小学教案分数[锦集2篇]
作为一位杰出的教职工,很有必要精心设计一份教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?下面是小编收集整理的小学教案分数,仅供参考,大家一起来看看吧。
小学教案分数1
教学目标
1.了解分式、有理式的概念.
2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.
重点、难点
重点:理解分式有意义的条件,分式的值为零的条件.
难点:能熟练地求出分式有意义的条件,分式的值为零的条件.
情感态度与价值观
熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别.
教学过程
教学设计与师生互动
备注
第一步:复习提问
1.什么是整式?什么是单项式?什么是多项式?
2.判断下列各式中,哪些是整式?哪些不是整式?
①+m2②1+x+y2-③④
⑤⑥⑦
第二步:创设情景,P4[思考]让学生自己依次填出:,为下面的[观察]提供具体的式
子,就以上的式子,有什么共同点?它们与分数有什么相同点和不同点?
可以发现,这些式子都像分数一样都是(即A÷B)的形式.分数的分子A与分母B都是整数,而这些式子中的`A、B都是整式,并且B中都含有字母.
1.让学生填写P4[思考],学生自己依次填出:,.
2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
请同学们跟着教师一起设未知数,列方程.
设江水的流速为x千米/时.
轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.
3.以上的式子,有什么共同点?它们与分数有什么相同点和不同点?
第三步:新课讲解:
小结:1.分式的概念:一般地,形如的式子叫做分式,其中A和B均为整式,B中含有字母。
练习:下列各式中,哪些是分式哪些不是?
(1)、、(2)、(3)、(4)、(5)x2、(6)+4
强调:(6)+4带有是无理式,不是整式,故不是分式。
2.小结:对整式、分式的正确区别:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必须含有字母,这是分式与整式的根本区别。
第四步:例题讲解
P5例1.当x为何值时,分式有意义.
[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解
出字母x的取值范围.
[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.
(补充)例2.当m为何值时,分式的值为0
[分析]分式的值为0时,必须同时满足两个条件:1分母不能为零;2分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.
[答案](1)m=0(2)m=2(3)m=1
第五步:随堂练习
1.判断下列各式哪些是整式,哪些是分式?
9x+4,,,,,2.当x取何值时,下列分式有意义?
3.当x为何值时,分式的值为0?
第六步:课后练习
1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?
(1)甲每小时做x个零件,则他8小时做零件个,做80个零件需小时.
(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是千米/时.
(3)x与y的差于4的商是.
2.当x取何值时,分式无意义?
3.当x为何值时,分式的值为0?
答案:
六、1.整式:9x+4,,分式:,,2.(1)x≠-2(2)x≠(3)x≠±2
3.(1)x=-7(2)x=0(3)x=-1
第七步:小结
一般地,形如的式子叫做分式,其中A和B均为整式,B中含有字母。分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必须含有字母,这是分式与整式的根本区别。当分式的分母为零时,分式无意义;当分式的分母不等于零时,分式有意义。当分式的分子是零而分母不等于零时,分式的值等于零。
小学教案分数2
学习目标
1.了解分式、有理式的概念.
2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.
教学重点重点:理解分式有意义的条件,分式的值为零的条件.
教学难点难点:能熟练地求出分式有意义的条件,分式的值为零的条件.
教学方法自主学习合作探究
学生自主活动材料
一、前置自学(自学课本2-4页内容,并完成下列问题)
1、观察你所得的式子,有什么共同点?它们与分数有什么相同点和不同点?
2、你能总结出分式的定义吗?
3、“两个整式相除叫做分式”这句话对吗?
4、你能举出举几个分式的.例子吗?
5、小结分式的概念中应注意的问题.
(1)分母中含有字母.
(2)如同分数一样,分式的分母不能为零.
6、何时分式的值为零?
二、合作探究
例1:(1)当a=1,2时,求分式的值;(2)当a取何值时,分式有意义?
例2:当x取何值时,下列分式的值为零?
三、拓展提升
1.判断下列各式哪些是整式,哪些是分式?
9x+4,,,,,2.当x取何值时,下列分式有意义?
3.当x为何值时,分式的值为0?
0 四、当堂反馈
1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?
(1)甲每小时做x个零件,则他8小时做零件个,做80个零件需小时.
(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是千米/时.
(3)x与y的差于4的商是.
2.当x取何值时,分式无意义?
3.当x为何值时,分式的值为0?
五、课堂小结
本节课你学到了哪些知识和方法?
1.分式与分数的区别:
2.分式何时有意义?
3.分式何时值为零?
【小学教案分数】相关文章:
小学教案分数03-05
小学分数的教案01-07
人教版小学分数教案03-14
真分数与假分数教案03-15
分数的教案12-30
《分数》教案08-25
分数比教案12-18
小学数学分数除法教案02-14
人教版小学分数教案15篇03-14
分数乘法教案01-17