- 相关推荐
“因数与倍数”五年级数学教案
作为一位兢兢业业的人民教师,就有可能用到教案,借助教案可以更好地组织教学活动。那么写教案需要注意哪些问题呢?下面是小编精心整理的“因数与倍数”五年级数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。
“因数与倍数”五年级数学教案1
一、教学内容
教材第30~51页的“例1~例12”以及练习五~七。
二、教材分析
本单元主要教学因数和倍数,以及公因数和公倍数等内容。本单元内容大体分三段安排:第一段,认识因数和倍数,学习在1~100的自然数中有序地找出10以内某个数的所有倍数,以及100以内某个数的所有因数;探索2、5、和3的倍数的特征,学习判断一个数是不是2、5或3的倍数,同时认识奇数和偶数。第二段,认识质数、合数和质因数,学习把一个合数分解质因数。第三段,认识公因数和最大公因数,探索求两个数的最大公因数的方法;认识公倍数和最小公倍数,探索求两个数的最小公倍数的方法。最后,安排了全单元内容的整理与练习。
三、学情分析
本单元内容是在学生已经认识了亿以内的数,以及学习了整数四则运算的基础上进行教学的。学习本单元内容,又为后续学习分数的基本性质、约分和通分,以及分数四则运算打下基础。
四、教学目标
1.使学生经历探索非0自然数的有关特征的.活动,知道因数和倍数的含义;能找出100以内某个自然数的所有因数,能在1~100的自然数中找出10以内某个数的所有倍数;知道2、5和3的倍数的特征,能判断一个数是不是2、5或3的倍数;了解奇数和偶数、质数和合数的含义,会分解质因数。
2.使学生通过具体的操作和交流活动,认识公因数与最大公因数、公倍数与最小公倍数;会求100以内两个数的最大公因数和10以内两个数的最小公倍数。
3.使学生在探索和发现数学知识的过程中,积累数学活动的经验,培养观察、比较、分析和归纳的能力,感受一些简单的数学思想,进一步发展数感。
4.使学生在参与学习活动的过程中,培养主动与他人合作交流的意识,体验数学学习活动的乐趣,增强对数学学习的自信心。
五、教学重、难点
教学重点:掌握倍数和倍数、质数和合数、最大公因数和最小公倍数等概念的联系和区别,掌握求两个数最大公因数和最小公倍数的基本方法。
教学难点:根据数的特点合理灵活地确定两个数的最大公因数和最小公倍数,以及根据对最大公因数和最小公倍数的理解正确解答相关的实际问题。
六、课时安排
因数和倍数…………………………………………1课时
2和5的倍数的特征………………………………1课时
3的倍数的特征……………………………………1课时
因数和倍数练习……………………………………1课时
质数和和合数………………………………………1课时
分解质因数…………………………………………1课时
公因数和最大公因数………………………………2课时
公倍数和最小公倍数………………………………2课时
因数与倍数整理与练习……………………………2课时
和与积的奇偶性……………………………………1课时
“因数与倍数”五年级数学教案2
【教学内容】
认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。
【教学目标】
1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。
【重点难点】
理解因数和倍数的含义。
【复习导入】
1. 教师用课件出示口算题。
10÷5= 16÷2=
12÷3= 100÷25=
220÷4= 18×4=
25×4= 24×3=
150×4= 20×86=
学生口算
2. 导入:在乘法算式中,两个因数相乘,得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系,在除法算式中,两个数相除,得到的结果叫做它们的商。除法算式表示的是一种相除的关系,在整数乘法和除法中还有另一种关系,这就是我们这一节课要学习探讨的内容。
(板书课题:因数和倍数(1)
【新课讲授】
1.学习因数和倍数的概念
(1)教师用课件出示教材第5页例1,引导学生观察图上的算式,把这些算式分为两类。
学生说出自己的分类方法,商是整数的分为一类,商不是整数的分为一类。教师以商是整数的第一题为例,板书:12÷2=6。
教师:在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2和6的倍数,2和6是12的因数。
谁来说一说其他的式子?
学生回答。
教师板书:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。
(2)说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?
学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。(3)通过刚才同学们的回答,你发现了什么?
学生回答,教师板书:倍数与因数是相互依存的。
2.举例概括
教师:请同学们注意,为了方便,我们在研究因数和倍数时,所说的数一般指的是自然数,而且其中不包括0。
教师:在自然数中像这样的例子还有很多,我们每个同学都在心中想一个,想好了说给大家听。学生举例,并说出谁是谁的因数,谁是谁的倍数。
教师同时板书。
教师小结:像这样的例子举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?
引导学生根据“用字母表示数”的知识表述因数与倍数的关系。
如:M÷N=P,M、N、P都是非0自然数,那么N和P是M的因数,M是N和P的倍数。
A×B=C,A、B、C、都是非0自然数,那么A和B是C的因数,C是A和B的倍数。
你能从这些数中挑出两个数,说出谁是谁的因数,谁是谁的.倍数吗?
3、9、15、21、36
学生独立思考并回答。
【课堂作业】
1.完成教材第5页“做一做”。
2.完成教材第7页练习二第1题。
3.下面每一组数中,谁是谁的倍数,谁是谁的因数。16和24和2472和820和5
4.下面的说法对吗?说出理由。
(1)48是6的倍数。
(2)在13÷4=3……1中,13是4的倍数。
(3)因为3×6=18,所以18是倍数,3和6是因数。
【课堂小结】
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
【课后作业】
完成练习册中本课时练习。
因数和倍数(1)
在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。
因数和倍数一般指的是自然数,而且其中不包括0。
倍数与因数是相互依存的。
本节课的重点是掌握因数和倍数的概念,理解因数和倍数是相互依存的,知识内容比较抽象,知识点比较少,教学中,我采取让学生反复说,互相说的方式,让学生加深理解,提高他们自主学习和合作学习的能力。
因数和倍数(2)
【教学内容】
一个数因数的求法和一个数倍数的求法(教材第6页例2、例3,教材第7~8页练习二第2~8题)。
【教学目标】
1.通过学习使学生掌握找一个数的因数,倍数的方法;
2.学生能了解一个数的因数是有限的,倍数是无限的;
3.能熟练地找一个数的因数和倍数;
4.在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的探究意识和求索精神。
【重点难点】
掌握找一个数的因数和倍数的方法,能熟练地找一个数的因数和倍数。
【复习导入】
说出下列各式中谁是谁的因数?谁是谁的倍数?
20÷4=5 6×3=18
在上面的算式中,6和3都是18的因数,你知道还有哪些数是18的因数吗?18是3的倍数, 你知道还有哪些数是3的倍数吗?这节课我们就来学习如何找一个数的因数和倍数。
(板书课题:因数和倍数(2))
【新课讲授】
(一)找因数:
1.出示例1:18的因数有哪几个?
一个数的因数还不止一个,我们一起找找18的因数有哪些?
学生尝试完成后汇报
(18的因数有: 1,2,3,6,9,18)教师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)
教师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2.用这样的方法,请你再找一找36的因数有哪些?
小组合作交流后汇报,36的因数有: 1,2,3,4,6,9,12,18,36
教师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
教师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,最大的是几?
教师板书:一个数的最小因数是1,最大因数是它本身。
3.你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。
4.其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数。小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数:
1.我们一起找到了18的因数,那2的倍数你能找出来吗?
小组合作交流后汇报,2的倍数有:2、4、6、8、10、16、……
教师:为什么找不完?
你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)那么2的倍数最小是几?最大的你能找到吗?
2.让学生完成做一做1、2小题:找3和5的倍数。汇报
3的倍数有:3,6,9,12
教师:这样写可以吗?为什么?应该怎么改呢?
改写成:3的倍数有:3,6,9,12,……
你是怎么找的?(用3分别乘以1,2,3,……)
5的倍数有:5,10,15,20,……
教师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示2的倍数,3的倍数,5的倍数。
教师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)【课堂作业】
1.完成课本第7页练习二第2~5题。
2.完成教材第8页练习二第6~8题。
【课堂小结】我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
【课后作业】
完成练习册中本课时练习。
因数和倍数(2)
一个数的因数的个数是有限的,,最小的是1,最大的是它本身.
一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数.
本节课是在学生认识因数和倍数的基础上进行教学的,在找一个数的因数时,如何做到既不重复又不遗漏,对于刚刚对因数和倍数有感性认识的学生来说有一定的困难,教学时充分发挥小组学习的优势,在小组交流的过程中,学生对自己的方法进行反思,吸取同伴的好方法,很好的体现了自主探索和合作交流的教学理念。
“因数与倍数”五年级数学教案3
教学内容:
人教版小学数学五年级下册第二单元第5第6页《因数与倍数》
教材分析:
整除概念是贯穿这部分教材的一条主线。签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,教材中删去了“整除”的数学化定义,而是借助整除的模式a×b=c直接引出因数和倍数的概念。
学情分析:
因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了,对于后面的奇数、偶数、质数、合数等概念的理解也是水到渠成。要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。数论本身就是研究整数性质的一门学科,有时不太容易与具体情境结合起来,而学生到了五年级,抽象能力已经有了进一步发展,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数个数都是无限的,逐步形成从特殊到一般的归纳推理能力,等等。
教学目标:
1.学生掌握找一个数的因数,倍数的方法。
2.学生能了解一个数的因数是有限的,倍数是无限的;能熟练地找一个数的因数和倍数。
3.培养学生的观察能力。
教学重点:
掌握找一个数的因数和倍数的方法。
教学难点:
能熟练地找一个数的因数和倍数。
教学准备:
多媒体课件
教学过程:
一、自主探索
1、出示书上主题图,学生列出乘法算式
2×6=12,在这里,2和6是12的因数。12是2的`倍数,也是6的倍数。(教师板书因数,倍数)
2、出示书中主题图,学生列出乘法算式。
3×4=12,能试着说一说谁是谁的因数,谁是谁的倍数吗?
学生口答,巩固因数和倍数的含义?
3、两个数在什么情况下才能说是因数和倍数关系?能不能说3是因数,12是倍数?为什么?
学生发表自己的见解。
总结:因数和倍数必须是成对出现,它们是相互依存的。不能说3是因数,12是倍数。
4、你还能找出12的其他因数吗?
学生独立完成,集体订正。
总结:为了方便,在研究因数和倍数的时候,我们所说的数一般指的是整数(不包括0)。
5.小结引出课题。
师:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。例如,12÷2=6,12是2和6的倍数,2和6是12的因数。(教师板书)
6.例题学习
出示例题:18的因数有哪几个?
学生独立试做,集体订正
(1)想谁和谁相乘是18?
18=1×1818=2×918=3×6
所以18的因数是1,2,3,6,9,18。
(2)列出被除数是18的除法算式
18÷1=1818÷2=918÷3=6
18÷6=318÷9=218÷18=1
分析:18最小的因数是哪一个?1还是哪些数的因数?18最大的因数是那一个
7.出示做一做:
30的因数有哪些?36呢?学生独立练习,并口述方法,
由此你发现了什么?一个数最小的因数是1,最大的因数是它本身,一个数的因数的个数是有限的。一个数的最小倍数是它本身,没有最大的倍数。
8.小结:用字母表示数的知识表述因数和倍数的关系
M÷N=PM、N、P都是非0的自然数,N和P是M的因数,M是N和P的倍数。
A×B=CA、B、C都是非0的自然数,A和B是C的因数,C是A和B的倍数。
二、巩固练习
1.(出示主题图)下面的四组中,谁是谁的因数?谁是谁的倍数?
4和2426和1375和2581和9
2.课本练习
三、总结反思:
由学生回忆本节课所学内容。
“因数与倍数”五年级数学教案4
教学内容:
苏教版义务教育教科书《数学>五年级下册第47~48页整理与练习“回顾与整理”和“练习与应用”第1~7题。
教学目标:
1.使学生加深认识因数和倍数,能找一个数的因数或倍数,进一步认识质数和合数;掌握2、5、3的倍数的特征,进一步认识偶数和奇数;加深理解质因数,能正确分解质因数。
2.使学生能整理因数和倍数的知识内容,感受知识之间的内在联系;能应用相关概念进行分析、判断、推理,进一步掌握思考、解决数学问题的方法,积累数学思维的初步经验,提高分析、推理、判断等思维能力;加深对数的认识,进一步发展数感。
3.使学生主动参与回顾、整理知识和分析、解决问题等活动,培养乐于思考的品质和与同伴互相交流、倾听等合作意识和能力;感受数学方面的知识积累和进步,提高学好数学的自信心。
教学重点:
整理、应用因数和倍数的知识。
教学难点:
应用概念正确判断、推理。
教学过程:
一、揭示课题
谈话:最近的数学课,我们学习了哪方面的内容?回忆一下,都学到了哪些知识?
揭题:我们已经学完了因数和倍数这一单元的内容,今天开始主要整理与练习这一单元内容。(板书课题)通过整理与练习,我们要进一多认识因数与倍数,2.5.3的倍数的特征,能熟练掌握找一个数的因数或倍数的方法;能判断偶数和奇数、质数和合数,了解这些概念之间的联系与区别,能正确分解质因数,提高对数的特征的认识,加深对数的认识。
二、回顾与整理
1.回顾讨论。
出示讨论题:
(1)你是怎样理解因数和倍数的?举例说明你的认识。
(2)2、5、3的倍数有什么特征?我们是怎样发现的?
(3)自然数可以怎样分类,各能分成哪几类?举例说说什么是质因数和分解质因数。
(4)什么是两个数的公因数和最大公因数,公倍数和最小公倍数?
让学生在小组里讨论,结合讨论适当记录自己的认识或例子。
2.交流整理。
围绕讨论题,引导学生展开交流,结合交流板书主要内容。
(1)提问:能说说什么是因数和倍数吗?可以用例子说明。(结合交流板书一两个乘法或除法算式)
引导:在整数乘法算式里,两个乘数都是积的因数,积是两个乘数的倍数。你能根据这里的算式说说哪个是哪个的因数,哪个是哪个的倍数吗?
(指名学生说一说,再集体说一说)
你能找出6的因数吗?(板书因数)6的倍数呢?(板书倍数)
能说说找一个数的因数或倍数的方法吗?
说明:一个数的因数可以从小到大一对一对地找,到中间两个因数之间没有因数为止;一个数的倍数可以用依次乘1、2、3……这样的方法找,注意一个数的倍数是无限的,写一个数的倍数要注意用省略号。
(2)提问:2、5、3的倍数各有什么特征?我们是怎样发现的?
自然数可以怎样分类,各可以分成哪几类?
你能举出偶数和奇数、质数和合数的一些例子吗?(学生举出各类数的例子)
说明:按是不是2的倍数可以把自然数分成偶数和奇数两类,是2的倍数的是偶数,不是2的倍数的是奇数;按因数的个数可以把自然数分成1和质数、合数三类,只有两个因数的是质数,有两个以上因数的是合数,1既不是质数也不是合数。
什么是质因数和分解质因数?6有哪些质因数?怎样把6分解质因数?(板书式子,并说明其中的质因数)
(3)提问:什么是公因数和最大公因数,什么是公倍数和最小公倍数?
说明:两个数公有的因数叫公因数,其中最大的叫最大公因数;两个数公有的倍数叫公倍数,其中最小的叫最小公倍数。
结合交流内容,逐步板书成:
l
质数质因数
合数分解质因数
因数公因数最大公因数
(互相依存)
倍数公倍数最小公倍数
2、5、3的倍数的特征
偶数
奇数
(4)引导:请同学们现在观察我们整理的这一单元学过的内容,了解知识之间的联系,同桌互相说说知识是怎样发展的。
学生互相交流,教师巡视、倾听。
交流:哪位同学能看黑板上整理的.内容,说说我们怎样逐步认识这些知识的,知识是怎样发展起来的。
三、练习与应用
1.做“练习与应用”第1题。
指名学生交流,说说每组里因数和倍数关系。
提问:3和7有没有因数和倍数关系?为什么没有?
2.做“练习与应用”第2题。
(1)让学生独立写出前四个数的所有因数,指名两人板演。
交流:你是怎样找它们的因数的?(检查板演题)
(2)口答后三个数的因数。
引导:能说出后面每个数的全部因数吗?(学生口答,教师板书)
提问:一个数的因数有什么特点?
说明:一个数因数的个数是有限的,最小的是1.最大的是它本身。
3.分别说出下面各数的倍数。
581217
分别指名学生说出各数的倍数,教师板书。
提问:为什么要写省略号?一个数的倍数有什么特点?
说明:一个数倍数的个数是无限的,最小的是它本身,没有最大的倍数。
4.做“练习与应用”第3题。
(1)让学生独立完成填数。
交流:题里各是怎样填的?(呈现结果)填数时怎样想的?
提问:哪些数既是3的倍数,又是5的倍数?你是怎样想的?
同时是2和5的倍数的数有什么特征?
哪些数既是2的倍数,又是5和3的倍数?说说你的判断方法。
(2)这里哪些数是偶数?奇数呢?
你是怎样判断偶数和奇数的?
5.做“练习与应用”第4题。
要求学生独立思考,自己选出两张卡片,按各题的要求分别组成两位数,把能组成的数记录下来。
交流:同时是5和3的倍数的数有哪些?(板书:30)如果是三位数呢?
(板书:180810)
组成的两位数中最大的偶数是多少?(板书:80)最小的奇数呢?(板书:13)
6.做“练习与应用”第5题。
让学生把质数圈出来,在合数下面画线。
交流:哪些是质数,哪些是合数?(板书成两类)质数和合数是按什么分的?
说明:质数只有2个因数,合数至少有3个因数。
7.做“练习与应用’’第6题。
让学生选出质数和偶数。
交流、呈现结果。
提问:观察表里选出的质数和偶数,所有的质数都是奇数吗?请举出一个具体例子。
所有的合数都是偶数吗?你能举例子说明吗?
指出:如果要说明一个结论是错误的,只要举一个反例。比如,要判断质数都是奇数的说法是错的,只要举出质数2是偶数这个例子。这里质数2是偶数就是一个反例。要判断合数都是偶数是错的,也只要举一个反例,比如合数9就是奇数。
8.下面的说法正确吗?
(1)大于0的自然数不是奇数就是偶数。
(2)大于0的自然数不是质数就是合数。
(3)奇数都是质数,偶数都是合数。
(4)自然数中最小的偶数是2,最小的合数是4。
(5)一个数本身既是它的因数,又是它的倍数。
9.做“练习与应用”第7题。
(1)让学生填空,指名板演。交流并确认结果。
提问:这里填写的质数都叫积的什么数?为什么称它是积的质因数?
说明:这里把合数写成这种质数相乘的形式,叫什么?
(2)把30、42分别分解质因数。
学生完成,交流板书,检查订正。
四、全课总结
提问:这节课主要复习的哪些内容?你有哪些收获?
“因数与倍数”五年级数学教案5
【教学目标】
1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2.使学生通过自主探索,掌握2、5、3的倍数的特征。
3.逐步培养学生的数学抽象思维能力。
【重点难点】
1.掌握因数、倍数、质数、合数等概念的联系及其区别。
2.掌握2、5、3的倍数的特征。
3.质数和奇数的区别。
【教学指导】
由于本单元内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度,所以教学应注意以下两点:
1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。本单元中因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的,倍数的个数是无限的等结论自然也就掌握了。对于后面的公因数、公倍数等概念的理解也就水到渠成了,要引导学生用联系的方法去掌握这些知识,而不是机械地记忆一堆支离破碎,毫无关联的概念和结论。
2.由于本单元知识特有的抽象性,教学时要注意培养学生的抽象思维能力。虽然我们强调从生活的角度引出数学知识,但在过去的数学教学中,一些老师往往忽视概念的本质,而让学生死记硬背相关概念或结论,导致学生无法理清各概念间的前后承接关系,达不到融会贯通的程度,而学生到了五年级,抽象能力已经有了进一步提高,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数的个数都是无限的结论,逐步形成从特殊到一般的.归纳推理能力等等。
【课时安排】
建议共分7课时
1.因数和倍数2课时
2.2、5、3的倍数的特征3课时
3.质数和合数2课时
【知识结构】
因数和倍数(1)
学习内容认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。第1课时课型新授
学习目标1.从操作活动中理解因数和倍数的意义,会
2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3.培养学生的合作意识、探索意识,以及热爱数学学习的情
教学重点理解因数和倍数的含义
教学难点判断一个数是不是另一个数的因数或倍数。
教具运用课件
教学方法二次备课
教学过程
【复习导入】
1.教师用课件出示口算题。
10÷5=16÷2=12÷3=100÷25=150×4=
220÷4=18×4=25×4=24×3=20×86=
学生口算
2.导入:在乘法算式中,两个因数相乘,得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系,在除法算式中,两个数相除,得到的结果叫做它们的商。除法算式表示的是一种相除的关系,在整数乘法和除法中还有另一种关系,这就是我们这一节课要学习探讨的内容。
(板书课题:因数和倍数(1)
【新课讲授】
1.学习因数和倍数的概念
(1)教师用课件出示教材第5页例1,引导学生观察图上的算式,把这些算式分为两类。
学生说出自己的分类方法,商是整数的分为一类,商不是整数的分为一类。教师以商是整数的第一题为例,板书:12÷2=6。
教师:在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2和6的倍数,2和6是12的因数。
谁来说一说其他的式子?
学生回答。
教师板书:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。
(2)说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?
学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。(3)通过刚才同学们的回答,你发现了什么?
学生回答,教师板书:倍数与因数是相互依存的。
2.举例概括
教师:请同学们注意,为了方便,我们在研究因数和倍数时,所说的数一般指的是自然数,而且其中不包括0。
教师:在自然数中像这样的例子还有很多,我们每个同学都在心中想一个,想好了说给大家听。学生举例,并说出谁是谁的因数,谁是谁的倍数。
教师同时板书。
教师小结:像这样的例子举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?
引导学生根据“用字母表示数”的知识表述因数与倍数的关系。
如:m÷N=P,m、N、P都是非0自然数,那么N和P是m的因数,m是N和P的倍数。
A×B=c,A、B、c、都是非0自然数,那么A和B是c的因数,c是A和B的倍数。
你能从这些数中挑出两个数,说出谁是谁的因数,谁是谁的倍数吗?
3、9、15、21、36
学生独立思考并回答。
【课堂作业】
1.完成教材第5页“做一做”。
2.完成教材第7页练习二第1题。
3.下面每一组数中,谁是谁的倍数,谁是谁的因数。16和24和2472和820和5
4.下面的说法对吗?说出理由。
(1)48是6的倍数。
(2)在13÷4=3……1中,13是4的倍数。
(3)因为3×6=18,所以18是倍数,3和6是因数。
【课堂小结】
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
【课后作业】
完成练习册中本课时练习。
板书设计因数和倍数(1)
在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。
因数和倍数一般指的是自然数,而且其中不包括0。
倍数与因数是相互依存的。
教学反思
【作业设计】
“因数与倍数”五年级数学教案6
教学内容:
《义务教育课程标准实验教科书数学(五年级下册)》第12~13页。
教学目标:
1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。
教学重点:理解因数和倍数的含义。
教学过程:
一、创设情境,引入新课
师:人与人之间存在着许多种关系,你们和爸爸(妈妈)的关系是?
生:父子(父母、母子、母女)关系。
师:我和你们的关系是?
生:师生关系。
师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)
二、认识因数与倍数
师:我们已经认识了哪几类数?
生:自然数,小数,分数。
师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘、除算式。
根据学生的汇报板书:
师:在这3组乘、除法算式中,都有什么共同点?
生:第①组每个式子都有1、12这两个数。
生:第②组每个式子都有2、6、12这三个数。
生:第③组每个式子都有3、4、12这三个数。
师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?请看课本P12。
师:2和6与12的关系还可以怎样说呢?
生:2和6是12的因数,12是2的倍数,也是6的倍数。
师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?
生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。
生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。
生:可以说12是12的因数吗?
生:我认为可以,12×1=12,1和12都是12的因数。
师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。
师出示:11÷2=51。问:11是2的倍数吗?为什么?
生:我认为不是,因为11除以2有余数。
师:你能举一个算式,并说说谁是谁的倍数,谁是谁的因数吗?
生:2×4=8,2和4是8的因数,8是2和4的倍数。
生:40÷2=20,40是2和20的倍数,2和20是40的因数。
师出示:0×3 0×10
0÷3 0÷10
通过刚才的.计算,你有什么发现?
生:我发现0和任何数相乘,都等于0。
生:0除以任何数都等于0。
生:我补充,0不能作为除数。
师:所以在研究因数和倍数时,我们所说的数一般指整数,不包括0。
师生小结:这节课,你们都学会了哪些知识?还有什么不明白的地方?
生:我有一个疑问,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?
师:这个问题提得好!谁能回答他的问题?
生:我觉得好像不一样,但不知道为什么?
生:我认为不一样,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。
师:说的真好。这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称中的“因数”,两者可不能搞混哦!
三、课堂练习
1.下面每一组数中,谁是谁的倍数,谁是谁的因数。
16和2 4和24 72和8 20和5
2.下面的说法对吗?说出理由。
(1)48是6的倍数。
(2)在13÷4=31中,13是4的倍数。
(3)因为3×6=18,所以18是倍数,3和6是因数。
师:第(3)题有两种不同的意见,请反对意见的同学说说理由。
生:因为没有说明18是谁的倍数,所以不对。
师:你认为怎样说才正确呢?
生:我认为应该这么说:18是3和6的倍数,3和6是18的因数。
师:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。
3.在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。
4.游戏。请生任意写一个60以内的自然数(0除外),听老师说要求,所写的数符合要求的请举手,同桌互相检查。
①()是4的倍数
()是60的因数
()是5的倍数
()是36的因数
②请一名学生模仿刚才老师的要求,继续练习。
③想一想,应该提什么要求,让全班同学都能举手?
生:()是1的倍数。
师:哗,全班都举手了,谁能总结刚才的说法。
生:任何不包括0的自然数都是1的倍数。
【“因数与倍数”五年级数学教案】相关文章:
《因数和倍数》数学教案03-18
因数与倍数的说课稿04-06
《因数与倍数》说课稿12-20
《因数和倍数》 说课稿03-20
《因数与倍数》的教学反思04-06
因数与倍数教学反思04-01
《倍数与因数》教学反思03-31
《因数与倍数》小学教案03-01
《因数和倍数》的说课稿01-09