- 相关推荐
人教版五年级上册《三角形的面积》数学教案
作为一位无私奉献的人民教师,有必要进行细致的教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。优秀的教案都具备一些什么特点呢?以下是小编帮大家整理的人教版五年级上册《三角形的面积》数学教案,仅供参考,欢迎大家阅读。
人教版五年级上册《三角形的面积》数学教案1
教学内容:
人教版义务教育教科书五年级上册91页《三角形的面积》,92页例2及练习题。
教学目标:
1、理解并掌握三角形面积计算公式,能够应用公式解决一些简单的问题,培养应用已有知识解决新问题的能力。
2、经历探索三角形面积计算方法的过程,培养学生观察、操作、推理、概括的能力,体会转化的思想。
3、在解决实际问题的过程中体验数学与生活的联系,进一步培养学生学习数学的兴趣。
教学重点:
三角形面积公式的推导及应用公式进行计算。
教学难点:
理解三角形面积的推导过程,感受转化的数学思想和方法。
教学准备:
教师准备:多媒体课件、红领巾、实验记录单。
学生准备:各种完全相同的三角形。
教学过程:
(一)复习铺垫,创设情境。
1、复习旧知,做好铺垫。回忆平行四边形面积计算公式及推导过程。
【复习铺垫是小学数学重要的环节,对于引起学生对已有知识的回忆,帮助学生更有效地参与到新知的探究过程中有着重要的作用。】
2、猜谜语:一块布料三角样,颜色鲜红真漂亮。少先队员才能有,每天佩戴不要忘。学生猜谜。
3、创设情境:要想做这样的一条红领巾,需要多少布呢?也就是计算什么?
4、揭示课题。
【设计意图:在这个环节中利用学生熟悉的红领巾实物猜谜,以及做一条红领巾要用多少布这样的事例,激起了学生想知道怎样去求三角形面积的欲望,有效地调动学生的学习的兴奋点,学生的问题意识得到发展。】
(二)动手操作,探索交流。
活动一:小组合作拼一拼、摆一摆。要求:请你用手中两个完全一样的三角形拼一拼,看看能拼成我们以前学过的哪种图形,快来试一试吧!小组动手操作并展示交流。
活动二:观察讨论,完成下面的实验记录。实验记录两个完全一样的三角形可以拼成平行四边形。
通过观察我们发现:
1、三角形的底和拼成的平行四边形的底( ),三角形的高和拼成的平行四边形的高( )。
2、拼成的平行四边形的面积是三角形面积的( ),三角形的面积是拼成的平行四边形面积的( )。
3、因为,平行四边形的面积等于( )X( ), 所以,三角形的面积=( )学生根据要求进行小组活动,然后交流汇报。
【设计意图:本环节让学生充分经历了操作、观察、推理、概括等数学活动与数学思考,发现了三角形的.面积计算公式。在合作探究过程中,把自主学习的权力还给了学生,培养了学生的动手能力和分析能力,顺利实现原有数学知识结构的扩充和新知结构的建立,使学生真正感受到数学方法的内在魅力。】
(三)运用公式,解决问题。
出示例2:学校计划做的红领巾的底是100㎝,高是33㎝,红领巾的面积是多少?
(1)学生尝试完成。
(2)交流做法和结果。
【设计意图:本环节的设计既解决了课前的问题,还让学生感知到数学学习能够方便生活,有效的提高学生学好数学的自信心。】
(四)巩固应用,举一反三。
第一关:辨一辨。
1、两个面积相等的三角形可以拼成一个平行四边形。
2、三角形的面积等于平行四边形面积的一半。
3、用两个完全一样的直角三角形可以拼成一个长方形,也可以拼成一个平行四边形。
第二关:指出下面三角形的底和高,并说出怎样计算它的面积。 (单位:厘米)
第三关:制作两个这样的交通警示标志,需要多少铁皮?第四关:求出下图中三角形和平行四边形的面积。你发现了什么?
【设计意图:本环节我依据教学目标和学生在学习中存在的问题,采用智慧闯关的形式设计有针对性、层次分明的练习题组,激发了学生的学习兴趣,让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。同时也强化了本节课的教学重点。】
(五)质疑总结,反思评价。
课件出示:今天你有什么收获?
(2)你要提醒大家注意什么?
(3)你感觉自己今天表现如何?
(4)我还想说……
【设计意图:让学生以同桌为单位,每位学生充分发言,交流学习所得。在评价方面,先让学生自我评价,接着让学生互相评价,增强学生学习数学知识的自信心和荣誉感,同时培养了学生敢于质疑、勇于创新的精神。】
五、板书设计。
人教版五年级上册《三角形的面积》数学教案2
【教学内容】:教材P91~92例2及练习二十第1、2题。
【教学目标】:
知识与技能:掌握三角形的面积计算公式,并能正确计算三角形的面积。
过程与方法:经历探索三角形的面积计算公式的过程,能用三角形的面积计算公式解决简单的实际问题。
情感、态度与价值观:培养学生观察、比较、推理和概括能力。
【教学重、难点】
重点:探索并掌握三角形的面积公式,能正确计算三角形的面积。
难点:三角形的面积计算公式的推导过程和实际应用。
【教学方法】:动手实践、自主探索、合作交流
【教学准备】:多媒体。
【教学过程】
一、复习导入
1.出示长方形、正方形、平行四边形、三角形的图片。
提问:我们学过了哪些平面图形的面积?计算这些图形的面积公式是什么?
学生回答:长方形的面积=长×宽;正方形的面积=边长×边长;
平行四边形的面积=底×高。
2.师:今天我们就一起来研究“三角形的面积”。(板书课题:三角形的面积)
3.学习新知识之前,我们共同回忆一下平行四边形的面积计算公式是怎样得出的?(演示推导过程)
(我们把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。)
二、互动新授
l.谈话:成为一名少先队员后,我们每个人都要佩带红领巾。红领巾是什么形状的?(三角形)如果要想知道它用多少面料,要怎样解决呢?(求出三角形的面积。)
追问:怎样求三角形的面积?引导学生利用平行四边形的面积公式的推导猜测,可以把三角形转化成我们已经学过的图形。
2.请每个小组拿出三角形学具,并说一说你发现了什么?(每组都有完全一样的直角三角形、锐角三角形、钝角三角形各两个。)
师提出操作要求:用两个同样的三角形拼一拼,并思考:能拼出什么图形?拼出图形的面积你会计算吗?拼出的图形与原来的三角形有什么联系?(这里不让学生回答,而是通过动手操作得出结论。)
3.分小组操作,并利用下表做好记录。
我们是用两个( )三角形,拼成了一个( )。
原三角形的底等于拼成的( )形的( );原三角形的高等于拼成的( )形的( );原三角形的面积等于拼成的( )形的( )。
教师巡视指导。
小组汇报操作结果:让学生边汇报边把转化后的图形贴在黑板上。
学生可能选用两个完全一样的锐角三角形拼成了一个平行四边形,拼成的平行四边形的面积=底×高,每一个锐角三角形的面积是这个平行四边形面积的一半,所以得出一个三角形的面积=底×高÷2。
也可能选用两个完全一样的直角三角形拼成了一个长方形,拼成的长方形的长就是直角三角形的一条直角边(可以看作直角三角形的高),拼成的长方形的宽就是直角三角形的另一条直角边(可以看作直角三角形的底)。拼成的长方形的面积=长×宽,每一个直角三角形的面积就是这个长方形面积的一半,所以得出一个三角形的面积=底×高÷2。
还可以选两个完全一样的钝角三角形拼成一个平行四边形。同理,每一个钝角三角形的面积是这个平行四边形面积的一半。所以,得出一个三角形的面积=底×高÷2。
4.小结:不管是锐角三角形、直角三角形,还是钝角三角形,只要是两个完全一样的三角形,就能拼成一个平行四边形,其中一个三角形的面积是拼成的平行四边形的面积的一半。
追问:是不是任意一个三角形的面积都是任意一个平行四边形面积的一半呢?
教师可以通过任意一个三角形和与其不等底等高的平行四边形的纸板,让学生通过对比得出:三角形的底和高必须与平行四边形的底和高相等时,这个三角形的面积才是平行四边形的面积的一半。三角形的面积是与它等底等高的平行四边形的面积的一半。(教师根据学生回答板书)
再让学生说一说三角形的面积的计算公式是什么?
5.如果用a表示三角形的底,h表示三角形的高,S表示三角形的面积,那么三角形的面积计算公式可以写成:S=ah÷2(板书)。
6.教学教材第92页例2。
出示第92页例2:红领巾的底是lOOcm,高是33cm,它的面积是多少平方厘米?
让学生独立计算,再集体订正。
说一说都是怎样做的,并根据学生的汇报板书计算过程:
S=ah÷2=100×33÷2=1650(cm2)
7.让学生再说一说:为什么要除以2?
学生可能会回答:“底×高”表示用两个完全一样的三角形拼成的平行四边形的.面积;因为一个三角形的面积是拼成的平行四边形面积的一半,所以要“÷2”。
三、巩固拓展
1.出示:一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米。这个三角形的面积是多少平方厘米?
由学生独立解答,订正答案。
2.完成教材第92页“做一做”第1题。
先说一说涂色的三角形的面积与平行四边形的面积有什么关系,再计算。
(涂色的三角形的面积是平行四边形面积的一半。)
3.完成教材第92页“做一做”第2题。
先让学生找一找三角尺的底和高,使学生明白直角三角形的任意一条直角边作底,另一条直角边就作高。如底是7.2cm,高是12.5cm。再进行计算。
四、课堂小结
师:这节课你学会了什么?有哪些收获?
引导总结:
1.三角形的面积=底×高÷2,用字母表示S=ah÷2。
2.要求三角形的面积需要知道三角形的底和高。
3.三角形的面积是与它等底等高的平行四边形的面积的一半。
五、作业:教材第93页练习二十第1、2题。
【板书设计】:
三角形的面积
三角形的面积是与它等底等高的平行四边形的面积的一半。
三角形的面积=底×高÷2
例2
S=ah÷2=100×33÷2=1650(cm2)
【五年级上册《三角形的面积》数学教案】相关文章:
五年级上册《三角形面积》说课稿12-28
五年级上册数学三角形的面积教学反思04-07
面积与面积单位小学数学教案06-25
五年级三角形的面积说课稿11-26
三角形的面积教案03-31
《三角形面积》说课稿12-22
《三角形的面积》教案02-02
《三角形的面积》说课稿11-29
三角形的面积说课稿11-28