当前位置:育文网>教学文档>教案> 反函数数学教案

反函数数学教案

时间:2022-06-26 04:27:57 教案 我要投稿
  • 相关推荐

反函数数学教案

  作为一位杰出的老师,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。那么优秀的教案是什么样的呢?下面是小编整理的反函数数学教案,欢迎阅读,希望大家能够喜欢。

反函数数学教案

反函数数学教案1

  教学目标

  1.使学生了解反函数的概念,初步掌握求反函数的方法.

  2.通过反函数概念的学习,培养学生分析问题,解决问题的能力及抽象概括的能力.

  3.通过反函数的学习,帮助学生树立辨证唯物主义的世界观.

  教学重点,难点

  重点是反函数概念的形成与认识.

  难点是掌握求反函数的方法.

  教学用具

  投影仪

  教学方法

  自主学习与启发结合法

  教学过程

  一. 揭示课题

  今天我们将学习函数中一个重要的概念----反函数.

  1.4. 反函数(板书)

  (一)反函数的概念(板书)

  二.讲解新课

  教师首先提出这样一个问题:在函数 中,如果把 当作因变量,把 当作自变量,能否构成一个函数呢?(让学生思考后回答,要讲明理由)可以根据函数的定义在 的允许取值范围内的任一值,按照法则 都有唯一的 与之相对应.(还可以让学生画出函数的图象,从形的角度解释“任一 对唯一 ”)

  学生解释后教师指出不管从哪个角度,它都是一个函数,即 有反函数,而且把这个函数称为 的反函数.那么这个反函数的解析式是什么呢?

  由学生回答出应为 .教师再提出 它作为函数是没有问题的,但不太符合我们的表示习惯,按习惯用 表示自变量,用 表示因变量,故它又可以改写成 ,改动之后带来一个新问题: 和 是同一函数吗?

  由学生讨论,并说明理由,要求学生能从函数三要素的角度去认识,并给出解释,让学生真正承认它们是同一函数.并把 叫做 的反函数.继而再提出: 有反函数吗?是哪个函数?

  学生很快会意识到 是 的反函数,教师可再引申为 与 是互为反函数的.然后利用问题再引申:是不是所有的函数都有反函数呢?如果有,请举出例子.在教师启发下学生可以举出象 这样的函数,若将 当自变量, 当作因变量,在 允许取值范围内一个 可能对两个 (可画图辅助说明,当 时,对应 ),不能构成函数,说明此函数没有反函数.

  通过刚才的例子,了解了什么是反函数,把对 的反函数的研究过程一般化,概括起来就可以得到反函数的定义,但这个数学的抽象概括,要求比较高,因此我们一起阅读书上相关的内容.

  1. 反函数的定义:(板书)(用投影仪打出反函数的定义)

  为了帮助学生理解,还可以把定义中的 换成某个具体简单的函数如 解释每一步骤,如得 ,再判断它是个函数,最后改写为 .给出定义后,再对概念作点深入研究.

  2.对概念得理解(板书)

  教师先提出问题:反函数的“反”字应当是相对原来给出的'函数而言,指的是两者的关系你能否从函数三要素的角度解释“反”的含义呢?(仍可以 与 为例来说)

  学生很容易先想到对应法则是“反”过来的,把 与 的位置换位了,教师再追问它们的互换还会带来什么变化?启发学生找出另两个要素之间的关系.最后得出结论: 的定义域和值域分别由 的值域和定义域决定的.再把结论从特殊发展到一般,概括为:反函数的三要素是由原来函数的三要素决定的.给出的函数确定了,反函数的三要素就已经确定了.简记为“三定”.

  (1)“三定”(板书)

  然后要求学生把刚才的三定具体化,也就是“反”字的具体体现.由学生一一说出反函数的定义域是原来函数的值域,反函数的值域是原来函数的定义域,反函数的对应法则就是把原来函数对应法则中 与 的位置互换.(用投影仪打出互换过程)如图

  最后教师进一步明确“反”实际体现为“三反”, “三反”中起决定作用的是 与 的位置的反置,正是由于它的反置,才把它的范围也带走了,引起了另外两“反”.

  (2)“三反”(板书)

  此时教师可把问题再次引向深入,提出:如果一个函数存在反函数,应怎样求这个反函数呢?下面我给出两个函数,请同学们根据自己对概念的理解来求一下它们的反函数.

  例1. 求 的反函数.(板书)

  (由学生说求解过程,有错或不规范之处,暂时不追究,待例2解完之后再一起讲评)

  解:由 得 , 所求反函数为 .(板书)

  例2. 求 , 的反函数.(板书)

  解:由 得 ,又 得 ,

  故所求反函数为 .(板书)

  求完后教师请同学们作评价,学生之间可以讨论,充分暴露表述中得问题,让学生自行发现,自行解决.最后找代表发表意见,指出例2中问题,结果应为 , .

  教师可先明知故问 ,与 , 有什么不同?让学生明确指出两个函数定义域分别是 和 ,所以它们是不同的函数.再追问 从何而来呢?让学生能从三定和三反中找出理由,是从原来函数的值域而来.

  在此基础上,教师最后明确要求,由于反函数的定义域必是原来函数的值域,而不是从自身解析式出发寻求满足的条件,所以求反函数,就必须先求出原来函数的值域.之后由学生调整刚才的求解过程.

  解: 由 得 ,又 得 ,

  又 的值域是 ,

  故所求反函数为 , .

  (可能有的学生会提出例1中为什么不求原来函数的值域的问题,此时不妨让学生去具体算一算,会发现原来函数的值域域求出的函数解析式中所求定义域时一致的,所以使得最后结果没有出错.但教师必须指出结论得一致性只是偶然,而不是必然,因此为规范求解过程要求大家一定先求原来函数的值域,并且在最后所求结果上注明反函数的定义域,同时让学生调整例的表述,将过程补充完整)

  最后让学生一起概括求反函数的步骤.

  3.求反函数的步骤(板书)

  (1) 反解:

  (2) 互换

  (3) 改写:

  对以上环节教师可稍作解释,然后提出再通过下面的练习来检验是否真正理解了.

  三.巩固练习

  练习:求下列函数的反函数.

  (1) (2) .(由两名学生上黑板写)

  解答过程略.

  教师可针对学生解答中出现的问题,进行讲评.(如正负的选取,值域的计算,符号的使用)

  四.小结

  1. 对反函数概念的认识:

  2. 求反函数的基本步骤:

  五.作业

  课本第68页习题2.4第1题中4,6,8,第2题.

  六.板书设计

  2.4反函数 例1. 练习.

  一. 反函数的概念 (1) (2)

  1. 定义

  2. 对概念的理解 例2.

  (1) 三定(2)三反

  3. 求反函数的步骤

  (1)反解(2)互换(3)改写

反函数数学教案2

  教学目标

  1.使学生了解反函数的概念;

  2.使学生会求一些简单函数的反函数;

  3.培养学生用辩证的观点观察、分析解决问题的能力。

  教学重点

  1.反函数的概念;

  2.反函数的求法。

  教学难点

  反函数的概念。

  教学方法

  师生共同讨论

  教具装备

  幻灯片2张

  第一张:反函数的定义、记法、习惯记法。(记作A);

  第二张:本课时作业中的预习内容及提纲。

  教学过程

  (I)讲授新课

  (检查预习情况)

  师:这节课我们来学习反函数(板书课题)§2.4.1 反函数的概念。

  同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法?

  生:(略)

  (学生回答之后,打出幻灯片A)。

  师:反函数的定义着重强调两点:

  (1)根据y= f(x)中x与y的关系,用y把x表示出来,得到x= φ(y);

  (2)对于y在c中的任一个值,通过x= φ(y),x在A中都有惟一的值和它对应。

  师:应该注意习惯记法是由记法改写过来的。

  师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢?

  生:一一映射确定的函数才有反函数。

  (学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。

  师:在y= f(x)中与y= f -1(y)中的x、y,所表示的量相同。(前者中的x与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y是函数值;后者y是自变量,x是函数值。)

  在y= f(x)中与y= f –1(x)中的x都是自变量,y都是函数值,即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)

  由此,请同学们谈一下,函数y= f(x)与它的反函数y= f –1(x)两者之间,定义域、值域存在什么关系呢?

  生:(学生作答,教师板书)函数的定义域,值域分别是它的反函数的值域、定义域。

  师:从反函数的`概念可知:函数y= f (x)与y= f –1(x)互为反函数。

  从反函数的概念我们还可以知道,求函数的反函数的方法步骤为:

  (1)由y= f (x)解出x= f –1(y),即把x用y表示出;

  (2)将x= f –1(y)改写成y= f –1(x),即对调x= f –1(y)中的x、y。

  (3)指出反函数的定义域。

  下面请同学自看例1

  (II)课堂练习 课本P68练习1、2、3、4。

  (III)课时小结

  本节课我们学习了反函数的概念,从中知道了怎样的映射确定的函数才有反函数并求函数的反函数的方法步骤,大家要熟练掌握。

  (IV)课后作业

  一、课本P69习题2.4 1、2。

  二、预习:互为反函数的函数图象间的关系,亲自动手作题中要求作的图象。

  板书设计

  课题: 求反函数的方法步骤:

  定义:(幻灯片)

  注意: 小结

  一一映射确定的

  函数才有反函数

  函数与它的反函

  数定义域、值域的关系

【反函数数学教案】相关文章:

反函数说课稿11-21

反函数说课稿3篇12-06

数学教案03-28

分类的数学教案11-16

苏教版数学教案11-26

有趣的数学教案11-08

有关数学教案12-23

数学教案数轴03-26

数学教案范文05-06

小学数学教案02-07