、体育排在第六节有 种,其他有 种,共有 种;

  所以符合条件的排法共有 种

  解法2:对特殊位置第一节和第六节进行分类解决

  (1)第一节和第六节均不排数学、体育有 种,其他有 种,共有 种;

  (2)第一节排数学、第六节排体育有一种,其他有 种,共有 种;

  (3)第一节排数学、第六节不排体育有 种,其他有 种,共有 种;

  (4)第一节不排数学、第六节排体育有 种,其他有 种,共有 种;

  所以符合条件的排法共有 种。

  解法3:本题也可采用间接排除法解决

  不考虑任何限制条件共有 种排法,不符合题目要求的排法有:(1)数学排在第六节有 种;(2)体育排在第一节有 种;考虑到这两种情况均包含了数学排在第六节和体育排在第一节的情况 种所以符合条件的排法共有 种

  附:

  1、(2005北京卷)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有( )

  (A) 种 (B) 种 (C) 种 (D) 种

  解析:本题在解答时将五个不同的子项目理解为5个位置,五个工程队相当于5个不同的元素,这时问题可归结为能排不能排排列问题(即特殊元素在特殊位置上有特别要求的排列问题),先排甲工程队有 ,其它4个元素在4个位置上的排法为 种,总方案为 种。故选(B)。

  2、(2005全国卷Ⅱ)在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的.数共有 个。

  解析:本题在解答时只须考虑个位和千位这两个特殊位置的限制,个位为1、2、3、4中的某一个有4种方法,千位在余下的4个非0数中选择也有4种方法,十位和百位方法数为 种,故方法总数为 种。

  3、(2005福建卷)从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( )

  A、300种 B、240种 C、144种 D、96种

  解析:本题在解答时只须考虑巴黎这个特殊位置的要求有4种方法,其他3个城市的排法看作标有这3个城市的3个签在5个位置(5个人)中的排列有 种,故方法总数为 种。故选(B)。

  上述问题归结为能排不能排排列问题,从特殊元素和特殊位置入手解决,抓住了问题的本质,使问题清晰明了,解决起来顺畅自然。

  二、相邻不相邻排列问题(即某两或某些元素不能相邻的排列问题)

  相邻排列问题一般采用大元素法,即将相邻的元素捆绑作为一个元素,再与其他元素进行排列,解答时注意释放大元素,也叫捆绑法。不相邻排列问题(即某两或某些元素不能相邻的排列问题)一般采用插空法。

  例3:7位同学站成一排,

  (1)甲、乙和丙三同学必须相邻的排法共有多少种?

  (2)甲、乙和丙三名同学都不能相邻的排法共有多少种?

  (3)甲、乙两同学间恰好间隔2人的排法共有多少种?

  解析:

  (1)第一步、将甲、乙和丙三人捆绑成一个大元素与另外4人的排列为 种,

  第二步、释放大元素,即甲、乙和丙在捆绑成的大元素内的排法有 种,所以共 种;

  (2)第一步、先排除甲、乙和丙之外4人共 种方法,第二步、甲、乙和丙三人排在4人排好后产生的5个空挡中的任何3个都符合要求,排法有 种,所以共有 种;(3)先排甲、乙,有 种排法,甲、乙两人中间插入的2人是从其余5人中选,有 种排法,将已经排好的4人当作一个大元素作为新人参加下一轮4人组的排列,有 种排法,所以总的排法共有 种。

  附:1、(2005辽宁卷)用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有 个。(用数字作答)

  解析:第一步、将1和2捆绑成一个大元素,3和4捆绑成一个大元素,5和6捆绑成一个大元素,第二步、排列这三个大元素,第三步、在这三个大元素排好后产生的4个空挡中的任何2个排列7和8,第四步、释放每个大元素(即大元素内的每个小元素在捆绑成的大元素内部排列),所以共有 个数。

  2、 (2004。 重庆理)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,

  二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰

  好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为 ( )

  A、B、C、D。

  解析:符合要求的基本事件(排法)共有:第一步、将一班的3位同学捆绑成一个大元素,第二步、这个大元素与其它班的5位同学共6个元素的全排列,第三步、在这个大元素与其它班的5位同学共6个元素的全排列排好后产生的7个空挡中排列二班的2位同学,第四步、释放一班的3位同学捆绑成的大元素,所以共有 个;而基本事件总数为 个,所以符合条件的概率为 。故选( B )。

  3、(2003京春理)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目。如果将这两个节目插入原节目单中,那么不同插法的种数为( )

  A、42 B、30 C、20 D、12

  解析:分两类:增加的两个新节目不相邻和相邻,两个新节目不相邻采用插空法,在5个节目产生的6个空挡排列共有 种,将两个新节目捆绑作为一个元素叉入5个节目产生的6个空挡中的一个位置,再释放两个新节目 捆绑成的大元素,共有 种,再将两类方法数相加得42种方法。故选( A )。

  三、机会均等排列问题(即某两或某些元素按特定的方式或顺序排列的排列问题)

  解决机会均等排列问题通常是先对所有元素进行全排列,再借助等可能转化,即乘以符合要求的某两(或某些)元素按特定的方式或顺序排列的排法占它们(某两(或某些)元素)全排列的比例,称为等机率法或将特定顺序的排列问题理解为组合问题加以解决。

  例4、 7位同学站成一排。

  (1)甲必须站在乙的左边?

  (2)甲、乙和丙三个同学由左到右排列?

  解析:

  (1)7位同学站成一排总的排法共 种,包括甲、乙在内的7位同学排队只有甲站在乙的左边和甲站在乙的右边两类,它们的机会是均等的,故满足要求的排法为 ,本题也可将特定顺序的排列问题理解为组合问题加以解决,即先在7个位置中选出2个位置安排甲、乙, 由于甲在乙的左边共有 种,再将其余5人在余下的5个位置排列有 种,得排法数为 种;

  (2)参见(1)的分析得 (或 )。

  本文通过较为清晰的脉络把排列问题分为三种类型,使我们对排列问题有了比较系统的认识。但由于排列问题种类繁多,总会有些问题不能囊括其中,也一定存在许多不足,希望读者能和我一起研究完善。

高三数学教案11

  教学目标:

  1、理解流程图的选择结构这种基本逻辑结构、

  2、能识别和理解简单的框图的功能、

  3、能运用三种基本逻辑结构设计流程图以解决简单的问题、

  教学方法:

  1、通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知、

  2、在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构、

  教学过程:

  一、问题情境

  二、学生活动

  三、建构数学

  1、选择结构的概念:

  (1)先根据条件作出判断,再决定执行哪一种

  (2)操作的结构称为选择结构、

  虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行、

  2、说明:

  (1)有些问题需要按给定的条件进行分析、比较和判断,并按判断的不同情况进行不同的.操作,这类问题的实现就要用到选择结构的设计;

  (2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;

  (3)在上图的选择结构中,只能执行和之一,不可能既执行,又执行,但或两个框中可以有一个是空的,即不执行任何操作;

  (4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和两个退出点、

  3、思考:教材第7页图所示的算法中,哪一步进行了判断?

高三数学教案12

  教学目标

  掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的.性质解决有关等差(比)数列的综合性问题。

  教学重难点

  掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题。

  教学过程

  【示范举例】

  例1:数列是首项为23,公差为整数,

  且前6项为正,从第7项开始为负的等差数列

  (1)求此数列的公差d;

  (2)设前n项和为Sn,求Sn的值;

  (3)当Sn为正数时,求n的值.

高三数学教案13

  根据学科特点,结合我校数学教学的实际情况制定以下教学计划,第二学期高三数学教学计划。

  一、教学内容 高中数学所有内容:

  抓基础知识和基本技能,抓数学的通性通法,即教材与课程目标中要求我们把握的数学对象的基本性质,处理数学问题基本的、常用的数学思想方法,如归纳、演绎、分析、综合、分类讨论、数形结合等。提高学生的思维品质,以不变应万变,使数学学科的复习更加高效优质。研究《考试说明》,全面掌握教材知识,按照考试说明的要求进行全面复习。把握课本是关键,夯实基础是我们重要工作,提高学生的解题能力是我们目标。研究《课程标准》和《教材》,既要关心《课程标准》中调整的内容及变化的要求,又要重视今年数学不同版本《考试说明》的比较。结合上一年的新课改区高考数学评价报告,对《课程标准》进行横向和纵向的分析,探求命题的变化规律。

  二、学情分析:

  我今年教授两个班的数学:(17)班和(18)班,经过与同组的其他老师商讨后,打算第一轮20xx年2月底;第二轮从20xx年2月底至5月上旬结束;第三轮从20xx年5月上旬至5月底结束。

  (一)同备课组老师之间加强研究

  1、研究《课程标准》、参照周边省份20xx年《考试说明》,明确复习教学要求。

  2、研究高中数学教材。

  处理好几种关系:课标、考纲与教材的关系;教材与教辅资料的关系;重视基础知识与培养能力的关系。

  3、研究08年新课程地区高考试题,把握考试趋势。

  特别是山东、广东、江苏、海南、宁夏等课改地区的试卷。

  4、研究高考信息,关注考试动向。

  及时了解09高考动态,适时调整复习方案。

  5、研究本校数学教学情况、尤其是本届高三学生的学情。

  有的放矢地制订切实可行的校本复习教学计划。

  (一)重视课本,夯实基础,建立良好知识结构和认知结构体系 课本是考试内容的载体,是高考命题的依据,也是学生智能的生长点,是最有参考价值的资料。

  (二)提升能力,适度创新 考查能力是高考的重点和永恒主题。

  教育部已明确指出高考从“以知识立意命题”转向“以能力立意命题”。

  (三)强化数学思想方法 数学不仅仅是一种重要的工具,更重要的是一种思维模式,一种思想。

  注重对数学思想方法的考查也是高考数学命题的显著特点之一。

  数学思想方法是对数学知识最高层次上的概括提炼,它蕴涵于数学知识的发生、发展和应用过程中,能够迁移且广泛应用于相关科学和社会生活,教学工作计划《第二学期高三数学教学计划》。

  在复习备考中,要把数学思想方法渗透到每一章、每一节、每一课、每一套试题中去,任何一道精心编拟的数学试题,均蕴涵了极其丰富的数学思想方法,如果注意渗透,适时讲解、反复强调,学生会深入于心,形成良好的思维品格,考试时才会思如泉涌、驾轻就熟,数学思想方法贯穿于整个高中数学的始终,因此在进入高三复习时就需不断利用这些思想方法去处理实际问题,而并非只在高三复习将结束时去讲一两个专题了事。

  (四)强化思维过程,提高解题质量 数学基础知识的学习要充分重视知识的形成过程,解数学题要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,注意多题一解、一题多解和一题多变。

  多题一解有利于培养学生的求同思维;一题多解有利于培养学生的求异思维;一题多变有利于培养学生思维的灵活性与深刻性。

  在分析解决问题的过程中既构建知识的横向联系,又养成学生多角度思考问题的习惯。

  (五)认真总结每一次测试的得失,提高试卷的讲评效果 试卷讲评要有科学性、针对性、辐射性。

  讲评不是简单的公布正确答案,一是帮学生分析探求解题思路,二是分析错误原因,吸取教训,三是适当变通、联想、拓展、延伸,以例及类,探求规律。还可横向比较,与其他班级比较,寻找个人教学的薄弱环节。根据所教学生实际有针对性地组题进行强化训练,抓基础题,得到基础分对大部分学校而言就是高考成功,这已是不争的共识。第二轮专题过关,对于高考数学的复习,应在一轮系统学习的基础上,利用专题复习,更能提高数学备考的针对性和有效性。在这一阶段,锻炼学生的综合能力与应试技巧,不要重视知识结构的先后次序,需配合着专题的学习,提高学生采用“配方法、待定系数法、数形结合,分类讨论,换元”等方法解决数学问题的能力,同时针对选择、填空的特色,学习一些解题的特殊技巧、方法,以提高在高考考试中的对时间的掌控力。第三轮综合模拟,在前两轮复习的基础上,为了增强数学备考的针对性和应试功能,做一定量的高考模拟试题是必须的,也是十分有效的。

  四、该阶段需要解决的问题是:

  1、强化知识的综合性和交汇性,巩固方法的.选择性和灵活性。

  2、检查复习的知识疏漏点和解题易错点,探索解题的规律。

  3、检验知识网络的生成过程。

  4、领会数学思想方法在解答一些高考真题和新颖的模拟试题时的工具性。

  五、在有序做好复习工作的同时注意一下几点:

  (1)从班级实际出发,我要帮助学生切实做到对基础训练限时完成,加强运算能力的训练,严格答题的规范化,如小括号、中括号等,特别是对那些书写“像雾像雨又像风”的学生要加强指导,确保基本得分。

  (2)在考试的方法和策略上做好指导工作,如心理问题的疏导,考试时间的合理安排等等。

  (3)与备课组其他老师保持统一,对内协作,对外竞争。自己多做研究工作,如仔细研读订阅的杂志,研究典型试题,把握高考走势。

  (4)做到“有练必改,有改必评,有评必纠”。

  (5)课内面向大多数同学,课外抓好优等生和边缘生,尤其是边缘生。

  班级是一个集体,我们的目标是“水涨船高”,而不是“水落石出”。

  (6)要改变教学方式,努力学习和实践我校总结推出的“221”模式。

  教学是一门艺术,艺术是无止境的,要一点天份,更要勤奋。

  (7)教研组团队合作 虚心学习别人的优点,博采众长,对工作是很有利的。

  (8)平等对待学生,关心每一位学生的成长,宗旨是教出来的学生不一定都很优秀,但肯定每一位都有进步;让更多的学生喜欢数学。

高三数学教案14

  教学目标:

  结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

  教学重点:

  掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

  教学过程

  一、复习

  二、引入新课

  1.假言推理

  假言推理是以假言判断为前提的演绎推理。假言推理分为充分条件假言推理和必要条件假言推理两种。

  (1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的'前件。

  (2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。

  2.三段论

  三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。这三个概念都有专门名称:结论中的宾词叫“大词”,结论中的主词叫“小词”,结论不出现的那个概念叫“中词”,在两个前提中,包含大词的叫“大前提”,包含小词的叫“小前提”。

  3.关系推理指前提中至少有一个是关系判断的推理,它是根据关系的逻辑性质进行推演的。可分为纯关系推理和混合关系推理。纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。

  (1)对称性关系推理是根据关系的对称性进行的推理。

  (2)反对称性关系推理是根据关系的反对称性进行的推理。

  (3)传递性关系推理是根据关系的传递性进行的推理。

  (4)反传递性关系推理是根据关系的反传递性进行的推理。

  4.完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。

  オネ耆归纳推理可用公式表示如下:

  オS1具有(或不具有)性质P

  オS2具有(或不具有)性质P……

  オSn具有(或不具有)性质P

  オ(S1S2……Sn是S类的所有个别对象)

  オニ以,所有S都具有(或不具有)性质P

  オタ杉,完全归纳推理的基本特点在于:前提中所考察的个别对象,必须是该类事物的全部个别对象。否则,只要其中有一个个别对象没有考察,这样的归纳推理就不能称做完全归纳推理。完全归纳推理的结论所断定的范围,并未超出前提所断定的范围。所以,结论是由前提必然得出的。应用完全归纳推理,只要遵循以下两点,那末结论就必然是真实的:(1)对于个别对象的断定都是真实的;(2)被断定的个别对象是该类的全部个别对象。

  小结:本节课学习了演绎推理的基本模式.

高三数学教案15

  教学目标

  1.使学生了解反函数的概念;

  2.使学生会求一些简单函数的反函数;

  3.培养学生用辩证的观点观察、分析解决问题的能力。

  教学重点

  1.反函数的概念;

  2.反函数的求法。

  教学难点

  反函数的概念。

  教学方法

  师生共同讨论

  教具

  幻灯片2张

  第一张:反函数的定义、记法、习惯记法。(记作A);

  第二张:本课时作业中的预习内容及提纲。

  教学过程

  (I)讲授新课

  (检查预习情况)

  师:这节课我们来学习反函数(板书课题)§2.4.1 反函数的概念。

  同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法?

  生:(略)

  (学生回答之后,打出幻灯片A)。

  师:反函数的定义着重强调两点:

  (1)根据y= f(x)中x与y的关系,用y把x表示出来,得到x=φ(y);

  (2)对于y在c中的任一个值,通过x=φ(y),x在A中都有惟一的值和它对应。

  师:应该注意习惯记法是由记法改写过来的`'。

  师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢?

  生:一一映射确定的函数才有反函数。

  (学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。

  师:在y= f(x)中与y= f -1(y)中的x、y,所表示的量相同。(前者中的x与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y是函数值;后者y是自变量,x是函数值。)

  在y= f(x)中与y= f –1(x)中的x都是自变量,y都是函数值,即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)

  由此,请同学们谈一下,函数y= f(x)与它的反函数y= f –1(x)两者之间,定义域、值域存在什么关系呢?

  生:(学生作答,教师板书)函数的定义域,值域分别是它的反函数的值域、定义域。

  师:从反函数的概念可知:函数y= f (x)与y= f –1(x)互为反函数。

  从反函数的概念我们还可以知道,求函数的反函数的方法步骤为:

  (1)由y= f (x)解出x= f –1(y),即把x用y表示出;

  (2)将x= f –1(y)改写成y= f –1(x),即对调x= f –1(y)中的x、y。

  (3)指出反函数的定义域。

  下面请同学自看例1

  (II)课堂练习 课本P68练习1、2、3、4。

  (III)课时小结

  本节课我们学习了反函数的概念,从中知道了怎样的映射确定的函数才有反函数并求函数的反函数的方法步骤,大家要熟练掌握。

  (IV)课后作业

  一、课本P69习题2.4 1、2。

  二、预习:互为反函数的函数图象间的关系,亲自动手作题中要求作的图象。

  板书设计

  课题: 求反函数的方法步骤:

  定义:(幻灯片)

  注意: 小结

  一一映射确定的

  函数才有反函数

  函数与它的反函

  数定义域、值域的关系。

【高三数学教案】相关文章:

数学教案03-28

《左右》数学教案01-30

人教版数学教案03-23

数学教案《分类》04-01

《位置》数学教案03-18

直线数学教案06-02

小学数学教案02-07

《分类》数学教案03-10

趣味数学教案03-10