当前位置:育文网>教学文档>教案> 一元一次方程的教案

一元一次方程的教案

时间:2023-11-09 08:11:55 教案 我要投稿

一元一次方程的教案

  作为一名老师,时常要开展教案准备工作,教案有助于学生理解并掌握系统的知识。怎样写教案才更能起到其作用呢?下面是小编收集整理的一元一次方程的教案,仅供参考,欢迎大家阅读。

一元一次方程的教案

一元一次方程的教案1

  【教学目标】

  知识与技能

  理解合并同类项的法则,会用合并同类项法则解一元一次方程,并在此基础上探索一元一次方程的一般解法.

  过程与方法

  通过探索合并同类项法则的过程培养学生观察、思考、归纳的能力,积累数学探究活动的经验.

  情感、态度与价值观

  通过探索合并同类项法则并进一步探索一元一次方程一般解法的过程,感受数学活动的创造性,激发学生学习数学的兴趣.

  【教学重难点】

  重点:合并同类项法则的探索及应用.

  难点:合并同类项法则的理解和灵活运用.

  【教学过程】

  一、温故知新

  师:你们知道等式的基本性质是什么吗?

  学生回答,教师点评.

  师:利用等式的`基本性质解方程:

  (1)2x+3=x+4;(2)5x+4=5-3x.

  学生解答,然后集体订正.

  问题展示:

  问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?

  师:设前年购买计算机x台,那么去年购买计算机多少台?

  生:2x台.

  师:今年购买计算机多少台?

  生:4x台.

  师:题目中的等量关系是什么?

  师生共同分析,列出方程:x+2x+4x=140.

  用框图表示出解这个方程的具体过程:

  x+2x+4x=140

  合并同类项

  7x=140

  系数化为1

  x=20

  二、例题讲解

  解下列方程:

  (1)2x-x=6-8;

  (2)7x-2.5x+3x-1.5x=-15×4-6×3.

  解:(1)合并同类项,得-x=-2,

  系数化为1,得x=4.

  (2)合并同类项,得6x=-78,

  系数化为1,得x=-13.

  三、巩固练习

  解下列方程:

  1.3x+4x-2x=18-7.

  2.y-y+y=×6-1.

  四、课堂小结

  师:这节课你学习了哪些知识?获得了哪些经验?

  学生发言,教师予以补充.

一元一次方程的教案2

  【教学目标】

  知识与技能

  1.理解一元一次方程及解的概念.

  2.建立实际问题的方程模型,运用一元一次方程分析和解决实际问题.

  过程与方法

  通过学生观察、独立思考等过程,培养学生归纳、概括的能力.

  情感态度

  培养学生由算术解法过渡到代数解法解方程的基本能力,渗透化未知为已知的重要数学思想.

  教学重点

  体会方程模型的重要性,了解一元一次方程的概念.

  教学难点

  正确理解方程作为实际问题的数学模型的作用.

  【教学过程】

  一、情景导入,初步认知

  在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用方程来解决呢?若能解决,怎样解?用方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

  为了回答上述这几个问题,我们先来了解一下方程.

  【教学说明】 引起学生的学习兴趣,激发学生的求知欲.

  二、思考探究,获取新知

  1.请你表示出下面两个问题中的等量关系.

  (1)如图,甲、乙两站的高速铁路长1068,“和谐号”高速列车从甲站开出2.5h后,离乙站还有318,该高速列车的平均速度是多少?

  (2)如图,这是一个长方体形的包装盒,长为1.2 ,高为1 ,表面积为6.8 2,这个包装盒的底面宽是多少?

  问题(1)的等量关系是:已行驶的路程+剩余的路程=全长.设高速列车的平均速度是x /h,我们可以用含x的式子表示上述等量关系,即2.5x+318=1 068.

  问题(2)的等量关系是:底面积+侧面积=表面积.若设包装盒的底面宽是 ,则等量关系可表示为:1.2××2+×1×2+1.2×1×2=6.8,即:2.4+2+2.4=6.8.

  【教学说明】 引导学生分析问题,用文字表示题目中的等量关系式.再根据等量关系式列出式子.

  2.观察所列出的两个等式,它们有什么共同特征?

  【归纳结论】 我们把含有未知数的等式叫做方程.

  像上面这样,把所要求的量用字母x(……)表示,根据问题中的等量关系列出方程,这一过程叫做建立方程.

  3.思考:对于2.5x+318=1 068,2.4+2+2.4=6.8方程,有几个未知数,每个未知数的次数是多少?

  【教学说明】 组织学生进行全班交流,得出以上方程的特点是:(1)方程中不含分母或分母中不含未知数;(2)只含有一个未知数;(3)未知数的指数都是1.

  【归纳结论】 只含有一个未知数,并且未知数的次数是1的整式方程叫做一元一次方程.

  4.方程的解.

  在方程x+5=8中,当x=3时,方程两边的值相等,我们就说x=3是方程x+5=8的解.

  【归纳结论】 能使方程左右两边的值相等的.未知数的值叫做方程的解.

  【教学说明】 了解方程的解的含义;判断是否为方程的解的方法:将解带入原方程,分别计算左边和右边,看是否相等,相等则为原方程的解.

  三、运用新知,深化理解

  1.教材P84例1.

  2.下列方程中,是一元一次方程的是( B )

  A.x2-4x=3 B.x=0

  C.x+2= D.x-1=

  3.下列方程中解是x=1的方程是( C )

  A.2x-2=3xB.x+5=2x-4

  C.3x-6=4x-7D.5x+2=4x-3

  4.下列各数中是方程4x-5=7的解的是( B )

  A.1 B.3 C.-3 D.4

  5.某品牌电饭煲成本价为x元,销售商对其定价为350元,若按8折销售仍可获利15元,根据题意,下面所列方程正确的是( A )

  A.350×0.8-x=15B.350×8-x=15

  C.350×0.8=x-15D.350×8=x-15

  6.以x=-3为解的方程是( D )

  A.3x-7=2B.5x-2=-x

  C.6x+8=-26D.x+7=4x+16

  7.在下列方程中:①x+2=3,② -3x=9,③ =+ ,④ x=0,是一元一次方程的有 ③④ (只填序号).

  8.已知方程(-2)x||-1+3=-5是关于x的一元一次方程,则= -2 .

  9.若方程(2-1)x2-x+8=x是关于x的一元一次方程,求代数式2 006-∣-1∣的值.

  解:由一元一次方程的定义可知:

  2-1=0

  =±1

  当=1时,2 006-∣-1∣=2 006;

  当=-1时,2 006-∣-1∣=-2 008.

  10.检验下面方程后面括号内所列各数是否为这个方程的解.

  2(x+2)-5(1-2x)=-13,{x= -1,1}

  解:将x=-1代入方程的两边得

  左边=2(-1+2)-5[1-2×(-1)]=-13

  右边=-13

  因为左边=右边,所以x=-1是方程的解.

  将x=1代入方程的两边得

  左边=2(1+2)-5(1-2×1)=11

  右边=-13

  因为左边≠右边,所以x=1不是方程的解.

  11.建立下列各问题中的方程模型.

  (1)小明去商店买练习册,回来后告诉同学:“店主告诉我,如果多买些就可以享受8折优惠,我就买了20本,结果总共便宜了1.6元,你猜原来每本练习册的价格是多少元?”

  解:设原来每本练习册的价格为x元

  20(1-80%)x=1.6

  (2)张强与刘伟参加植树活动,两人共植树75棵,其中张强比刘伟多植了15棵树.那么刘伟植了多少棵树?

  解:设刘伟植了x棵,则可列方程

  x+15+x=75

  (3)甲队有32人,乙队有28人,现在从乙队抽调一些人到甲队,使甲队人数是乙队人数的2倍.问应该从乙队抽调多少人?

  解:设应该从乙队抽调x人.则可列方程

  32+x=2×(28-x)

  (4)某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时,不但完成任务,而且还多生产60件,问原计划每小时生产多少个零件?

  解:设原计划每小时生产x个零件,则所列方程为

  12(x+10)=13x+60

  【教学说明】 对本节知识进行巩固练习.

  四、师生互动、课堂小结

  先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.

  【课后作业】

  布置作业:教材“习题3.1”中第2、3题.

一元一次方程的教案3

  一、目的要求

  使学生会用移项解方程。

  二、内容分析

  从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。

  x=a的形式有如下特点:

  (1)没有分母;

  (2)没有括号;

  (3)未知项在方程的一边,已知项在方程的另一边;

  (4)没有同类项;

  (5)未知数的系数是1。

  在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。

  根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。

  解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。

  用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。

  如解方程 7x-2=6x-4

  时,用移项可直接得到 7x-6x=4+2。

  而用等式性质1,一般要用两次:

  (1)两边都减去6x; (2)两边都加上2。

  因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程当中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的正确性。

  三、教学过程

  复习提问:

  (1)叙述等式的性质。

  (2)什么叫做方程的解?什么叫做解方程?

  新课讲解:

  1.利用等式性质1可以解一些方程。例如,方程 x-7=5

  的两边都加上7,就可以得到 x=5+7,

  x=12。

  又如方程 7x=6x-4

  的两边都减去6x,就可以得到 7x-6x=-4,

  x=-4。

  然后问学生如何用等式性质1解下列方程 3x-2=2x+1。

  2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的',可以在方程两边都加上(或减去)同一个数或整式。这步变形也相当于

  也就是说,方程中的任何一项改变符号后可以从方程的一边移到另一边。

  3.利用移项解方程x-7=5和7x=6x-4,并分别写出检验,要强调移项时变号,检验时把数代入变形前的方程。

  利用移项解前面提到的方程 3x-2=2x+l

  解:移项,得 3x-2x=1+2。①

  合并,得 x=3。

  检验:把x-3分别代入原方程的左边和右边,得

  左边=3×3-2=7, 右边=2×3+1=7, 左边=右边,

  所以x=3是原方程的解。

  在上面解的过程当中,由原方程①的移项是指:

  (l)方程左边的-2,改变符号后,移到方程的右边;

  (2)方程右边的2x,改变符号后,移到方程的左边。

  在写方程①时,左边先写不移动的项3x(不改变符号),再写移来的项(改变符号);右边先写不移动的项1(不改变符号),再写移来的项(改变符号),便于检查。

  课堂练习:教科书第73页 练习

  课堂小结:

  1.解方程需要把方程中的项从一边移到另一边,移项要变号。

  2.检验要把数分别代入原方程的左边和右边。

  四、课外作业

  习题2。1 P73 复习巩固

一元一次方程的教案4

  教学目标

  1.在具体情景中建立方程模型.

  2.能准确应用去括号法则解一元一次方程。

  教学重、难点

  重点:利用去括号的法则解含括号的一元一次方程。

  难点:解含多重括号的一元一次方程

  教学过程

  一激情引趣,导入新课

  1下面去括号是否正确?

  (1)2-(3x-5)=2-3x-5,(2)5x-3(2x-4)=5x-6x-12

  2下图中马路的旁边栽了几颗树?间隔几段?段数和棵数有什么规律?

  下面我们就来看一道与植树有关的问题

  二合作交流,探究新知

  1问题1现有树苗若干棵,计划栽在一段公路的一侧,要求路的两端各栽1棵,并且每2棵树的'间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔5.5米栽一棵,则树苗正好用完.你能算出原有树苗的棵数和这段路的长度吗?(做完后交流做法)

  2尝试练习:(1)解方程:

  (2)下面方程的解法对不对?如果不对,请改正。

  解方程:

  解:去括号,得

  移项,得

  化简,得

  方程两边除以,得:x=-

  (3)解下了方程,并口算检验:

  ①(4y+8)+(3y-7)=0,②2(2x-1)-2(4x+3)=7

  ③

  三应用迁移,巩固提高

  1解含有多重括号的方程

  例1解方程:

  2实践应用

  例2如果代数式8x-9与6-2x的值互为相反数,则x的值为___________

  例3如果用C表示摄氏温度(℃),f表示华氏温度(℉),那么c和f之间的关系是“c=(f-32)”

  已知C=15,求f.

  四冲刺奥赛

  例4已知关于x的方程3[x-2(x-)]=4x,和有相同的解,求这个解。

  五反思小结,拓展提高

  遇到有括号的方程应该怎样处理呢?

  六作业p118A组5、6、7B组2

一元一次方程的教案5

  教学目标:

  1.知识目标

  (1)通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力。

  (2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。

  2.能力目标

  (1)通过学生观察、独立思考等过程,培养学生归纳、概括的能力;

  (2)进一步让学生感受到并尝试寻找不同的解决问题的方法。

  3.情感目标:

  (1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯;

  (2)培养学生严谨的思维品质;

  (3)通过学生间的互相交流、沟通,培养他们的协作意识。

  教学重点:

  1.弄清列方程解应用题的思想方法;

  2.用去括号解一元一次方程。

  教学难点:

  1.括号前面是-号,去括号时,应如何处理,括号前面是-号的,去括号时,括号内的各项要改变符号。

  2.在小学根深蒂固用算术方法解应用题的基础上,让学生逐步树立列方程解应用题的思想。

  教学过程:

  一、 创设情境,提出问题

  问题1:我手中有6、x、30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快又对。

  学生思考,根据自己对一元一次方程的理解程度自由编题。

  问题2:解方程5(x-2)=8

  解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。

  问题3:某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少20xx度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?

  (教学说明:给学生充分的交流空间,在学习过程中体会取长补短的涵义,以求在共同学习中得到进步,同时提高语言组织能力及逻辑推理能力)

  二、 探索新知

  1. 情境解决

  问题1 :设上半年每月平均用电x度,则下半年每月平均用电________度;上半年共用电__________度,下半年共用电_________度。

  问题2:教师引导学生寻找相等关系,列出方程。

  根据全年用电15万度,列方程,得6x+6(x-20xx)=150000.

  问题3:怎样使这个方程向x=a的形式转化呢?

  6x+6(x-20xx)=150000

  去括号

  6x+6x-12000=150000

  移项

  6x+6x=150000+12000

  合并同类项

  12x=162000

  系数化为1

  x=13500

  问题4:本题还有其他列方程的方法吗?

  用其他方法列出的方程应怎样解?

  设下半年每月平均用电x度,则6x+6(x+20xx)=150000.(学生自己进行解题)

  归纳结论:方程中有带括号的式子时,根据乘法分配律和去括号法则化简。(括号前面是+号,把+号和括号去掉,括号内各项都不改变符号;括号前面是-号,把-号和括号去掉,括号内各项都改变符号。)

  去括号时要注意:(1)不要漏乘括号内的`任何一项;(2)若括号前面是-号,记住去括号后括号内各项都变号。

  2. 解一元一次方程去括号

  例题:解方程3x-7(x-1)=3-2(x+3)

  解:去括号,得3x-7x+7=3-2x-6

  移项,得 3x-7x+2x=3-6-7

  合并同类项,得 -2x=-10

  系数化为1,得x=5

  三、 课堂练习

  1.课本97页练习

  2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其它年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?

  四、总结反思

  1.本节课你学习了什么?

  2.通过今天的学习,你想进一步探究的问题是什么?

  ( 由学生自主归纳,最后老师总结)

  四、 作业布置

  1. 课本102页习题3.3第1、4题

  2. 配套资料相关练习

  教学反思:本节课突出数学的应用意识。教师首先用学生感兴趣的游戏和实际问题引入课题,然后逐步给出答案。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习

一元一次方程的教案6

  教学目标

  1.理解等式的性质,并能应用等式性质解方程进行简单变形。

  2.运用移项,系数化为1,解简单的一元一次方程。

  教学重点 解简单的一元一次方程。 教学难点 移项的注意事项。 教 具 天平、砝码。

  教学过程

  一、设疑自探

  1、情境引入:

  用天平测量物体的质量时,常常将物体放在天平的左盘内,在右盘内放上砝码,使天平处于平衡状态,这时两边质量相等就可以测得该物体的质量。 教师按书本上操作要求演示,并将有关的方程变形的式子板书出来,供同学们观察。 教师归纳:如果我们在两边盘内同时添上(或取下)相同质量的物体,可以发现天平依然平衡,如果我们将两边盘内的物体的质量,同时扩大原来相同的数额(或缩小原来的几分之一),也会看到天平依然平衡。

  2、发散提问:

  请你根据老师的演示和上面的式子提出一些问题,看谁提的问题好。 (学生可能提出的问题:第一个演示说明了什么、第一个演示有什么启示、第二个演示……、这些演示有什么启示、这些方程的变形中有什么一般的规则、你从这些方程的变形中发现了什么?观察这些方程的变形,你有什么发现?)

  本节课我们学习6.2.1方程的简单变形。板书课题,并出示学习目标。

  3、明确自探目标:

  同学们提出的这些问题很有价值,我们下面就来探究有关的问题。出示自探提示。 同学们结合“自探提示”和同学们提出的问题,自学课本P5—6页,完成本节的自探提纲中的问题。

  自探提纲 (1)从刚才的演示和方程的变形中,你发现了什么?

  (2)等式的性质的内容是什么?例1、例2分别是怎样应用等式性质解一元一次方程?

  (3)移项的定义是什么?移项要注意什么?

  (4)运用等式性质来解释移项、系数化为1的过程。

  (5)下列方程变形不属于移项的是( ) A、由2x=6,得x:3 B、由5x=4x-2,得5x-4x=-2 C、由2y-5=y-3,得2y-y=-3+5 D、由x+a=b,得x=b-a

  (6)解下列方程 (1)-5x=8 (2)1-3x=4 (7)若x、y满足|x-2|+|y+1|=0,则x、y的值为xx。

  二、解疑合探

  1、同学们逐题解答以上问题,学困生回答,中等生补充,优等生评价,教师做到“三讲三不讲”。

  2、教师注意进行以下两方面引导:

  (1)等式的.性质易错点:性质1,可以加上(减去)同一个整式,性质2不能乘以(或除以)同一个整式(整式包括0)。

  (2)同学们对自探提示中第6题进行演板,教师要规范解方程的过程。

  三、质疑再探

  同学们对本节学习有什么不懂地方或疑问大担提出。先由同学们回答,同学们回答不完整的内容,教师做补充。 注:本节第一节解方程,若涉及后面的内容,教师应告诉同学们后面将要学习。

  四、运用拓展

  1、同学们自编练习题,供同学练习,并纠错。

  2、完成以下练习,并纠错。

  (1) (2) (3) (4) (5) (6) (7) (8)

  3、已知方程ax+2=2(a-x)的解满足|x-2|=1,则a:    以上三题,以学生纠错、评价为主。

  4、课堂小结 同学们谈谈本节的收获。 通过交流、补充完善,使学生明确;

  (1)数学思想:从天平到等式的性质,一般归纳的思想,方程思想。

  (2)数学能力:等式性质的应用,即应用移项、系数化1解一元一次方程。

  作业设计 必做题 习题P62一、1、2、3、4 选做题 习题P62三、3、4 教后反思:

一元一次方程的教案7

  教学目标:

  1、能说出什么叫一元一次方程;

  2、知道“元”和“次”的含义;

  3、熟练掌握最简一元一次方程的解法及理论依据;

  能力目标:

  1、培养学生准确运算的能力;

  2、培养学生观察、分析和概括的能力;

  3、通过解方程的 教学,了 解化归的数学思想.

  德育目标:

  1、 渗透由特殊到一般的辩证唯物主义思想;

  2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习 惯和责任感;

  3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;

  重点:

  1、一元一次方程的概念;

  2、最简方程 的解法;

  难点:正确地解最简方程 。

  教学方法:引导发现法

  教学过程

  一、 旧知识的复习:

  1.什么叫等式?等式具有哪些性质?

  2.什么叫方程?方程的解?解方程?

  二、新知识的教学:

  观察下列方程: …

  想一想:这些方程有什么共同特点?(学生思考后回答)

  特点:

  (1)只含有一个未知数;

  (2)未知数的次数都是一次。

  (板书课题,学生总结定义)

  定义:只含有一个未知 数并且未知数的次数都是一次的方程叫做一元一次方程。

  强调:“元”指什么?(未知数的个数)

  “次”指什么?(方程中含有未知数项的最高次数)

  想一想:

  (1)你认为最简单 的一元一次方程是什么样的?

  (学生举例说明后总结出最简方 程)

  最简方程:我们把形如 (其中 是未知数)的方

  程称为最简方程。

  强调:为什么 ?

  (2)怎样求最简方程 (其中 是未知数)的解?

  三、解下列方程

  ① ②

  ③ ④

  (学生探讨求解过程及理论依据后板 书解题过程)

  解:① 根据等式的基本性质2,在方程两边同除以3,

  未知数系数化 为1,得

  ②③④解法略

  强调:检验解的方法。

  想一想:

  解最简方程 (其中 是未知数)时的主要思路是什么?解题的关键步骤是什么?

  (引导学生思考后回答)

  主要思路:把最简方程的未知数的系数化为1,变形为 的形 式;

  解题的关键步骤:根据等式的'基本性质2,在方程两边都除以未知数的系数(或两边都乘以未知数的系数的倒数),使未知数的系数化为1,得到最简方程的解 。

  强调:①方程两边都除以未知数的系数的步骤可以进行的条件是什么?( )

  ②最简方程一定有唯一的一个解。

  四、巩固练习

  1. 通过练习,请你总结一下,解方程 ( 是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。

  2.检测:

  3.课堂小结:

  五、本节学习的主要内容

  1、一元一次方程定义;

  2、最简方程 (其中 是未知数);

  3、解最简方程的主要思路和解题的关键步骤及依据。

  六、课堂作业

  A、解下列方程:

  (1) (2)

  (3) (4)

  B、如果关于 的方程 是一元一次方程,求 的值;

  C、解关于 的方程:

  (1) (2)

一元一次方程的教案8

  一、目标:

  知识目标:能熟练地求解数字系数的一元一次方程( 不含去括号、去分母)。

  过程方法目标:经历和体会解一元一次方程中“转化”的思想方法。

  情感态度目标:在数学活动中获得成功的喜悦,增强自信心和意志力,激发学习兴趣。

  二、重难点:

  重点:学会解一元一次方程

  难点:移项

  三、学情分析:

  知识背景:学生已学过用等式的性质来解一元一次方程。

  能力背景:能比较熟练地用等式的性质来解一元一次方程。

  预测目标:能熟练地用移项的方法来解一元一次方 程。

  四、教学过程:

  (一)创设情景

  一头半岁蓝鲸的体 重是22t,90天后的体重是30.1t,蓝鲸的体重平均每天增加多少?

  (二)实践探索,揭示新知

  1.例2.解方程: 看谁算得又快:

  解:方程的两边同时加上 得 解: 6x ? 2=10

  移项得 6x =10+2

  即 合并同类项得

  化系数为1得

  大家看一下有什么规律可寻?可以讨论

  2 .移项的概念: 根据等式的基本性质方程中的某些项改变符号后,可以从方程的`一边移到另一边 ,这样的 变形叫做移项。

  看谁做得又快又准确!千万不要忘记移项要变号。

  3.解方程:3x+3 =12,

  4.例3解方程: 例4解方程 :

  2x=5x-21 x- 3=4-

  5.观察并思考:

  ①移项有什么特点?

  ②移项后的化简包括哪些

  (三)尝试应用 ,反馈矫正

  1.下列解方程对吗?

  (1)3x+5=4 7=x-5

  解: 3x+ 5 =4 解:7=x-5

  移项得: 3x =4+5 移项得:-x= 5+7

  合并同类项得 3x =9 合并同类项得 -x= 12

  化系数为1得 x =3 化系数为1得 x = -12

  2解方程

  (1). 10x+1=9 (2) 2—3x =4-2x;

  (四)归纳小结

  1.今天学习了什么?有什么新的简便的写法?

  2.要注意什么?

  3. 解方程的 一般步骤是什么?

  4.. (1) 移项实际上 是对方程两边进行 , 使用的是

  (2)系数 化为 1 实际上是对方程两边进行 , 使用的是 。

  (3)移项的作用是什么?

  (五)作业

  1.课堂作业:课本习题4.2第二题

  2.家作:评价手册4.2第二课时

一元一次方程的教案9

  教学目标1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;

  2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;

  3、培养学生获取信息,分析问题,处理问题的能力。

  教学难点均是从实际问题中寻找相等关系。

  知识重点

  教学过程(师生活动)设计理念

  情境引入教师提出教科收第66页的问题,并用多媒体直观演示,同进出现下图:

  问题1:从上图中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)

  教师可以在学生回答的基础上做回顾小结

  问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)

  教师可以在学生回答的基础上做回顾小结:

  1、问题涉及的三个基本物理量及其关系;

  2、从知的信息中可以求出汽车的速度;

  3、从路程的角度可以列出不同的算式:

  问题3:能否用方程的知识来解决这个问题呢?用多媒体演示的目的是使学生能直观地理解“匀速”的含义,为后面寻相等关系做准备。

  培养学生读图的能力和思维的广阔性。

  这样既可以复习小学的算术方法,又为后面与方程的比较打下伏笔。

  提出问题:引出新课

  学习新知1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.

  如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米,王家庄距秀水千米.

  2、教师引导学生寻找相等关系,列出方程.

  问题1:题目中的“汽车匀速行驶”是什么意思?

  问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?

  问题3:根据车速相等,你能列出方程吗?

  教师根据学生的回答情况进行分析,如:

  依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:

  依据“王家庄至青山路段的车速=青山至秀水路段的车速”

  可列方程:

  3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.

  4、归纳列方程解决实际问题的两个步骤:

  (1)用字母表示问题中的未知数(通常用x,y,z等字母);

  (2)根据问题中的相等关系,列出方程.渗透列方程解决实际问题的思考程序。

  理解题意是寻找相等的关系的前提。

  考虑到学生寻找关系的难度,教师在此处有意加以引导。

  教师要根据课堂教学的情况灵活处理,不能把学生的思维硬往教材上套。

  举一反三讨论交流1、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.

  列算式:只用已知数,表示计算程序,依据是间题中的数量关系;

  列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

  2、思考:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?、

  建议按以下的顺序进行:

  (1)学生独立思考;

  (2)小组合作交流;

  (3)全班交流.

  如果直接设元,还可列方程:

  如果设王家庄到青山的路程为x千米,那么可以列方程:

  依据各路段的车速相等,也可以先求出汽车到达翠湖的时刻:

  ,再列出方程=60

  说明:要求出王家庄到翠湖的路程,只要解出方程中的x即可,我们在以后几节课中再来学习.通过比较能使学生学会到从算式到方程是数学的进步。

  问题的开放性有利于培养学生思维的发散性。

  这样安排的目的是所有的学生都有独立思考的时间和合作交流的时间。

  初步应用

  课堂练习1、例题(补充):根据下列条件,列出关于x的方程:

  (1)x与18的和等于54;

  (2)27与x的差的一半等于x的4倍.

  建议:本例题可以先让学生尝试解答,然后教师点评.

  解:(1)x+18=54;

  (2)(27-x)=4x.

  列出方程后教师说明:“4x"表示4与x的积,当乘数中有字母时,通常省略乘号“X”,并把数字乘数写在字母乘数的前面.

  2、练习(补充):

  (1)列式表示:

  ①比a小9的数;②x的.2倍与3的和;

  ③5与y的差的一半;④a与b的7倍的和.

  (2)根据下列条件,列出关于x的方程:

  (1)12与x的差等于x的2倍;

  (2)x的三分之一与5的和等于6.补充例题(练习)的目的一方面是增加列式的机会,另一方面介绍列代数式的有关知识。

  小结与作业

  课堂小结可以采用师生问答的方式或先让学归纳,补充,然后教师补充的方式进行,主要围绕以下问题:

  1、本节课我们学了什么知识?

  2、你有什么收获?

  说明方程解决许多实际问题的工具。

  本课作业1、必做题:阅读教科书上70页的《阅读与思考》;第73页习题2.1第1,5题。

  2、选做题:根据下列条件,用式表示问题的结果:

  (1)一打铅笔有12支,m打铅笔有多少支?

  (2)某班有a名学生,要求平均每人展出4枚邮票,实际展出的邮标量比要求数多了15枚,问该班共展出多少枚邮票?

  (3)根据下列条件列出方程:小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入。

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  本教学设计着力体现以下几方面特点:

  1、突出问题的应用意识.教师首先用一个学生感兴趣的实际问题引人课题,然后运用算术的方法给出解答。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习.

  2、体现学生的主体意识.本设计中,教师始终把学生放在主体的地位:让学生通过对列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作与交流,得出问题的不同解答方法;让学生对一节课的学习内容、方法、注意点等进行归纳.

  3、体现学生思维的层次性.教师首先引导学生尝试用算术方法解决间题,然后再逐步

  引导学生列出含未知数的式子,寻找相等关系列出方程.在寻找相等关系、设未知数及作业的布置等环节中,教师都注意了学生思维的层次性.

  4、渗透建模的思想.把实际间题中的数量关系用方程形式表示出来,就是建立一种数

  学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力.

一元一次方程的教案10

  1.移项法则

  (1)定义

  把原方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.

  例如:

  (2)移项的依据:等式的基本性质1.

  辨误区移项时的注意事项

  ①移项是将方程中某一项从方程的一边移到另一边,不是左边或右边某些项的交换;②移项时要变号,不能出现不变号就移项的情况.

  【例1】下列方程中,移项正确的是().

  A.方程10-x=4变形为-x=10-4

  B.方程6x-2=4x+4变形为6x-4x=4+2

  C.方程10=2x+4-x变形为10=2x-x+4

  D.方程3-4x=x+8变形为x-4x=8-3

  解析:选项A中应变形为-x=4-10;选项C中不是移项,只是交换了两项的位置,正确的移项是-2x+x=4-10;选项D中应变形为-4x-x=8-3,只有选项B是正确的.

  答案:B

  2.解一元一次方程的一般步骤

  (1)解一元一次方程的步骤

  去分母→去括号→移项→合并同类项→未知数的系数化为1.

  上述步骤中,都是一元一次方程的变形方法,经过这些变形,方程变得简单易解,而方程的解并未改变.

  (2)解一元一次方程的具体做法

  变形

  名称具体做法变形依据注意事项

  去分母两边同时乘各分母的最小公倍数等式的基本性质2不要漏乘不含分母的项

  去括号先去小括号,再去中括号,最后去大括号去括号法则、乘法分配律不要漏乘括号内的每一项,注意符号

  移项含有未知数的项移到方程的一边,常数项移到另一边等式的基本性质1移项要变号,不要漏项

  合并

  同类

  项把方程化成ax=b(a≠0)的形式合并同类项法则系数相加,字母及指数不变

  系数

  化为1两边都除以未知数的系数等式的基本性质2分子、分母不要颠倒

  【例2-1】解方程:4x+5=-3+2x.

  分析:按以下步骤解方程:

  解:移项,得4x-2x=-3-5.

  合并同类项,得2x=-8.

  系数化为1,得x=-4.

  【例2-2】解方程65100(y-1)=37100(y+1)+0.1.

  分析:方程中既含有分母,又含有括号,根据方程的形式特点,还是先去分母比较简便.

  解:去分母,得65(y-1)=37(y+1)+10.

  去括号,得65y-65=37y+37+10.

  移项,得65y-37y=37+10+65.

  合并同类项,得28y=112.

  系数化为1,得y=4.

  点评:解一元一次方程,要注意根据方程的特点灵活运用解一元一次方程的一般步骤,不一定非按这个“一般步骤”的顺序,适合先去分母的要先去分母,适合先去括号的要先去括号,去分母、去括号时,注意不要出现漏乘,尤其是注意不要漏乘常数项,移项时要注意变号.

  3.分子、分母中含有小数的一元一次方程的解法

  当分子、分母中含有小数时,一般是先根据分数的基本性质,将分数的分子、分母同乘以一个适当的整数,将其中的小数化为整数再解方程.需要注意的是这一步变形根据的是分数的基本性质,而不是等式的基本性质;变形时是分数的分子、分母同乘以一个适当的整数,而不是在方程的两边同乘以一个整数.

  【例3】解方程0.4x+0.90.5-0.03+0.02x0.03=1.

  分析:原方程的分子、分母中都含有小数,利用分数的基本性质,方程中0.4x+0.90.5的分子、分母都乘以10,0.03+0.02x0.03的分子、分母都乘以100,就能将方程中的所有小数化为整数.

  解:原方程可化为4x+95-3+2x3=1.

  去分母,得3(4x+9)-5(3+2x)=15.

  去括号,得12x+27-15-10x=15.

  移项、合并同类项,得2x=3.

  系数化为1,得x=32.

  4.带多层括号的'一元一次方程的解法

  一元一次方程,除个别题外,一般都有几层括号,一般方法是按照“由内到外”的顺序去括号,即先去小括号,再去中括号,最后去大括号.每去一层括号合并同类项一次,以简化运算.

  有时可根据方程的特征,灵活选择去括号的顺序,从而达到快速解题的目的.

  在解具体的某个方程时,要仔细观察方程的特点,根据方程的特点灵活选择解法.

  【例4】233212(x-1)-3-3=3.

  分析:若先去小括号,再去中括号,再去大括号,然后再运算比较麻烦.注意到32×23=1,因而可先去大括号,在去大括号的同时也去掉了中括号,这样既简化了解题过程,又能避开一些常见解题错误的发生.

  解:去大括号,得12(x-1)-3-2=3.

  去小括号,得12x-12-3-2=3.

  移项,得12x=12+3+2+3.

  合并同类项,得12x=172.

  系数化为1,得x=17.

  5.含有字母系数的一元一次方程的解法

  含有字母系数的一元一次方程的解法与一般一元一次方程的解法步骤完全相同:去分母→去括号→移项→合并同类项→系数化为1.要特别注意的是系数化为1时,当未知数的系数是字母时,要分情况讨论.

  关于x的方程ax=b的解的情况:

  ①当a≠0时,方程有唯一的解x=ba;②当a=0,且b=0时,方程有无数解;③当a=0,且b≠0时,方程无解.

  【例5】解关于x的方程3x-2=mx.

  分析:本题中未知数是x,m是已知数,先通过移项、合并同类项把方程变形为ax=b的形式,再讨论.

  解:移项,得3x-mx=2,

  即(3-m)x=2.

  当3-m≠0时,两边都除以3-m,

  得x=23-m.

  当3-m=0时,则有0x=2,此时,方程无解.

  点评:解含有字母系数的方程要不要讨论,关键是看解方程的最后一步,在系数化为1的时候,当未知数的系数是数字时,不用讨论,当未知数的系数含有字母时,必须分情况讨论.

一元一次方程的教案11

  教学目的

  1.使学生会进行简单的公式变形。

  教学分析

  重点:含字母系数的一元一次方程的解法。

  难点:含字母系数的一元一次方程的解法及公式变形。

  教学过程

  一、复习

  1.试述一元一次方程的意义及解一元一次方程的`步骤。

  2.什么叫分式?分式有意义的条件是什么?

  二、新授

  1.公式变形

  引例:汽车的行驶速度是v(千米/小时),行驶的时间是t(小时),那么汽车行驶的路程s(千米)可用公式

  s=vt①

  来计算。

  有时已知行驶的路程s与行驶的速度v(v≠0),要求行驶的时间t。因为v≠0,所以

  t=。②

  这就是已知行驶的路程和速度,求行驶的时间的公式。

  类似地,如果已知s,t(t≠0),求v,可以得到

  v=。③

  公式②,③有时也可分别写成t=sv-1;v=st-1。

  以上的公式①,②,③都表示路程s,时间t,速度v之间的关系。当v、t都不等于零时,可以把公式①变换成公式②或③。

  像上面这样,把一个公式从一种形式变换成另一种形式,叫做公式变形,公式变形往往就是解含有字母系数的方程。

  例3在v=v0+at中,已知v、v0、a且a≠0。求t。

  解:移项,得v-v0=at。

  因为a≠0,方程两边都除以a,得。

  例4在梯形面积公式S=中,已知S、b、h且h≠0,求a。

  解:去分母,得2S=(a+b)h,ah=2S-bh

  因为h≠0,议程两边都除以h,得

  三、练习

  P92中练习1,2,3。

  四、小结

  公式变形的实质是解含字母系数的方程,要求的字母是未知数,其余的字母均是字母已知数。如例3就是把v、v0、a当作字母已知数,把t当作未知数,解关于t的方程。

  五、作业作业:P93中习题9.5A组7,8,9。

  另:需要注意的几个问题

一元一次方程的教案12

  教学内容一元一次方程

  教学目标

  1.熟悉利用等式的性质解一元一次方程的基本过程.

  2.通过具体的例子,归纳移项法则

  3.掌握解一元一次方程的`基本方法,能熟练求解一元一次方程(数字系数),能判别解的合理性.

  教学重点

  重点是移项法则

  教学难点

  重点是移项法则

  教学流程

一元一次方程的教案13

  一、教学目标

  (一).知识与技能

  会利用合并同类项解一元一次方程.

  (二).过程与方法

  通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用.

  (三).情感态度与价值观

  开展探究性学习,发展学习能力.

  二、重、难点与关键

  (一).重点:会列一元一次方程解决实际问题,并会合并同类项解一元一次方程.

  (二).难点:会列一元一次方程解决实际问题.

  (三).关键:抓住实际问题中的数量关系建立方程模型.

  三、教学过程

  (一)、复习提问

  1.叙述等式的两条性质.

  2.解方程:4(x- )=2.

  解法1:根据等式性质2,两边同除以4,得:

  x- =

  两边都加 ,得x= .

  解法2:利用乘法分配律,去掉括号,得:

  4x- =2

  两边同加 ,得4x=

  两边同除以4,得x= .

  (二)、新授

  公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.对消与还原是什么意思呢?让我们先讨论下面内容,然后再回答这个问题.

  问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?

  分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买2x台,又知今年购买数量是去年的2倍,则今年购买了22x(即4x)台.

  题目中的相等关系为:三年共购买计算机140台,即

  前年购买量+去年购买量+今年购买量=140

  列方程:x+2x+4x=140

  如何解这个方程呢?

  2x表示2x,4x表示4x,x表示1x.

  根据分配律,x+2x+4x=(1+2+4)x=7x.

  这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0.

  下面的框图表示了解这个方程的具体过程:

  x+2x+4x=140

  合并

  7x=140

  系数化为1

  x=20

  由上可知,前年这个学校购买了20台计算机.

  上面解方程中合并起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数.

  例:某班学生共60分,外出参加种树活动,根据任何的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.

  分析:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60人分成10份,甲组人数占2份,乙组人数占3份,丙组人数占5份,如果知道每一份是多少,那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.

  问:本题中相等关系是什么?

  答:甲组人数+乙组人数+丙组人数=60.

  解:设每一份为x人,则甲组人数为2x人,乙组人数为3x人,丙组为5x人,列方程:

  2x+3x+5x=60

  合并,得10x=60

  系数化为1,得x=6

  所以2x=12,3x=18,5x=30

  答:甲组12人,乙组18人,丙组30人.

  请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,且这三组人数之和是否等于60.

  (三)、巩固练习

  1.课本第89页练习.

  (1)x=3.

  (2)可以先合并,也可以先把方程两边同乘以2.

  具体解法如下:

  解法1:合并,得( + )x=7

  即 2x=7

  系数化为1,得x=

  解法2:两边同乘以2,得x+3x=14

  合并,得 4x=14

  系数化为1,得 x=

  (3)合并,得-2.5x=10

  系数化为1,得x=-4

  2.补充练习.

  (1)足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?

  (2)某学生读一本书,第一天读了全书的多2页,第二天读了全书的少1页,还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解)

  解:(1)设每份为x个,则黑色皮块有3x个,白色皮块有5x个.

  列方程 3x+2x=32

  合并,得 8x=32

  系数化为1,得 x=4

  黑色皮块为43=12(个),白色皮块有54=20(个).

  (2)设全书共有x页,那么第一天读了( x+2)页,第二天读了( x-1)页.

  本问题的相等关系是:第一天读的量+第二天读的量+还剩23页=全书页数.

  列方程: x+2+ x-1+23=x.

  四、课堂小结

  初学用代数方法解应用题,感到不习惯,但一定要克服困难,掌握这种方法,掌握列一元一次方程解决实际问题的一般步骤,其中找等量关系是关键也是难点,本节课的两个问题的相等关系都是:总量=各部分量的和.这是一个基本的相等关系.

  合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0.

  五、作业布置

  1.课本第93页习题3.2第1、3(1)、(2)、4、5题.

  2.选用课时作业设计.

  合并同类项习题课(第2课时)

  一、解方程.

  1.(1)3x+3-2x=7; (2) x+ x=3;

  (3)5x-2-7x=8; (4) y-3-5y= ;

  (5) - =5; (6)0.6x- x-3=0.

  二、解答题.

  2.育红小学现有学生320人,比1995年学生人数的 少150人,问育红小学1995年学生人数是多少?

  3.甲、乙两地相距460千米,A、B两车分别从甲、乙两地开出,A车每小时行驶60千米,B车每小时行驶48千米.

  (1)两车同时出发,相向而行,出发多少小时两车相遇?

  (2)两车相向而行,A车提前半小时出发,则在B车出发后多少小时两车相遇?相遇地点距离甲地多远?

  4.甲、乙二人从A地去B地,甲步行每小时走4千米,乙骑车每小时比甲多走8千米,甲出发半小时后乙出发,恰好二人同时到达B地,求A、B两地之间的距离.

  5.一条环形跑道长400米,甲练习骑自行车,平均每分钟行驶550米;乙练习长跑,平均每分钟跑250米,两人同时、同地、同向出发,经过多少时间,两人首次相遇?

  答案:

  一、1.(1)x=4 (2)x=4 (3)x=-5 (4)x=- (5)x=30 (6)x=11

  二、2.705人,设育红小学1995年学生人数为x人,列方程320= x-150.

  3.(1)4 小时,设出发后x小时相遇,列方程60x+48x=460.

  (2)3 小时,设B车开出后x小时两车相遇,列方程60 +60x+48x=460.

  4.3千米,设A、B两地间的距离为x千米, - = .

  5.1 分钟,设经过x分钟两人首次相遇,列方程550x-250x=400.

  解一元一次方程

  ──移项(第3课时)

  一、教学内容

  课本第89页至第91页.

  二、教学目标

  (一).知识与技能

  理解移项法,并知道移项法的依据,会用移项法则解方程.

  (二).情感态度与价值观

  鼓励学生自主探索与合作交流,发展思维策略,体会方程的应用价值.

  三、重、难点与关键

  (一).重点:运用方程解决实际问题,会用移项法则解方程.方程的各项应包括前面的符号

  (二).难点:对立相等关系.

  (三).关键:理解移项法则的依据,以及寻找问题中的等量关系.

  四、教学过程 (一)、复习提问

  1.运用方程解决实际问题的步骤是什么?

  2.解方程: + =10.

  (二)、新授

  问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?

  分析:设这个班有x名学生,根据第一种分法,分析已知量和未知量间的关系.

  1.每人分3本,那么共分出多少本?(3x本)

  2.共分出3x本和剩余的20本,可知道什么?

  答:这批书共有(3x+20)本.

  根据第二种分法,分析已知量与未知量之间的`关系.

  3.每人分4本,那么需要分出多少本?(4x本)

  4.需要分出4x本和还缺少25本那么这批书共有多少本?

  答:这批书共有(4x-25)本.

  这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可以作为列方程的依据?

  这批书的总数是一个定值(不变量)表示它的两个式子应相等.

  根据这一相等关系,列方程:

  3x+20=4x-25

  本题还可以画示意图,帮助我们分析:

  从示意图中容易得到这批书的总数与分出书、剩下书的关系是:

  这批书的总数=3x+30

  这批书的总数与需要分出的书的数量、还缺少书的数量关系是:

  这批书的总数=4x-25

  根据两种分法,这批书的总数是相等的.

  所以,列方程3x+20=4x-25.

  注意变化中的不变量,寻找隐含的相等关系,从本题列方程的过程,可以发现:表示同一个量的两个不同式子相等.

  思考:方程3x+20=4x-25的两边都含有x的项(3x与4x),也都含有不含字母的常数项(20与-25)怎样才能使它转化为x=a(常数)的形式呢?

  要使方程右边不含x的项,根据等式性质1,两边都减去4x,同样,把方程两边都减去20,方程左边就不含常数项20,即

  3x+20 -4x-20 =4x-25 -4x-20

  即 3x-4x=-25-20

  将它与原来方程比较,相当于把原方程左边的+20变为-20后移到方程右边,把原方程右边的4x变为-4x后移到左边.

  像上面那样,把等式一边的某项变号后移到另一边,叫做移项.

  方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,即可以把方程等号右边的项改变符号后移到等号的左边,也可以把方程左边的项改变符号后移到方程的右边,注意要先变号后移项,别忘了变号.

  下面的框图表示了解这个方程的具体过程.

  3x+20=4x-25

  移项

  3x-4x=-25-20

  合并

  -x=-45

  系数化为1

  x=46

  由此可知这个班共有45个学生.

  思考:上面解方程中移项起了什么作用?

  答:移项使方程中含x的项归到方程的同一边(左边),不含x的项即常数项归到方程的另一边(右边),这样就可以通过合并把方程转化为x=a形式.

  在解方程时,要弄清什么时候要移项,移哪些项,目的是什么?

  解方程时经常要合并和移项,前面提到的古老的代数书中的对消和还原,指的就是合并和移项.

  如果把上面的问题2的条件不变,这个班有多少学生改为这批书有多少本?你会解吗?试试看.

  解法1:从原问题的解答中,已求的这个班有45个学生,只要把x=45代入3x+20(或4x-25)就可以求得这批书的总数为:

  345+20=135+20=155(本)

  解法2:如果不先求学生数,直接设这批书共有x本,又如何布列方程?这时该用哪个相等关系列方程呢?

  这批书共有x本,余下20本,共分出(x-20)本,每人分3本,可以分给 人,即这个班共有 人.

  这批书有x本,每人分4本,还缺少25本,共需要(x+25)本,可以分给 人,即这个班共有 人.

  这个班的人数是一个定值,表示它的两个式子应相等,根据这个相等关系列方程.

  = (你会解这个方程吗?)

  即 - = +

  移项,得 - = +

  合并,得 =

  系数化为1,得x=155.

  答:这批书共有155本.

  (三)、巩固练习

  1.课本第91页练习.

  (1)解:移项,得6x-4x=-5+7

  合并,得 2x=2

  系数化为1,得x=1

  (2)解:移项,得 x- x=6

  合并,得- x=6

  系数化为1,得x=-24

  2.补充练习.

  下列移项对不对?如果不对,错在哪里?应当怎样改正?

  (1)从3x+6=0得3x=6;

  (2)从2x=x-1得到2x-x=1;

  (3)从2+x-3=2x+1得到2-3-1=2x-x.

  解:(1)错,移项忘了要变号,应改为3x=-6.

  (2)错.原方程中的-1仍然在方程右边,并没有移项,所以不要变号,应改为2x-x-=-1.

  (3)正确.

  四、课堂小结

  1.列一元一次方程解决实际问题的关键是审题、读懂题意和找相等关系,今天解决的这个问题的相等关系不明显,隐含在问题中,表示同一个量的两个式子是相等.这个相等关系可以作列方程的依据.

  2.正确理解移项法则,移项中常犯的错误是忘记变号,还要注意移项与在方程的一边交换两项的位置有本质区别,移项的依据是等式性质,在方程的一边交换两项的位置是根据交换律.

  五、作业布置

  1.课本第93页至第94页习题3.2第2、3(3)(4)、6、7、8题.

  2.选用课时作业设计.

  移项习题课(第4课时)

  一、填空题.

  1.在方程的两边加上或减去同一项,相当于把原方程中的项______后,从方程的一边移到另一边,这种变形叫做________,其依据是________,移项要注意_____.

  2.在方程的一边交换两项的位置______改变项的符号,而移项______改变符号.

  3.解方程x+21=36得x=________;由10x-3=9得x=______.

  二、判断题.(对的打,错的打)

  4.移项就是把方程中的某一项移到等号的另一边.( )

  5.从6x=1,移项,得x=1-6,x=-5. ( )

  6.由方程-4+x=7移项得x=7-4. ( )

  三、解方程.

  7.(1)8=7-2y; (2) = - ;

  (3)5x-2=7x+8; (4)1- x=3x+ ;

  (5)2x- =- +2; (6)- x+6=4x+1;

  (7) -x=0.5x-3.

  四、解答题.

  8.设m=3x-2,n=-2x+3,当x为何值时m=n?

  9.甲粮仓存粮1000吨,乙粮仓存粮798吨,现要从两个粮仓中运走212吨粮食,使两仓库剩余的粮食数量相等,那么应从这两个粮仓各运出多少吨?

  答案:

  一、1.合并 移项 合并同类项 变号 2.不 要 3.15 1.2

  二、4. 5. 6.

  三、7.(1)y=- (2)x= (3)x=-5 (4)x=-

  (5)x=1 (6)x= (7)x=3

  四、8.x=1 9.207,5,设从甲粮仓运出x吨,1000-x=798-(212-x)

一元一次方程的教案14

  教学目标

  1.使学生正确认识含有字母系数的一元一次方程.

  2.使学生掌握含有字母系数的一元一次方程的解法.

  3.使学生会进行简单的公式变形.

  4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力.5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣.

  教学重点:

  (1)含有字母系数的一元一次方程的解法.

  (2)公式变形.

  教学难点:

  (1)对字母函数的理解,并能准确区分字母系数与数字系数的区别与联系.

  (2)在公式中会准确区分未知数与字母系数,并进行正确的公式变形.

  教学方法

  启发式教学和讨论式教学相结合

  教学手段

  多媒体

  教学过程

  (一)复习提问

  提出问题:

  1.什么是一元一次方程?

  在学生答的基础上强调:(1)“一元”——一个未知数;“一次”——未知数的次数是1.

  2.解一元一次方程的步骤是什么?

  答:(1)去分母、去括号.

  (2)移项——未知项移到等号一边常数项移到等号另一边.

  注意:移项要变号.

  (3)合并同类项——提未知数.

  (4)未知项系数化为1——方程两边同除以未知项系数,从而解得方程.

  (二)引入新课

  提出问题:一个数的a倍(a≠0)等于b,求这个数.

  引导学生列出方程:ax=b(a≠0).

  让学生讨论:

  (1)这个方程中的未知数是什么?已知数是什么?(a、b是已知数,x是未知数)

  (2)这个方程是不是一元一次方程?它与我们以前所见过的一元一次方程有什么区别与联系?(这个方程满足一元一次方程的定义,所以它是一元一次方程.)

  强调指出:ax=b(a≠0)这个一元一次方程与我们以前所见过的一元一次方程最大的区别在于已知数是a、b(字母).a是x的系数,b是常数项.

  (三)新课

  1.含有字母系数的一元一次方程的定义

  ax=b(a≠0)中对于未知数x来说a是x的系数,叫做字母系数,字母b是常数项,这个方程就是一个含有字母系数的一元一次方程,今天我们就主要研究这样的方程.

  2.含有字母系数的`一元一次方程的解法

  教师提问:ax=b(a≠0)是一元一次方程,而a、b是已知数,就可以当成数看,就像解一般的一元一次方程一样,如下解出方程:

  ax=b(a≠0).

  由学生讨论这个解法的思路对不对,解的过程对不对?

  在学生讨论的基础上,教师归纳总结出含有字母函数的一元一次方程和过去学过的一元一次方程的解法的区别和联系.

  含有字母系数的一元一次方程的解法和学过的含有数字系数的一元一次方程的解法相同.(即仍需要采用去分母、去括号、移项、合并同类项、方程两边同除以未知数的系数等步骤.)

  特别注意:用含有字母的式子去乘或者除方程的两边,这个式子的值不能为零.

  3.讲解例题

  例1 解方程ax+b2=bx+a2(a≠b).

  解:移项,得 ax-bx=a2-b2,

  合并同类项,得(a-b)x=a2-b2.

  ∵a≠b,∴a-b≠0.

  x=a+b.

  注意:

  1.在没有特别说明的情况下,一般x、y、z表示未知数,a、b、c表示已知数.

  2.在未知项系数化为1这一步是最易出错的一步,一定要说明未知项系数(式)不为零之后才可以方程两边同除以未知项系数(式).

  3.方

  例2、解方程

  分析:去分母时,要方程两边同乘ab,而需ab≠0,那么题目中有没有这个条件呢?有隐含条件a≠0,b≠0.

  解:b(x-b)=2ab-a(x-a)(a+b≠0).

  bx-b2=2ab-ax+a2(去分母注意“2”这项不要忘记乘以最简公分母.)

  ba+ax=a2+2ab+b2

  (a+b)x=(a+b)2.

  ∵a+b≠0,

  ∴x=a+b.

  (四)课堂练习

  解下列方程:

  教材P.90.练习题1—4.

  补充练习:

  5.a2(x+b)=b2(x+a)(a2≠b2).

  解:a2x+a2b=b2x+ab2

  (a2-b2)x=ab(b-a).

  ∵a2≠b2,∴a2-b2≠0

  解:2x(a-3)-(a+2)(a-3)=x(a+2)

  (a-b)x=(a+2)(a-3).

  ∵a≠8,∴a-8≠0

  (五)小结

  1.这节课我们要理解含有字母系数的一元一次方程的概念,掌握含有字母系数的方程与数字系数方程的区别与联系.

  2.含有字母系数的方程的解法与只含有数字系数的方程的解法相同.但必须注意:用含有字母的式子去乘或除方程的两边,这式子的值不能为零.

  六、布置作业

  教材P.93.A组1—6;B组1、

  注意:A组第6题要给些提示.

  七、板书设计

  探究活动

  a=bc 型数量关系

  问题引入:

  问题设置:有一大捆粗细均匀的电线,现要确定其中长度的值,怎样做比较简捷?(使用的工具不限,可以从中先取一段作为检验样品)

  提示:由于电线的粗细均匀分布的,所以每段同样长度的电线的质量相等。

  1、由学生讨论,得出结论。

  2、教师再加深一步提问:在我们讨论的问题涉及的量中,如果电线的总质量为a,总

  长度为b,单位长度的质量为c,a,b,c之间有什么关系?

  由学生归纳出:a=bc。对于解决问题:可先取1米长的电线,称出它的质量 ,再称

  出其余电线的总质量 ,则 (米)是其余电线的长度,所以这捆电线的总长度为( )米。

  引出可题:探究活动:a=bc型数量关系。

  1、b、c之一为定值时.

  读课本P.96—P.97并填表1和表2中发现a=bc型数量关系有什么规律和特点?

  (1)分析表1

  表1中,A=bc,b、c增加(或减小)A相应的增大(或减小)如矩形1和矩形2项比

  较:宽c=1,长由2变为4。

  面积也由2增加到4;矩形3,4类似,再看矩形1和矩形3:长都为b=2,宽由1增加到2,面积也变为原来的2倍,矩形2、4类似。

  得出结论,A=bc中,当b,c之一为定值(定量)时,A随另一量的变化而变化,与之成正比例。

  (2)分析表2

  (1)表2从理论上证明了对表1的分析的结果。

  (2)矩形推拉窗的活动扇的通风面积A和拉开长度b成正比。(高为定值)

  (3)从实际中猜想,或由经验得出的结论,在经理论上去验证,再用于实际,这是

  我们数需解决问题常用的方法之一,是由实际到抽象再由抽象到实际的辩证唯物主义思想。

  2、为定值时

  读书P.98—P.99,填P.99空,自己试着分析数据,看到出什么结论?

  分析:这组数据的前提:面积A一定,b,c之间的关系是反比例。

  可见,a=bc型数量关系不仅在实际生活中存在,而且有巨大的作用。

  这三个式子是同一种数量关系的三种不同形式,由其中一个式子可以得出另两个式子。

  3、实际问题中,常见的a=bc型数量关系。

  (1)总价=单价×货物数量;

  (2)利息=利率×本金;

  (3)路程=速度×时间;

  (4)工作量=效率×时间;

  (5)质量=密度×体积。

  … 例1、每个同学购一本代数教科书,书的单价是2元,求总金额y(元)与学生数n(个)的关系。

  策略:总价=单价×数量。而数量等于学生人数n,故不难求得关系式。

  解:y=2n

  总结:本题考查a=bc型关系式,解题关键是弄清数量关系。

  例2、一辆汽车以30km/h的速度行驶,行驶路程s(km)与行使的时间t(h)有怎样的关系呢?请表示出来。

  解:s=30t

  例3、一种储蓄的年利率为2.25%,写出利息y(元)与存入本金x(元)之间的关系(假定存期一年)。

  解:y=2.25%x

  程的解是分式形式时,一般要化成最简分式或整式.

一元一次方程的教案15

  一。教学目标:

  1。知识目标:了解一元一次方程的概念,掌握含括号的一元一次方程的解法。

  2。能力目标:培养学生的运算能力与解题思路。

  3。情感目标:通过主动探索,合作学习,相互交流,体会数学的严谨,感受数学的魅力,增加学习数学的兴趣。

  二。教学的重点与难点:

  1。重点:了解一元一次方程的概念,解含有括号的一元一次方程的解法。

  2。难点:括号前面是负号时,去括号时忘记变号。移项法则的灵活运用。

  三。教学方法:

  1。教 法:讲课结合法

  2。学 法:看中学,讲中学,做中学

  3。教学活动:讲授

  四。课 型:新授课

  五。课 时:第一课时

  六。教学用具:彩色粉笔,小黑板,多媒体

  七。教学过程

  1。创设情景:

  今天让我们一起做个小小的游戏,这个游戏的名字叫:猜猜你心中的她

  心里想一个数

  将这个数+2

  将所得结果

  最后+7

  将所得的结果告诉老师

  (抽一个同学,让他把他计算的结果告诉老师,由老师通过计算得到他最开始所想的数字。)

  老师:同学们知道老师是怎样猜到的吗?

  同学:不知道。

  老师:那同学们想知道老师是怎样猜到的吗?这就是我们今天所要学习的内容解一元一次方程。

  2。探究新知:

  一元一次方程的.概念:

  前面我们遇到的一些方程,例如 3

  老师:大家观察这些方程,它们有什么共同特征?

  (提示:观察未知数的个数和未知数的次数。)

  (抽同学起来回答,然后再由老师概括。)

  只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,像这样的方程叫做一元一次方程。

  老师:同学们从这个概念中,能找出关键的字吗?能用它来判断一个式子是否是一元一次方程吗?

  再次强调特征:

  (1)只含一个未知数;

  (2)未知数的次数为1;

  (3)是一个整式。

  (注意:这几个特征必须同时满足,缺一不可。)

  3。例题讲解:

  例1判断如下的式子是一元一次方程吗?

  (写在小黑板上,让学生判断,并分别抽同学起来回答,如果不是,要说出理由。)

  ① ② ③

  ④ ⑤⑥

  准确答案:①③

  下面我们再一起来解几个一元一次方程。

  例2。解方程

  (1)

  解法一:解法二:

  提醒:去括号的时候,如果括号外面是负号,去括号时,括号里面要变号

  (提示第二种解法:先移项,再去括号。即是把 看成整体的一元一次方程的求解。)

  (2)

  解:

  提示

  1)。在我们前面学过的知识中,什么知识是关于有括号的。

  2)。复习乘法分配律: ,强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是—号,注意去掉括号,要改变括号内的每一项的符号。

  3)。问同学们能不能运用这个知识来去掉这个括号,如果能该怎么去呢?抽一个同学起来回答。

  4)。问:去了括号的式子,又该做什么呢?我们前面见过此类的方程的,引出移项,并强调移项时注意符号的变化。此处运用了等式的性质。

  5)。一起回顾合并同类项的法则:未知数的系数相加。

  6)。系数化为1,运用了等式的性质。

  (求解的每一步的时候,抽同学起来回答,该怎么进行,运用了什么知识,同学叙述,老师写,同学说完后,老师在点评,最后归纳解含括号的一元一次方程的步骤,并强 调解题格式。)

  方程(1)该怎样解?由学生独立探索解法,并互相交流。

  解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1。

  4。巩固练习

  (1)解方程(2)当y为何值时,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)

  (巩固练习,抽两个同学上黑板去完成,其余的同学在演草纸上完成,待同学们完成后给予点评。)

  5小结:和同学们一起回顾我们这节课学习了什么?

  解一元一次方程

  概念

  含括号的一元一次方程的解法的解法

  作业:1。P12 。1

  2。预习下一节课的内容,

  3。复习此节课的内容,并完成一下两道思考题。

  思考:(1) 解方程: 。

  说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

  (2) 该怎么求解?

【一元一次方程的教案】相关文章:

《一元一次方程》教案04-02

一元一次方程教案02-13

解一元一次方程教案02-25

《解一元一次方程》教案08-31

一元一次方程教案(15篇)02-23

一元一次方程教案20篇10-30

解一元一次方程教案15篇03-01

解一元一次方程教案(15篇)03-21

解一元一次方程教案(通用13篇)07-24