当前位置:育文网>教学文档>教案> 五年级数学教案众数

五年级数学教案众数

时间:2024-04-03 18:00:58 教案 我要投稿
  • 相关推荐

五年级数学教案众数

  作为一位优秀的人民教师,总不可避免地需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。我们应该怎么写教案呢?以下是小编整理的五年级数学教案众数,欢迎大家借鉴与参考,希望对大家有所帮助。

五年级数学教案众数

五年级数学教案众数1

  一教学内容

  众数

  教材第125页练习二十四的第5、6题。

  二教学目标

  1.能根据数据的具体情况,选择适当的统计量表示数据的不同特征。

  2.体会统计在生活中的广泛应用,从而明确学习目的,培养学习的兴趣。

  三重点难点

  1.重点:理解众数的含义,会求一组数据的`众数。

  2.弄清平均数、中位数与众数的区别,能根据统计量进行简单的预测或作出决策。

  四教具准备

  投影。

  五练习过程

  (一)完成教材第125页练习二十四的第4题。

  学生先独立完成,说一说你发现了什么?

  指出:五(1)班参赛选手的成绩有两个众数,88和87,意味着在这次竞赛中得88分和87分的人同样多。而五(2)班没有众数,则表示这次竞赛中没有集中的分数。在一组数据中,众数可能不止一个,也可能没有众数。

  (二)完成教材第125页练习二十四的第5题。

  学生先独立计算出平均数、中位数和众数,然后说一说用哪个数代表公司员工工资的一般水平比较合适?为什么?

  8.完成教材第125页练习二十四的第6题。

  学生以小组为单位,合作完成。先在课前调查本班学生所穿鞋子号码,然后填在统计表中,再进行分析。

  (三)课堂作业新设计

  1.小明对本班15名同学拥有课外书的情况进行了调查,结果如下:拥有2本的有1人,拥有3本的有2人,拥有4本的有4人,拥有5本的有3人,拥有6本的有5人。根据以上调查的情况,把下面的统计表填写完整。

  小明的同学拥有课外书的情况统计表

  人数

  平均每人拥有本数

  (1)估算一下,这15名同学平均拥有课外读物大约有几本?你估算的理由是什么?

  (2)估算出这15名同学拥有课外读物的平均数、中位数和众数。

  2.小力对本单元10户居民订报刊情况进行了调查,结果如下:没订任何报刊的有2户,订1份的有3户,订2份的有4户,订3份的有1户。根据以上调查情况,把下面的统计表填写完整。

  本单元居民订报刊情况统计表20xx年5月

  户数

  每户订报刊份数

  (1)想一想,平均每户订报份数是在1?2之间吗?为什么?

  (2)计算出这10户居民订报刊份数的平均数、中位数和众数。

  (五)课堂小结

  通过本节课的学习,我们认识了众数这一统计量,并且通过练习理解了平均数、中位数和众数这三个统计量的联系与区别,根据我们分析数据的不同需要,可以正确选择合适的统计量。

五年级数学教案众数2

  教学目标

  1.理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。

  2.根据数据的具体情况,选择适当的统计量表示数据的不同特征。

  3.进一步提高学生的统计技能,增强学生的统计意识。

  教学重难点

  教学重点:认识众数,理解众数的意义及作用。

  教学难点:众数和中位数平均数的相互区别,在具体情境中如何选择恰当的统计量表示一组数据的一般水平。

  教学过程

  (一)复习旧知

  1、回忆平均数及中位数的求法,指生回答。

  2、求下列这组数据的平均数和中位数。生独立完成后课件出示。

  (二)完成例1

  1.出示例题:

  五(2)班要选10名同学组队参加集体舞比赛.下面是20名候选队员的身高情况.(单位:米)

  1.32 1.33 1.44 1.45 1.46 1.46 1.47 1.47 1.48 1.48 1.49 1.50 1.51 1.52 1.52 1.52 1.52 1.52 1.52 1.52

  师:提出集体舞的要求:身高接近,跳出的舞才更整齐。你认为参赛队员的身高是多少比较合适?

  2.学生小组合作选择10名队员。

  3.根据学生汇报,师课件随机演示选择结果。

  平均数= (1.32+1.33+1.44+1.45+1.46+1.46+1.47+1.47

  +1.48+1.48+1.49+1.50+1.51+1.52+1.52+1.52

  +1.52+1.52+1.52+1.52)÷20

  =29.5÷20

  =1.475

  中位数=(1.48+1.49)÷2

  =2.97÷2

  =1.485

  接近1.485m的同学人数太少,不适合大多数同学的`

  身高。最高的与最矮的相差6cm。

  这组数据的中位数是1.485,身高接近1.485m的比较合适。

  身高是1.52m的人最多,1.52m左右的比较合适。最高的与最矮的相差3cm。

  1 . 52出现的次数最多,最能应这组同学的身高情况.

  4.小结:以众数1.52为标准选择队员身高会比较均匀。

  师:(小结)集体舞一般要求队员身高差不多,这组数据中1.52出现的次数最多,所以1.52是这组数据的众数。所以以众数1.52为标准选出来的队员身高会很均称,组成的舞蹈队形也会很整齐很美观!

  5.师生共同归纳众数概念。

  师揭示众数的概念

  一组数据中出现次数最多的数据,是这组数据的众数。众数能够反映一组数据的集中情况。

  6、做一做,

  7、小练习:

  学校举办英语百词听写竞赛,五(1)班和五(2)班参赛选手的成绩如下:

  求这次英语百词听写竞赛中学生得分的众数.

  三个数据存在的数量和意义:

  比较三个统计量:

  (三)学习众数的特征

  师出示练习题:

  1、五(1)班21名男生1分钟仰卧起坐成绩如下(单位:次):

  19 23 26 29 28 32 34 35 41 33 31

  25 27 31 36 37 24 31 29 26 30

  (1)这组数据的中位数和众数各是多少?

  (2)如果成绩在31~37为良好,有多少人的成绩在良好及良好以上?

  2、一个射击队要从两名运动员中选拔一名参加比赛。在选拔赛上两人各打了10发子弹,成绩如下:

  甲:9.5 10 9.3 9.5 9.6 9.5 9.4 9.5 9.2 9.5

  乙:10 9 10 8.3 9.8 9.5 10 9.8 8.7 9.9

  (1)甲、乙成绩的平均数、众数分别是多少?

  (2)你认为谁去参加比赛更合适?为什么?

  生先独立思考,再全班交流。

  师:在找三组数据的众数的过程中,你发现了什么?

  生:在一组数据中,众数可能不止一个,也可能没有众数。

  师小结:在一组数据中,众数有一个,也有多个,甚至没有。同时众数也反应了一组数据的集中情况。

  2、三个数据存在的数量和意义

  (四)综合练习

  你去商场买过衣服吗?你知道休闲类服装型号的“均码”是什么意思吗?均码一般是根据人的平均身高、胸围等数据确定的统一商品型号,与多数人的型号接近。所以,均码里蕴涵着平均数和众数的原理。

  (五)联系情境,应用众数

  销售衣服问题。

  师:小明很喜欢做社会调查。他到一家服装店调查后,给我们带来了这样的一则信息:服装店销售了20件T恤,尺寸如下:(单位:cm) 42 39 38 40 41 41 42 39 40 41 41 41 41 40 41 40 41 40 40 41

  师:从表格中,你发现了什么?如果你是这家服装店的经理,你会怎样进货?

  生:讨论交流,发表自己想法。

  师:(小结)从中可以看出,在衣服的尺码组成的一组数据中,41cm是这组数据的众数,也就是41cm衣服销售量最大。所以,可以多进一些41cm的衣服。商品的销售里面也要用到众数的知识,由此看来,生活中还真少不了众数啊!

  (五)拓展延伸(“生活中的数学”)均码问题。

  师:同学们去商场买过衣服吗?如果你去买过会发现,商场里很多休闲的服饰,它的型号都是均码的。我们一起来看一下。

  师:课后请同学们调查和了解一下:什么是“均码”?

  (六)全课小结

  教师:同学们,今天我们上了这节课你收获了什么?

【五年级数学教案众数】相关文章:

众数教学反思04-16

五年级数学众数说课稿01-06

认识众数教学反思04-16

众数中位数教案01-17

中位数和众数教案03-30

众数教学反思15篇04-16

中位数和众数教学反思03-24

中位数众数教学反思03-31

众数中位数教案4篇[优选]03-22