当前位置:育文网>教学文档>教案> 简易方程教案

简易方程教案

时间:2024-04-03 12:36:47 教案 我要投稿

简易方程教案

  在教学工作者开展教学活动前,通常需要用到教案来辅助教学,教案有助于顺利而有效地开展教学活动。快来参考教案是怎么写的吧!以下是小编帮大家整理的简易方程教案,欢迎阅读,希望大家能够喜欢。

简易方程教案

简易方程教案1

  教学目标:使学生会列方程解答文字题。

  使学生初步感受用方程解题的优越性。

  重点难点:使学生掌握列方程解文字题的的一般方法。

  教学过程:

  一、准备引入。

  用含有字母的式子表示下面的数量关系。

  1、x的3倍加1.6的和。

  2、12减x的`6倍的差。

  二、新课教学。

  1、出示例7列出方程,并求出方程的解。

  12减一个数的6倍,差是5.4,求这个数。

  2、分析讲解:

  (1)先设未知数,一般用x表示;

  (2)再根据题中表述的相等关系列出方程;

  (3)求方程的解;

  (4)检验方程。

  解:设这个数是x。

  12—6x=5.4

  6x=12—5.4

  6x=6.6

  x=1.1

  3、做试一试。要一个学生到黑板上去做,其余的做在纸上。

  一个数的5倍减14与3的积,差是23。

  解:设一个数为x。

  5x—14×3=23

  5x—42=23

  5x=23+42

  5x=65

  x=65÷5

  X=13

  三、巩固练习。

  见书本练一练。

  四、总结。

  五、布置作业

  作业本p:60第(6)。

简易方程教案2

  教学要求:

  使学生初步认识方程的意义,知道方程的解和解方程的区别以及解简易方程的一般步骤。

  教学重点:

  掌握解方程的依据、步骤和书写格式。

  教学难点:

  方程的解和解方程两个概念间的联系及区别。

  教学用具:

  简易天平、砝码、标有“20”、“30‘和”?“的方木块。

  画有P97页上图的挂图、小黑板或投影片若干张。

  教学过程:

 一、激发

  根据加法与减法、乘法与除法的关系,说出求下面各数的方法。

  1、一个加数=()

  2、被减数=()

  3、减数=()

  4、一个因数=()

  5、被除数=()

  6、除数=()

  二、尝试

  1、方程的意义

  (1)出示简易天平,将天平、砝码摆在讲台上,这是一台天平,它是用来用来称物品的重量的。怎样用它来称物品的重量呢?在天平的左边盘内放置所称的物品,右边盘内放置砝码。当天平的指针在标尺中间时,表示天平平衡,即天平两端的重量相等。砝码上所标的重量就是所称物品的重量。

  (2)师演示如何用天平称物品。(称出的物品同P。105页上图。)

  (3)问:那么,使天平平衡的条件是什么呢?(天平左、右两边的重量相等。)天平的指针指在什么地方才能说明天平是平衡的?(指针必须指在刻度线的中央。)

  (4)教师强调说明:天平两边放上重量相等的物品时,天平就平衡。反过来说,天平保持着平衡,就说明天平两边所放的物品重量相等。

  (5)问:那么,我们能不能用式子来表示出这种平衡的情况呢?试试看!先让学生自由地说一说,根据学生的发言,教师写出算式20+30=50。

  问:20+30=50是一个什么式子?(等式。)

  (6)什么叫等式呢?(等式表示等号两边两个式子的相等关系,即等式是表示相等关系的.式子。)

  (7)师改变天平上所放的物品和砝码,使之与P。105页的下图相同。引导学生观察、思考并回答下列问题:

  ①图中的天平是否平衡?说明了什么?(图中的天平是平衡的,因为指针指在天平刻度线的中央。说明天平左、右两边的重量相等。)

  ②怎样用式子来表示这种平衡的情况呢?再试试看!

  板书;20十?=100。

  ③”?“是不是要求的未知数?我们以前学习过,一般用什么

  字母表示未知数?(师生共同把等式”20+?=100改写成“20+x

  =100)

  ④20+x=100是一个什么式子?(也是一个等式。)

  ⑤这道等式与20+30=50有什么不同?(这是一个含有未知数的等式。)

  ⑥左盘中这个标有”?“的方木块应该是多少克,才能使天平保持平衡呢?这就是这个等式中的x是多少才能使等式左、右两边正好相等呢?可以是一个随便的重量吗?

  生自由说,师总结:这里的x所表示的未知重量不是随便确定的,它必须是使天平保持平衡的重量,也就是说未知数所代表的数值必须使等号左、右两边正好相等。

  ⑦同学们观察一下天平,想一想,x应该代表什么数呢?(因为左边未知的方块重80克才能使天平平衡,所以x=80。)

  师在20+x=100的右边板书:x=80。

  (8)师出示P。106页上图。引导学生观察,启发学生思考下列问题:

  ①这幅图的图意是什么?(这幅图告诉我们,每个篮球的价钱是x元,3个篮球的总价是234元。)

  ②每个篮球的价钱是x元,3个篮球的总价还可以怎样表示?(还可以表示为3x元。)

  ③谁能根据图意写出一个等式来?(3x=234。)

  ④想一想,这个等式有什么特点?(这也是一个含有未知数的等式。)

  ⑤当x等于多少时,这个等式中的等号左、右两边正好相等?(当x=78时,这个等式中的等号友、右两边正好相等。)

  师在3x=234的右边板书:x=78。

  (9)引导学生归纳总结出方程的意义及方程与等式之间的关系。师指出:像这样一些等式:20+x=100、3x=234、x-8=5、x÷6=7叫做方程。

  师再板书几个一般的等式,形成如下的板书:

  方程一般等式

  20+x=10020+80=100

  3x=2343×78=234

  x-8=513-8=5

  x÷6=742÷6=7

  师引导学生观察上面的等式,思考并回答下面的问题。

  ①方程是不是一种等式?(是等式。)

  ②方程与一般的等式相同吗?你发现方程有什么特点?

  ③谁能说一说什么是方程?先指名让学生说,然后师归纳总结。板书:含有未知数的等式,叫做方程。

  方程与等式之间有什么关系呢?我们可以用这样的图来表示。师请学生观察这幅图,并说一说它的含义。

  根据学生的发言,教师加以引导,使学生明确:等式包括方程,等式的范围比方程的范围大;一切方程都是等式,但等式不一定是方程。

  (10)练一练:做一做。

  2、解简易方程(一)。

  (1)理解方程的解和解方程的含义。

  ①请学生阅读书上的内容,回答什么叫方程的解?什么叫做解方程。

  ②指名回答,这两个概念有什么区别?(师讲解:方程的解指的是一个数,它表示未知数等于的多少时使方程中等号的左右两边相等。例如,当x=80时,20+x=100的等号左右两边相等。而方程的解是指求出这个未知数的演算过程。我们以前做过的一些求未知数的题目,实际上就是解方程。方程的解是解方程的过程中的一部分,它们既有联系,又有区别。)

  (2)出示例1:解方程x-8=16。

  ①x在这道减法算式中相当于什么数?(被减数)

  ②根据四则运算各部分之间的关系,被减数应该怎么求?

  ③解方程的步骤和书写格式是怎样的?

  师讲解:首先要写”解“字,然后根据四则运算之间各部分的关系及运算定律进行思考;x-8=16,根据被减数等于减数加差,所以x=16+8,x=24。运算的”根据“可以不写,每个等式占一行,各行的等号要对齐。求出x的值后,还要进行检验,以判断它是不是原方程的解。

  接着,师一边板书,一边指出检验的方法及书写格式。并且强调,以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。

  (3)练一练:做一做。

  三、应用

  练习二十四第1、2题。

  教师巡视,注意学生解方程的过程、书写格式及检验的过程是否符合规定,发现错误,及时纠正。

  四、体验

  这节课我们学习了什么?

  (方程的意义和解简易方程的步骤和书写格式。知道了判断一个式子是不是方程,先要看它是不是等式,再看它是否含有未知数。解方程时,先耍弄清x在算式中相当于什么数,再根据四则运算之间的关系求出方程的解。书写时,要注意先写”解“字,上、下行的等号要对齐,注意不能连等。)

  五、作业

  练习二十四第3、4、5题。

简易方程教案3

  教学目标:

  1、结合具体情境初步理解方程的意义,会用方程表示简单的等量关系。

  2、在具体的活动中,体验和理解等式的性质,会用等式的.性质解简单的方程。

  3、能有方程解决一些简单的现实问题。在解决问题的过程中,感受方程与现实生活的紧密联系,形成应用意识。

  教学重难点:

  解简单方程和用方程解决问题既是本单元的重点也是难点。

  教学过程:

  一、板书课题

  过渡语:今天我们来学习新的内容,简易方程。

  二、出示目标

  过渡语:这节课的学习目标是什么呢?请看:(出示学习目标,生齐读),有信心实现这节课的学习目标吗?

  三、自学指导

  (一)讲述:怎样实现这个目标呢?靠大家自学,怎样自学呢?请齐读自学指导。

  (二)出示自学指导:认真看课本P5557的内容,

  重点看图与文字,认真思考红点部分的问题。

  5分钟后,比谁做的题正确率高。

  师:自学竞赛开始,比谁看书认真,自学效果好!

  四、先学

  (一)过渡:下面自学开始,比谁自学后,能做对检测题。

  (二)看一看。

  生认真看书,师巡视并督促每个学生认真自学。(要保证学生看够5分钟,学生可以看看、想想,如果学生看完,可以复看。)

  (三)做一做。

  1、过渡:同学们看完了吗?看完的同学请举手?好,下面就来考考大家。要比谁做得又对又快,比谁字体端正,数位对齐,数字要写的大些,数字间要有一定的间距(要划出学生板演的位置)

  2、板演练习,请两名(最差的同学)来上讲台板演,其余同学做在练习本上。教师巡视,要找出学生中的错误,并板书。

  五、后教:议一议

  1、学生更正。

  教师指导:发现错了的请举手!点名让学生上台更正。提示用红色粉笔改,哪个数字错了,先划一下,再在旁边改,不要擦去原来的。

  2、讨论。(议一议)

  (1)第一题哪几个错了,错在哪里,说出原因。

  (2)第二题看图列方程,看做得对不对,不对,说出错因。

  3、评议板书和正确率。

  4、同桌交换互改,还要改例题中的题,有误订正,统计正确率及时表扬。

  六、全课总结

  谈话:我们今天学习了什么内容?你对什么印象最深?从中你明白了什么?

简易方程教案4

  教学要求:

  一、使学生进一步掌握小数和复名数改写说的方法,巩固已学过的数的大小比较的方法。

  二、使学生进一步掌握解简易方程的思路,以及整数、小数四则混合运算的顺序不,提高计算能力。

  三、使学生进一步理解三步计算应用题的数量关系,加深认识应用题的`解题思路,进一步掌握应用题的特点,灵活选择解题方法,更加明确列方程解应用题的步骤、方法;及其解题的关键和思路。

  教学过程:

  一、揭示课题

  二、复习数的大小比较

  1、名数的改写

  3.2吨=( )千克 5厘米=( )米

  3吨50千克=( )吨 3.5吨=( )吨( )千克

  提问:你是怎样想的?

  2、做期初复习第7题。

  三、复习解方程和混合运算

  1、做期初复习第8题。

  2、做期初复习第9题。

  提问:按照运算顺序,这里的4道题要怎样算?有没有简便算法?

  四、复习应用题

  1、做期初复习第10题。

  提问:这道题用什么方法解比较恰当?为什么?数量之间有怎样的相等关系?长方形的面积怎样计算?三角形的面积呢?你能列方程解答吗?

  追问:你是根据什么来列方程的?你认为列方程解应用题的关键是什么?

  2、做期初复习第11、12题。

  让学生说说为什么用这种方法做,是根据什么数量关系列式的,每一步表示什么。

  五、作业

  期初复习第9题。

简易方程教案5

  教学内容:

  教材P83整理和复习第1题及练习十八第1、2题。

  教学目标:

  知识与技能:

  加深理解简易方程的意义和作用,会解简易方程。

  过程与方法:

  让学生独立思考、自主探究、合作交流,加深对列方程解题的认识。

  情感、态度与价值观:培养学生的数感和符号感。

  教学重点:

  理解方程的意义,会解简易方程。

  教学难点:

  归纳整理知识,形成知识体系。

  教学方法:

  合作交流,学练结合。

  教学准备:

  多媒体。

  教学过程

  一、揭示课题

  师:今天我们来复习解简易方程,通过复习要进一步明白字母可以表示数量、数量关系和计算公式,加深对方程概念的理解,掌握解简易方程的步骤、方法,从而能正确地解简易方程。

  二、复习用字母表示数

  1.用含有字母的式子表示:

  (1)路程与时间、速度的数量关系。

  (2)乘法交换律。

  (3)正方形的面积计算公式。

  2.让学生写出式子,同时指名一生板演。指名学生说说每个式子表示的意思。提问:用字母表示数有什么作用?你能举例说明吗?(用字母可以表示数,还可以表示数量关系,如小明比小红重2千克,用a表示小明的体重,那么小红的体重就是(a-2)千克)用字母表示乘法式子时要怎样写?

  三、复习解简易方程

  1.复习方程的概念。

  (1)等式的意义:表示等号两边两个式子相等关系的式子叫做等式。如:

  3+6.5=9.5、7-4.2=2.8、3.6×0.5=1.8、3.5+x=9.5等都是等式。

  (2)方程的意义:含有未知数的等式叫做方程。判断一个式子是否是方程,首先要看这个式子是不是等式,接着再看这个式子中是否还含有未知数。如3.2x=8、llx=363、x+7.6=11.4等都是方程。

  (3)方程与等式的关系:等式的范围比方程的范围大。方程都是等式,但等式不一定是方程。如:35÷7=5、2x=0、3.5x=4、11.2-x=ll.14等都是等式,但35÷7=5不是方程。

  2.复习解方程。

  (l)方程的解:使方程左右两边相等的未知数的值,叫做方程的解。如:x=32是方程x-32=0的解。

  (2)解方程:求方程的解的过程,叫做解方程。如:

  4x=6

  解:x=6÷4

  x=l.5

  提问:解题的`依据是什么?怎样进行验算?

  解方程的依据:

  ①四则运算之间各部分的关系。

  一个加数=和-另一个加数

  一个因数=积÷另一个因数

  被减数=差+减数减数=被减数-差

  被除数=商×除数除数=被除数÷商

  ②等式的性质。

  方程两边同时加上(或减去)同一个数,左右两边仍然相等;

  方程两边同时乘或除以一个(不为0)的数,左右两边仍然相等。

  (3)解方程时应注意:书写时要先写“解”字;上、下行的等号要对齐;不能连等。

  四、综合练习

  1.完成教材第84页第1题。

  判断下面各题的叙述是否正确。

  (1)a2﹥2a

  (2)含有未知数的式子就是方程。

  (3)5x+5=5(x+1)

  (4)x=6是方程3x-6=12的解。

  指名学生口答,教师订正。

  2.教材第83页整理和复习第1题。

  (1)要求学生独立解方程,教师指名板演,然后集体订正。

  (2)教师:解方程的原理是什么?要注意什么?

  五、课堂小结

  师:这节课你有什么收获?学生说说自己的收获,教师评价。

  作业:教材第84页练习十八第2题。

  板书设计:

  整理和复习(1)

  一个加数=和-另一个加数

  一个因数=积÷另一个因数

  被减数=差+减数减数=被减数-差

  被除数=商×除数除数=被除数÷商

简易方程教案6

  【教学内容】

  教材P135~136页复习第16~23题。

  【教学目标】

  1、使学生进一步理解用字母表示数的优点。会用字母表示常见的数量关系,会根据字母所取的值,求含有字母式子的值。

  2、进一步理解方程的意义,会解简易方程。

  3、会列方程解应用题。

  【教学重点】

  用字母表示常见的数量关系,根据字母所取的值,求含有字母式子难点的值,解简易方程和列方程解应用题。

  【教学过程】

  一、揭示课题

  今天我们复习的内容是有关简易方程的`知识,通过复习要进一步理解用字母表示数的优点,会用字母表示常见的数量关系,进一步理解方程的意义,会解方程,会列方程解应用题。

  二、复习用字母表示数量关系,公式,运算定律

  1、出示表:用字母表示运算定律。

  名称用字母表示

  加法交换律a+b=b+a

  加法结合律(a+b)+c=a+(b+c)

  乘法交换律ab=ba

  乘法结合律(a×b)×c=a×(b×c)

  乘法分配律(a+b)×c=ac+bc

  2、请学生说平面图形面积计算公式和长方形、正方形周长公式。

  3、用字母还可以表示数量关系,a表示单价,b表示数量,c表示总价,说出分别求总价、单价及数量的字母公式。

  4、练习:期末复习第16题。

  5、求含有字母式子的值。做期末复习第17题。

  (1)原来每月烧的煤用30c表示;现在每月烧的煤用30×(x-15)表示。

  (2)学生计算现在每月烧煤的千克数。

  三、复习方程的意义和解方程

  1、什么是方程?什么是方程的解和解方程?方程和等式关系是怎样的?

  2、练习:做期末复习第18题。

  学生练习。讲解第(3)题,在方程3x=y中y=21,先把y=21代人原方程成为3x=21再解方程。

  3、做期末复习第19题。

  请学生说一说解方程的方法。

  4、做期末复习第20题。

  学生列方程并解方程。

  四、复习列方程解应用题

  1、(1)列方程解应用题的特征是什么?解题时关键是找什么?

  (2)请学生说一说列方程解应用题的一般步骤。

  2、做期末复习第21-23题。

  第21题:

  学生说数量关系式,列方程并解答,根据已列方程写出另外两个不同的方程。

  第22题:

  师画线段图表示题目的条件和问题,学生列方程解答。

  第23题:

  学生说数量关系式、列方程解答。

  五、全课总结

  这节课复习了什么内容。

  六、布置作业

  补充

  1、(1)某商店上午卖出3台微波炉,下午卖出6台微波炉,每台。元,上午比下午少卖()元。

  (2)四(3)班有x人,每人7本练习本;四(2)班有48人,每人有y本练习本。(x<48)

  7x表示()。

  48y表示()。

  48-x表示()。

  7x+48y表示()。

  2、解方程:

  80-4x=684×5+x=30

  46-13-x=1020x-28=52

  x-(30+8)=114x÷3=60

  3、列出方程,并求出方程的解。

  (1)从80里减去3x得11,求x。

  (2)60比一个数的5倍多5,求这个数。

  4、列方程解应用题。

  (1)一个三角形面积是6000平方米,底是400米,求高。

  (2)甲乙两地相距320千米,一辆汽车从甲地开往乙地,平均每小时行70千米,若干小时后,这辆汽车不仅到达乙地,还超过乙地30千米,汽车已行了几小时?

  (2)一捆电线长155米,装了38盏电灯还剩3米,平均每盏灯用线多少米?

简易方程教案7

  首先,我对本节教材进行一些分析:

  一、教材分析:

  教材所处的地位和作用:

  本节课的主要内容是方程的定义,方程的性质和利用方程性质解方程。

  从知识结构上看:本节课是在学生学习了一定的算术知识(如整数,小数的四则运算及其应用),已初步接触了一些代数知识(如用字母表示数及其运算定律)的基础上,进一步学习的关键。这为过渡到下节的学习起着铺垫作用。

  从认知结构上看:本节课在初等代数中占有重要地位,中学生在学习代数的整个过程中,几乎都要接触这方面的知识。

  二、教育教学目标:

  根据本节课的地位和作用,依据教学大纲,以及学生已有的认知结构心理特征,我制定了如下目标:

  (1)知识目标:根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程及方程的解的概念。

  (2)能力目标:培养学生的分析能力应用所学知识解决实际问题的能力。

  (3)情感目标:通过教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。帮助学生养成自觉检验的学习习惯,培养学生的分析能力和应用能力,渗透代数的数学思想和方法。

  这三个目标将为后面的教学起到一个导向作用。

  三、重点与难点:

  那么根据上面的分析不难看出《解简易方程》这节课在整个教材中将起到承上启下的作用,特别是利用方程性质解未知数,它是后续知识发展的起点,学生对未知数的理解对今后一元一次方程,一元二次方程的学习起着决定作用,所以我认为这节课的重点是:

  (1)重点:理解方程的解和解方程的含义。

  另一方面,对于学生来说,弄清方程和等式的异同,正确设未知数,找出等量关系是很困难的,所以我认为这节课的难点是:

  (2)难点:掌握解方程的方法。

  五、教学过程:

  下面,对于如何突出重点,突破难点,从而实现教学目标,在教学过程中拟定计划进行如下操作:(1、复习铺垫;2、探究新知;3、例题解析;4、巩固练习;5、归纳小结;6、布置作业。)六个步骤

  1.复习铺垫:

  (1)抛出问题:

  师:同学们我们上节课学了方程的意义,你还记得什么叫方程吗?

  生:含有未知数的等式叫方程。

  提问的目的:让学生回忆旧知识,巩固旧知识,引出方的解、解方程的定义。结合引导复习的方法,激发学生的学习兴趣。

  (2)判断下面哪些是方程:

  师:你能判断下面哪些是方程吗?

  (1)a+24=73(2)4x<36+17(3)234÷a>12

  (4)72=x+16(5)x+85(6)25÷y=0.6

  生:(1)(4(6)是方程。

  师:你为什么说这三个是方程呢?

  生:因为它含有未知数,而且是等式)

  这样做的目的:在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式教法,课堂讨论法。巩固方程的性质,承接后面利用方程的性质解方程的应用。

  理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

  2、探究新知

  (1)、看图写方程

  师:同学们真厉害把学过的知识全都记得,请同学观察这幅图(看书上57页天平图)从图中你知道了什么?

  生:我知道杯子重100克,水重X克,合起来是250克。

  师:你能根据这幅图列出方程吗?

  生:100+X=250.

  这样做的目的:运用知识迁移,结合直观图例,应用方程的性

  质,让学生自主探索列出方程。

  (2)、求方程中的未知数

  师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)

  生1:根据加减法之间的关系250-100=150,所以X=150.

  生2:根据数的组成100+150=250,所以X=150.

  生3:100+X=250=100+150,所以X=150.

  生4:假如在方程左右两边同时减去100,那么也可得出X=150.

  目的:这样的提问,有多种回答,锻炼学生的发散性思维,有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。

  (3)、验证方程中的未知数,引出方程的解和解方程两个概念。

  师:同学们都很聪明用不同的方法算出X=150,研究对不对呢?

  生:对,因为X=150时方程左边和右边相等。

  师:这时我们说x=150是方程100+X=250的解,刚才我们求X的过程叫解方程。这两个概念具体是怎样的呢?请同学们翻到课本57页,(使方程左右两边相等的未知数的值叫做方程的解,解出方程的解的过程叫解方程。)勾上这两句话并齐读三遍。

  这样做的目的:学生齐读的时候,我可以把解方程和方程的.解的概念板书在黑板上,并且,在学生读的过程中学生可以加深印象。

  (4)辨析方程的解和解方程两个概念

  师:方程的解是未知数的值,它是一个数,怎样判断一个数是不是方程的解呢?

  生:要看这个数能不能使方程左右两边相等。

  师:而解方程是求未知数的过程,是一个计算过程,它的目的是求出方程的解。同学们要注意两个概念之间的区别与联系。

  3、例题解析

  师:前几天我们学习了等式的性质,今天我们又学习了请根据等式的性质完成填空吗?

  (1)如果5+3=8,那么5+3-3=8()

  (2)如果50-13=37,那么50-13+13=50()

  (3)如果a-7=8,那么a-7+7=8()

  (4)如果X+9=45,那么X+9-9=45()

  师:你是根据什么填空的?

  生:等式的性质。

  师:等式有什么性质呢?我们齐来说一遍。

  2、理解方程与等式的联系,引出课题。

  师:(3)(4)题不但是等式而且是方程,我们知道方程是等式的一部分,所以等式的性质对方程同样适用,今天我们将应用等式的性质来帮我们解方程。(板书课题:解简易方程)

  3、出示例1图,列出方程。

  师:图上画的是什么?你能列出方程吗?

  生:X+3=9

  师:这个方程用天平怎么表示呢?

  生:天平左边放X个和3个球,右边放9个球。(电脑显示)

  4、引导学生思考怎样解方程。

  师:我们解方程的目的是求X,怎样使天平一边只剩x呢?

  生:天平两边同时减去3个球。(电脑显示)

  师:天平两边还平衡吗?怎样反映在方程上呢?

  生:方程两边同时减3。(结合学生回答板书)

  师:为什么同时减3而不是其它数呢?

  生:方程两边同时减3就可以使方程一边只剩X。

  5、检验方程的解。

  师:X=6是不是方程的解呢?

  生:是,因为X=6是方程左边是6+3=9,右边是9,左右两边相等,所以X=6是方程X+3=9的解。

  6、强调解方程的格式步骤

  电脑显示:解方程要注意:

  (1)先写“解”,等号要对齐。

  (2)做完后要注意检验。

  2.学情分析:

  (1)学生特点分析:积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。

  (2)知识障碍上:知识掌握上,学生原有的知识,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。

  (3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

  最后我来具体谈谈这一堂课的教学过程:

  三、教学程序及设想:

  (1)引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。抛出问题,什么叫方程?什么是方程的性质?让学生回忆上节课内容,引出方的解、解方程的定义。揭示课题:这节课我们就利用等式的性质来解简易方程。

  (2)由例题得出本课新的知识点:

  解方程:X+6=7.8;X-6=7.8;6X=7.8;X÷6=7.8。

  讲解例题。说明在方程的两边什么情况应该同时加,什么情况该同时减,什么情况该同时乘,什么情况该同时除?在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。

  (3)接下来,我们用今天学习的知识解决实际问题。

  出示情景图:

  X元X元X元

  18元

  提问:从图中你知道了哪些信息?会列方程吗?然后说出图意并列出方程。

  (4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。

  ①列出方程并解答:每个福娃X元,买5个共花80元。

  ②看题回答:1.6X=6.4(要解这个方程,方程两边应同时?)

  (看来解法掌握得不错,下面看谁的反应最快。)

  ①选择正确答案,说说你是怎样判断的?

  X+8=30的解是()A.X=22B.X=38

  0.3X=0.21的解是()A.X=7B.X=0.7

  X=5是方程()的解。A.15X=3B.6X=30

  X=30是方程()的解。A.0.2X=6B.2X=15

  (5)总结结论:知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。(这节课学习了什么?解简易方程的依据和方法是什么?)

  *(6)变式延伸:针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高进行重构,适当对题目进行引申,使教学的作用更加突出,有利于优等学生对知识的串联,累积,加工,从而达到举一反三的效果。(对有能力接受的学生)

  (7)板书:略

  (8)布置作业。P66第5—7题。

简易方程教案8

  一、教学目标:

  会把具体的数代入含有字母的式子求它的值。

  教学重点:把具体数代入含有字母的式子求值。

  教学难点:会用规范的格式书写求值过程,能化简的化简后再求值。

  教学准备:

  二、制定依据:

  1.内容分析学生已经初步学会了化简,代入求值要求学生把原先用简便方法表示的字母式,省略的乘号写出来。

  2.学生实际格式书写要做一定的辅导,有些学生再代入求值时,把原先的数字写在后面,其实应该让学生明白这根本没有必要。

  教学过程时间教学环节教师活动学生活动设计意图复习与导入探究阶段巩固阶段课堂小结:

  作业:

  1、求值你会用一个式子表示下面的'算法流程吗?课件演示。当我们输入的数分别时3、0、50、6.5…时,输出的数是多少?从表中抽一个表示x的数,求18x+32的值先让学生独立计算,反馈后教师强调并示范书写格式:解:当x=36时,18x+32 =18×36+32 =648+32 =680学生模仿规范的书写格式计算当x取其它值时,18x+32的值。反馈时,注意书写格式。小结书写格式注意点:

  (1)写“解”;

  (2)写明式子中字母的值;

  (3)用递等式的形式代入计算式子的值。

  2、试一试:

  当a=3,b=12时,求9a-2b的值。

  观察,这一题与第一题有何区别?(有两个字母),思考一下,怎样书写?学生独立计算,反馈,板书:解:当a=3,b=12时,9a-2b =9×3-2×12 =27-24 =3当x=17时,求4x+6x的值。

  学生独立计算,反馈。注意:在求值的时候,能化简的先化简,再代入数字进行计算。

  再次小结求含有字母式子的值的书写步骤,一般情况下,第一步写“解”,第二步写出字母等于几,第三步抄写题目,第四步能化简的要化简,第五步代入数值,第六步计算结果。小结:在求值的时候,能够先把算式化简的先化简,然后代入数字进行计算。

  2、求值:

  当b=5时,求9b+3b-6b的值。

  当m=5,n=3时,求8m-m+n2的值。

  拓展在第一个10x+32流程图中,如果输出的数是98,那么输入的数是多少?这节课你有什么收获?学生讨论交流求值的格式,学生第一次接触,这里通过教师示范、学生模仿、反馈评价、小结格式等步骤,帮助学生掌握规范的书写格式小组合作解答学生小组讨论。

  汇总反馈小组合作尝试解决后面两题。

  汇报交流输入数从具体的数到抽象的字母,水到渠成的引出含有字母的式子。再让学生举例字母x表示的数,让学生在举例中感知字母x可以表示任何一个数,并为后面求值提供了来自学生自己的素材例题1提供的是含有一个字母的不需化简的式子,通过例题2提供求含有多个字母的和需化简的式子的值。

  拓展,供思考反思重建:

  板书:

  化简与求值(2)当x=3时,10x+32的值例2当x=17时,求4x+6x的值解:当x=3时,10x+32=9×3-2×12=27-24=3。

简易方程教案9

  学习目标:

  1.探索具体问题中的数量关系和变化规律,能用线形示意图和柱状示意图分析问题

  2.进一步培养学生观察、思考、分析问题、解决问题的能力,渗透建模的数学思想。

  3.感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣。

  学习难点:

  分析与确定问题中的等量关系,线形示意图和柱状示意图分析问题。

  教学过程:

  一、创设情境,引入新课

  问题一:

  一个书包进价为60元,打八折销售后仍获利20元,这个书包原定价为_______元

  二、合作质疑,探索新知

  问题二:一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?

  问题三:商店对某种商品调价,按原价的8折出售,此时商品的利润率是10%,此商品的'进价为1600元,商品的原价是多少?

  三、自主归纳,形成方法

  如何利用线形示意图和柱状示意图分析实际问题

  巩固练习:

  1、某商品的进价为80元,销售价为100元,则该商品的利润为元,利润率为;

  2.小明的父亲到银行存入20000元人民币,存期一年,年利率为1,98%,到期应交纳所获得利息的20%的利息税,那么小明的父亲存款到期交利息税后共得款

  3.一种商品的买入单价为1500元,如果出售一件商品要获得利润是卖出单价的15%,那么这种商品的卖出单价应定多少元?(精确到1元)

  4.商店对某种商品调价,按原价的8折出售,此时商品的利润率是10%,此商品的进价为1600元,商品的原价是多少?

  四、反思设计,分组活动

  某人把若干元按三年期的定期储蓄存入银行,假设年利率为为5%,到期支取时扣除所得税实得利息为720元(银行存款所得税的税率为20%,所得税金额=所得利息×20%),求存入银行的本金是多少?

  五、发展能力,拓展延伸

  购买一台售价为10225元的家用电器,分两期付款,且每期付款相等,第一期款在购买时付清,经一年后付第二期款,这样就付清了全部售价和第一期付款后欠款部分的利息,如果年利率是4.5%,那么每期付款是多少元?

  六、课堂小结,感悟收获

  通过以上问题的解决,你觉得怎样如何利用线形示意图和柱状示意图分析问题?

  【课后作业】

  1.一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少?

  2.某种家具的标价为132元,按9折出售,可获利10%(相对于进货价).求这种家具的进货价.

  3.一件夹克杉先按成本提高40%标价,再以八折(标价的70%)出售,结果获利38元,这件夹克杉的成本是多少元?

  4.店主老王采购了一批灯管,每根13元,在运输过程中不小心损坏了12根,出售灯管的单价是15元,售完后共获利润1020元,问一共购进多少根灯管?

  5.某商店有两种不同的mp3都卖了168元,以成本价计算,其中一个赢利20%,另一个亏本20%,则这次出售中商店是赚了,还是赔了?

  6.服装销售中只要高出进价20%就可以盈利,但老板们常以50%~100%标价,假如你准备买一件标价200元的服装,可以在什么范围内还价?

简易方程教案10

  教学内容:教材P47-P48例4 做一做,练习十第4-6题

  教学目的:

  1、使学生进一步理解用字母表示数的意义和作用。

  2、能正确运用字母表示常用数量关系。

  3、能较熟练地利用公式、常用数量关系求值。

  教学重、难点:能正确运用字母表示常用数量关系。

  教学准备:投影仪

  教学过程:

  一、复习。

  1、用字母表示数,有哪些好处?但要注意什么?

  2、用字母a、b、c表示加法结合律、乘法交换律、乘法分配律等。请学生结合字母表示的运算定律说说其含义。

  3、用S表示面积,C表示周长,a表示边长,b表示宽,写出长方形、正方形的面积和周长公式。

  4、下面各式中,哪些运算符号可以省略?能省略的就省略写出来。

  2×3 a×7 14+b a÷7 a×a 5-x 0.6×0.6

  二、新授。

  1、教学例4(1):

  (1)引导学生看书提问:从图、表中你了解到哪些信息?

  A、爸爸比小红大30岁。 B、当小红1岁时,爸爸()岁,……

  师:这些式子,每个只能表示某一年爸爸的年龄。

  (2)启发学生:你能用一个式子表示出任何一年爸爸的年龄吗?(可让同桌的两个同学小声讨论)

  结合讨论情况师适时板书:

  法1:小红的年龄+30岁=爸爸的年龄

  法2:a+30

  提问:比一比,你比较喜欢哪一种表示方法,为什么?让学生发表各自意见。

  在式子a+30中,a表示什么?30表示什么?a+30表示什么?

  (a表示小红的年龄,30表示爸爸比小红大的年龄,a+30即表示爸爸的年龄)

  想一想:a可以是哪些数?a能是200吗?为什么?

  (3)结合关系式解答:当a=11时,爸爸的'年龄是多少?学生把算式和

  结果填在书上。

  2、小结:用含有字母的式子不仅可以表示运算定律、公式,也可以表示数量。

  3、教学例4(2):

  引导学生看书讨论:(可分成四人小组进行讨论)

  (1)从图、表中你了解到哪些信息?

  (2)你能用含有字母的式子表示出人在月球上能举起的质量吗?

  (3)式子中的字母可以表示哪些数?

  (4)图中小朋友在月球上能举起的质量是多少?

  请小组派代表回答以上问题。

  4、总结:今天你学会了什么?有哪些收获?

  三、巩固练习:

  1、独立完成P48做一做 集体评议。

  2、请学生结合自己的身高、体重情况,算算自己的标准体重,并讨论:比标准体重轻说明什么?如果比标准体重重,又说明什么?

  3、独立解答P49 第4题 做完后在投影仪上展示评议。(问问字母、式子表示的含义)

  四、作业:

  1、独立完成P50 第5题

  2、独立完成P50 第6题

  解答第6题时可提问:u = t = 让学生掌握三种量之间的数量关系。

  注意巡视指导求式子值的书写格式。

  即:S=ut=150×30=4500 (注:这里求出来的值不带单位名称)

  板书: 用字母表示数(二)

  例4(1): 例4(2):

  法1: 小红的年龄+30岁=爸爸的年龄 人在月球上能举起的质量是:6a

  法2: a+30 小朋友在月球上能举起的质量是:

  当a=11时,爸爸的年龄是: 6a=6×15=90

  a=30=11+30=45

简易方程教案11

  教学目标:

  1、进一步掌握等式的性质,会运用数量关系式或等式的基本性质对解方程的过程进行语言表述;

  2、会对具体的方程的解法提出自己解答的方案并能与同学交流;

  3、能够验算方程的解的正确性。

  教学重点:多种方法解方程。

  教学难点:利用等式各部分之间的关系来解方程。

  一、复习导入

  1、 判断以下式子哪些是等式,哪些是方程?并说明理由。

  ①4+6=10, ②4+8x=40, ③16—7x, ④x÷5=8,

  ⑤9.2+3x=4.8, ⑥x-17<34, ⑦0.5x=1, ⑧ 8㎡,

  ⑨6a=30, ⑩a+b+c=17

  2、 解方程,并检验。复习用等式的性质解方程的方法。

  ①x+10=15 ②x﹣63=36 ③20+x=75

  指名板演,交流方法,检验解是否正确。总结解方程应注意的`事项。

  设计参观周三下午的社团活动的大情境,贯穿新授,练习,拓展环节。

  一、新授

  1、 图片展示:三年级有12个班,每班x人参加“好吃俱乐部”社团,该社团共48人。

  请用方程表示数量关系: 12x=48

  2、 图片展示:12个小组成员品尝美食,已经有x个小组尝过了,还剩9个小组在等待。

  请用方程表示数量关系: 12﹣x=9

  3、 尝试用多种方法解以上两个方程,女生完成第一道,男生完成第二道,各自独立完成。

  4、 教师巡视,选取不同方法的解方程方式,要求学生板演。

  5、 汇报交流,总结,解方程的两种方法:

  ① 可以利用等式的性质来解;

  ② 可以利用等式各部分之间的关系来解。

  二、纠错

  1、“我爱数学”社团的孩子正在进行一场解方程比赛,老师收到了几份这样的答卷,请你做小老师,给每道题一个合适的评价。

  2、出示三到五份相同手写答卷,有一份全对,其他每份都有不同的错误,请学生判断,评价。

  3、总结,解方程时应注意的事项:

  ①书写格式:写“解”,等号要对齐;

  ②正确处理未知数与等式各部分之间的联系;

  ③检验,以保证方程的解的准确无误。

  四、拓展练习。

  1、“手工制作”社团的三个小组本周共同完成了60个作品,已知三个小组各自完成的作品数分别为三个连续的自然数,这三个数分别是多少?

  2、“数一数二”数学社团在进行趣味测量:一段木头,不知道它的长度,拿一根绳子量木头的长,把绳子拉直,绳子多4.5米;如果将绳子对折过来量,绳子又短1米,问:这段木头有多长?

简易方程教案12

  教学目标:

  1.使学生初步学会这一类简易方程的解法。

  2.知道计算这类方程的道理。

  3.培养同学们分析问题、解决问题的能力。

  教学重点:

  掌握解这一类方程的解法。

  教学难点:

  理解这一类方程的算理。

  教学过程:

  一、复习引入

  (一)解下列方程。

  二、教学新授

  (一)教学例5

  例4.有东北虎和白虎16只,东北虎是白虎的七倍,东北虎和白虎各有多少只?

  1.读题,理解题意。

  2.教师提问:通过观察这幅图,你都知道了什么?

  3.教师板书:

  东北虎 白虎 总数

  7x16

  4.教师说明:这个式子中含有两个未知数,这就是今天要学习的.解简易方程。

  板书课题:解简易方程。

  5.学生分组讨论计算方法。

  7x 表示7个,x 表示1个,7x+x 一共是8个x ,也就是8x 。

  教师提示:1个

  6.教师小结

  一个式子中如果含有两个的加减法,可以根据乘法分配律和式子所表示的意义,将前面的因数相加或相减,再乘,计算出结果。

  7.练习

  三、课堂小结

  今天这节课你学到了哪些知识?解这类方程时要注意什么?

简易方程教案13

  教学内容

  教科书第96~98页的内容,完成练习二十四的第1~5题.

  教学目的

  使学生初步认识方程的意义,知道方程的解和解方程的区别以及解简易方程的一般步骤.

  教具准备

  简易天平、砝码、标有“20”、“30”和“?”的方木块,画有教科书第12页上图的挂图,小黑板或投影片.

  教学过程

  一、新课

  1.方程的意义.

  (1)教学第1个例子.

  教师将简易天平、砝码摆在讲台上,然后,提出问题指名让学生回答.

  教师:讲台上摆着的是什么仪器?(天平.)

  它是用来做什么的?(用来称物品的重量的.)

  怎样用它来称物品的重量呢?(在天平的左面盘内放置所称的物品,右面盘内放置砝码.当天平的指针在标尺中间时,表示天平平衡,即天平两端的重量相等.砝码上所标的重量就是所称物品的重量.)

  教师一边提问,一边根据学生的回答演示如何用天平称物品.(称出的物品同教科书第11页上图.)

  教师:那么,使天平平衡的条件是什么呢?(天平左、右两边的重量相等.)

  教师:对!天平两边放上重量相等的物品时,天平就平衡,反过来说,天平保持着平衡,就说明天平两边所放的物品重量相等.那么,我们能不能用式子来表示出这种平衡的情况呢?试试看!

  先让学生自由地说一说,根据学生的发言,教师写出算式:20+30=50

  教师:20+30=50是一个什么式子?(等式.)对!这是一个等式.

  (2)教学第2个例子.

  教师改变天平上所放的物品和砝码,使之同教科书第11页下图.

  教师:现在天平也保持着平衡,这说明了什么?(说明天平左、右两边的重量相等.)那么,怎么用式子来表示这种平衡的情况呢?再试试看!

  指名让学生试着写等式,如果学生写出20+?=100,可以提示学生:“?”是不是要求的未知数?我们以前学习过,一般用什么字母表示未知数?

  教师和学生共同把等式20+?=100改写成20+x=100.

  教师:20+x=100是一个什么式子?

  学生:这也是一个等式.

  教师:对!这也是一个等式.但是,这一个等式与20+30=50有什么不同?

  学生:这是一个含有未知数的等式.

  教师:左盘中的这个标有“?”的`方木块应该是多少克,才能使天平保持平衡呢?也就是这个等式中的x是多少才能使等号左右两边正好相等呢?可以是一个随便的重量吗?

  让学生自由地说一说,教师总结.

  教师:对!这里的x所表示的未知重量不是随便确定的,它必须是使天平保持平衡的重量,也就是说未知数所代表的数值必须使等号左右两边正好相等.同学们观察一下天平,想一想x应该代表什么数呢?

  让同桌的学生讨论一下,然后指名说一说.启发学生说出,因为左盘中未知的方木块重80克才能使天平平衡,所以只有x等于80的时候,才能使等式中的等号左右两边正好相等.

  教师在20+x=100的右边板书:x=80

  (3)教学第3个例子.

  教师出示挂图(教科书第12页上图.)

  教师:我们再来看这个例子.大家先认真观察,想一想,这幅图的图意是什么.同桌的两个同学说一说.

  指名让学生说图意.

  学生:这幅图告诉我们:这里的每个篮球的价钱是x元,3个篮球的总价是186元.

  教师:每个篮球的价钱是x元,3个篮球的总价还可以怎样表示?

  学生:每个篮球的价钱是x元,3个篮球的总价还可以表示为3x元.

  教师:谁能根据图意写出一个等式来?

  学生:3x=186

  教师:想一想,这个等式有什么特点?

  学生:这也是一个含有未知数的等式.

  教师:当x等于多少时,这个等式中的等号左右两边正好相等?

简易方程教案14

  教学内容:人教版第九册第102页练习二十五的习题。

  教学目标:

  1、通过练习,进一步理解和掌握a x±b = c这一类简易方程的解法,并能正确解简易方程。

  2、养成自觉检验的良好习惯。

  3、培养分析推理能力和思维的灵活性,提高解方程的能力。

  教学重点:进一步理解和掌握a x±b = c这一类简易方程的解法。

  教学难点:能正确解简易方程。

  教学过程:

  一、复习温顾。

  黑笔

  黑笔

  黑笔

  黑笔

  黑笔

  红笔

  红笔

  红笔

  8枝 8枝 8枝 8枝 8枝 x枝 x枝 x枝

  一共70枝

  1、根据下面的情景列方程并求方程的解,结合情景说说怎样解方程,每一步算出什么。

  黑笔的支数

  红笔的支数

  共买的支数

  8×5 + 3 x = 70

  2、把下列解方程和检验过程补充完整。

  5 x-3.7 =8.5

  解: 5 x=8.5○( )

  ( )=12.2

  x =( )○( )

  x =2.44

  检验:把x =2.55代入原方程,

  左边=5×( )-3.7=( )

  右边=( )

  左边○右边

  所以x =2.55是原方程的`解。

  8x-4×14 =0

  解:8x-( )=0

  ( )=56

  ( )=56÷8

  x =( )

  检验:把x =( )代入原方程,

  左边=( )×( )-4×14=( )

  右边=0

  左边○右边

  所以x =( )是原方程的解。

  3、解下列方程:

  ⑴ 6 x =42

  ⑵ 6 x +35=77

  ⑶ 6 x +5×7=77

  比较:这几道方程有什么相同和不同?解题后有什么体会?

  (这几道题方程的解都是一样的,后几道方程都是由第一道方程演变过来的,每一道方程都比前一道要复杂,解题步骤也相应地增多。体会:再复杂的方程只要解题方法正确,都能化成一般简单的形式。)

  二、巩固练习。

  1、可以把5 x看作减数的是方程( )。

  A.5 x-6=20 B.30+5 x =75 C. 30-5 x =5 D. 5 x÷3=20 2、2x在下列方程中可以看作什么部分数?

  ①2x+2.5=32.5( ) ②2x-30=60( ) ③2x-3×5=45( )

  ④2x×7=42( ) ⑤30×2-2x=12( ) ⑥2x÷12=35( )

  3、不解方程,你能判断下列方程的解是否正确吗?说说你的方法。

  ①7 x+15=120的解是x =15。 ( )

  ②5 x -3×6=22的解是x =9。 ( )

  ③6 x÷5=12的解是x =15。 ( )

  ④12×5-3 x =30的解是x =10。 ( )

  4、解下列方程。(也可以选择第2题的方程其中3题)

  4 x-7.2=10

  0.4(x-5)=16

  1.2 x+0.16÷0.2=3.2

  5、列出方程并求方程的解。

  8与5的积减去一个数的4倍,差是20,这个数是多少?

  以上各题4人小组独立完成后,先交流订正,再集体订正。

  第4、5题,要求做错的题目,订正在练习纸的右栏。

  三、错题分析。

  1、出示学生作业中的错题,学生分析指出错误,并说说理由。(需批改作业时收集)

  2、出示常见的错题。

  观察下列各题的解方程是否正确,不正确的指出错处。

  7 x-3.5=17.5

  解:x-3.5 =17.5÷7

  x-3.5 =2.5

  x=2.5+3.5

  x=6

  7 x-3.5=17.5

  解: x=17.5+3.5

  x=21

  7 x-3.5=17.5

  解: x=17.5+3.5

  7x=21

  x=21÷7

  x=3

  2 x+4×3=48

  解: 2x=4×3

  2x=12

  2x=48-12

  2x=36

  x=36÷2

  x=18

  四、拓展练习。

  1、根据方程24×6-x =80创作情景(编题)或把下列情景补充完整。(视学生情况而定)

  情景:学校食堂买来6袋大米,每袋( )千克,用去了一些,还剩( )千克,( )多少千克大米?

  2、解下列方程(可以只选择其中两道方程,快的同学可以全部做完)

  ①6 x+5×7=70+7

  ②2×3 x+5×7=70+7

  ③(3+2 x)×2=30

  3、如果2x+4=16,那么4x+8=( )

  4、⑴x等于什么数时,3 x-9的值等于12?

  ⑵x等于什么数时,3 x-9的值大于12?

简易方程教案15

  教学目标

  1.使学生初步学会 这一类简易方程的解法.

  2.知道计算这类方程的道理.

  教学重点

  掌握解 这一类方程的解法.

  教学难点

  理解这一类方程的算理.

  教学过程()

  一、复习引入

  (一)解下列方程

  (二)乘法分配律的意义是什么?用字母怎样表示?

  二、教学新授

  (一)教学例5

  例5.一个工地用汽车运土,每辆车运 吨,一天上午运了4车,下午运了3车.这一天共运土多少吨?

  1.读题,理解题意.

  2.出示图片:示意图

  3.教师提问:通过观察这幅图,你都知道了什么?

  教师板书:

  上午 下午 一天

  4.教师说明:这个式子中含有两个未知数 ,这就是今天要学习的解简易方程.

  板书课题:解简易方程.

  5.学生分组讨论计算方法.

  (1) 表示4个 , 表示3个 , 一共是(4+3)个 ,也就是 .

  (2) 可以根据乘法分配律把4和3相加,就是(4+3)个 , .

  6.教师说明:两种思考方法既有联系又有区别,最后的结果都是正确的.

  教师板书:

  =(4+3) =

  答:这一天共运土 吨.

  7.思考:上午比下午多运的吨数是多少?怎样列式?

  教师提示:1个 ,可以写成 .“1”可以省略不写.

  8.教师小结

  一个式子中如果含有两个 的加减法,可以根据乘法分配律和式子所表示的意义,将 前面的.因数相加或相减,再乘 ,计算出结果.

  9.练习

  (二)教学例6

  例6.解方程

  1.教师提问

  (1)这个方程有什么特点?

  (2)应该怎样解答?

  2.学生独立解答.

  教师板书:

  解:

  检验:把 代入原方程.

  左边=7×5+9×5=80,右边=80,

  左边=右边

  所以 是原方的解.

  3.练习

  解方程 3.6 -0.9 =5.4(要写出检验过程)

  三、课堂小结

  今天这节课你学到了哪些知识?解这类方程时要注意什么?

  四、巩固练习

  (一)填空.

  1. 表示( )加( ),一共是( )个 ,得( ).

  2. 表示( )减( ),是( )个 ,得( ).

  3. ( ).

  (二)直接写得数.

  (三)判断正误,对的画“√”,错的画“×”.

  1. ( )

  2. ( )

  3. ( )

  (四)用线段把下面每个方程与它的解连起来.

  +13=33 =0

  3 - =80 =10

  1.8 =54 =20

  6.7 -60.3=6.7 =30

  9 + =0 =40

  五、布置作业

  (一)解方程.(第一行两小题要写出检验过程)

【简易方程教案】相关文章:

简易方程数学教案06-26

《解简易方程》说课稿11-09

《简易方程》教学反思03-11

简易方程教学反思02-26

解简易方程说课稿01-14

简易方程教学反思范文04-22

解简易方程教学反思04-07

《解简易方程》教学反思10-05

解简易方程的教学反思02-22

简易方程教学反思15篇03-10