当前位置:育文网>教学文档>教案> 数学教案三角形面积的计算

数学教案三角形面积的计算

时间:2024-04-04 07:30:15 教案 我要投稿
  • 相关推荐

数学教案三角形面积的计算

  作为一名教师,通常需要准备好一份教案,教案有助于学生理解并掌握系统的知识。写教案需要注意哪些格式呢?下面是小编为大家收集的数学教案三角形面积的计算,供大家参考借鉴,希望可以帮助到有需要的朋友。

数学教案三角形面积的计算

数学教案三角形面积的计算1

  教学内容:

  人教版第九册第三单元的《三角形面积的计算》。

  教学目的:

  (一)理解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。

  (二)通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。

  教学重点:

  掌握三角形面积的计算方法。

  教学难点:

  理解三角形面积计算公式的推导过程。

  教具准备:

  用纸皮剪好的两个完全相同的直角三角形、锐角三角形、钝角三角形。。

  教学过程():

  一、复习:

  提问:同学们,上节课我们学习了平行四边形面积的计算,谁能说说它的面积计算公式是怎样的?你知道它是通过什么方法推导出来的?

  二、导入新课:

  你们看,(屏幕出示三个三角形)这些是什么图形?那谁来说说看,哪个三角大?哪个三角小?(到底哪个大,哪个小呢?)要比较它们的大小,必须要知道这三个三角形的面积。那可以用什么方法知道这三个三角形的面积呢?

  三、新课:

  (一)好,我们就用数方格的方法来求这三个三角形的面积。同样每个方格表示1平方厘米。

  下面,就请同学们拿出老师发给你们的'方格纸,请你数出这三个三角形的面积,看谁数的又对又快。

  小结:通过数方格,我们得到了这三个三角形的面积都是12平方厘米,因此,它们的面积是相等的。

  那你们觉得用数方格的方法计算三角形的面积,方便吗?既不方便,又不精确。

  像一块大的三角形土地,你能用数方格的方法求出它们的面积吗?那有没有更好的方法呢?(把三角形转化成已经学过的图形来计算面积)你真聪明

  师:这才是最科学的方法。今天,我们继续用这种方法研究三角形的面积。板书:三角形面积的计算

  师:在研究之前,请同学们仔细观察,张老师把这一张长方形纸这样对折,对折出来的是什么图形?那么,折出的其中一个直角三角形是不是这张长方形纸的一半呢?(老师把它剪开,重叠)我们会发现这2个直角三角形是完全一样的,所以其中一个直角三角形就是这张长方形纸的一半。

  (二)下面老师就请同学们拿出给你们准备的2个直角三角形 、2个钝角三角形,请分别把它们叠起来,发现什么?(重合)说明了什么?(2个直角三角形完全一样的,2个……)

  那就请同学们想一想:用2个完全一样的三角形可以拼成哪些已学过的图形?

  1、先用2个完全一样的直角三角形拼拼看?

  (长方形、平行四边形、形状不同的三角形)的面积我们会计算吗?我们只会计算长方形和平行四边形的面积,那我们就请拼成平行四边形的同学来演示,说说你是怎样拼的?(同学演示)

  我们一起来看一下电脑是怎样清楚地操作的?

  2、看清楚了吗?好,我们可以用这种方法想一想,能把2个完全一样的锐角三角形、钝角三角形拼成一个平行四边形吗?开始操作,同桌可互相说说我是怎样拼的?分别请2个同学上台演示。(能吗?)说得真好

  3、小结:通过刚才的操作我们把2个完全一样的直角三角形、锐角三角形、钝角三角形,都可以拼成一个什么图形?(平行四边形)谁能把这句话再概括一下,也就是,只要是(2个完全一样的三角形都可以拼成一个平行四边形)齐读 回答真好

  4、接下来,老师要请同学们仔细观察,你们用2个完全一样的三角形拼成的一个平行四边形。

  想一想:1、每个三角形的面积与拼成的平行四边形的面积有什么关系? 2、这个平行四边形的底和高分别与三角形的底和高有什么关系?

  开始观察,观察好,同桌互相交流,后回答,屏幕演示。

  反馈提问:“为什么要除以2?”

  5、翻书P76,填充,齐读,同样我们也可以用字母面积公式

  板书:

  等底等高

  三角形的面积=平行四边形的面积÷2 表示什么意思

  =底×高÷2

  s=ah÷2

  (三)要求三角形的面积必须知道哪几个条件?然后根据(三角形的面积=底×高÷ 2)计算,注意千万不能忘记÷2,下面就利用三角形面积的计算公式来计算三角形的面积。

  1、出示“想一想”:学生读要求,个别回答,校正,一样的举手,不一样的举手。

  2、同样我们还可以利用三角形面积计算公式来计算物体表面是三角形的面积。

  出示例:求的是什么?我们应根据什么?请同学们做在自备本上。

  3、同学们做得真认真,下面老师就要考考同学们有没有掌握今天所学的知识。

  请看第1个题目:

  1、下面平行四边形的面积是12平方厘米,求出涂黄色部分的面积。

  2、判断,说明理由:(请用手势表示)

  2个三角形都可以拼成一个平行四边形。

  三角形底是6cm,高是3cm,面积是18cm。

  三角形底是8分米,高是40cm,面积是16平方分米。

  三角形底是9米,高是4米,面积是18米。

  从以上练习,你认为我们在计算三角形面积时应该注意些什么? 1、÷2

  2、单位统一

  3、面积单位

  3、选择:

  下列哪个三角形是4×3÷2=6平方cm。

  单位:厘米

  3 3

  4 4

  小结:我们在做求三角形面积时一定要注意……

  一个三角形的底是20厘米,高是2.5分米,它的面积是( )

  1、20×2.5÷2 2、20×2.5 3、20×25÷2

  小结:你认为在做作业时注意( )

  4、求每个三角形的面积(只列式不计算)

  底是4.2米,高是2米。

  底是3分米,高是20厘米。

  高是6米,高比底短2米。

  底是12米,高是底的一半。

  四、总结:今天,同学们学得非常认真。谁来说说看,这节课,我们一起学习了什么?它的面积计算公式是怎样的?我们在计算它的面积时一定要注意别忘了÷2。

  你们知道吗,大约在2000年前,我国数学名著《九章算术》就论述了“圭田术日,半广的乘正从”我们的祖先老早就研究出三角形的面积=底×高÷2你们说,他们是不是很了不起呀。

  三角形的土地 一半 底 高

  学了这些知识,有没有不懂的问题问老师了?或有什么想法问老师的?

  出示思考:

数学教案三角形面积的计算2

  教学要求:

  1.是学生比较熟练地应用三角形面积计算公式计算三角形的面积。

  2.能运用公式解答有关的实际问题。

  3.养成良好的审题、检验的习惯,提供正确率。

  教学重点:运用所学知识,正确解答有关三角形面积的应用题。

  教具准备:投影

  教学过程:

  一、基本练习

  1.填空。

  ⑴三角形的面积=,用字母表示是。

  为什么公式中有一个“÷2”?

  ⑵一个三角形与一个平行四边形等底等高,平行四边形的底是2.8米,高是1.5米。三角形的面积是()平方米,平行四边形的面积是()平方米。

  二、指导练习

  1.练习十七第7题:下图中哪个三角形的面积与涂颜色的三角形的面积相等?为什么?你能在途中再画出一个与涂颜色的三角形面积相等的三角形吗?试试看。

  ⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系?

  ⑵看看图中哪个三角形的面积与涂了色的`三角形面积相等?为什么?

  ⑶分组讨论如何在图中画出一个与涂了颜色的三角形面积相等的三角形,并试着画出来

  2.练习十七第11※题:一张边长4厘米的正方形纸,从一边的中点到邻边的中点连一条线段,沿这条线段剪去一个角,剩下的面积是多少?

  分析与解:先求出原正方形的面积,再求出剪去的小三角形的面积,然后求出剩下部分的面积。因为剪去的是正方形的一个角,所以是个直角三角形,它的两条直角边都是正方形边长的一半,所以剪去的面积是2×2÷2=2平方厘米。

  3.练习十七第12※题:一块三角形土地,底是421米,高是58米。估算一下它的面积是多少平方米,大约是多少公顷。

  分析与解:课先取三角形的底和高的近似数400米和60米,再算出这块三角形土地的面积约是:400×60÷2=12000(平方米)=1.2公顷。

  三、课堂练习

  练习十七第6、8题。(分组完成)

  四、作业

  练习十七第9、10题。

数学教案三角形面积的计算3

  教学内容:教科书第75页~77页的内容。

  教学要求:

  1、使学生在理解的基础上掌握三角形的面积计算公式,能够正确地计算三角形的面积。

  2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生知道转化的思考方法在研究三角形面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

  教具准备:锐角三角形、直角三角形、钝角三角形完全一样的各两个。

  教学过程():

  一、复习。

  1. 说一说正方形、长方形、平行四边形的面积计算公式是怎样的?

  2.口答下面各图的面积。(单位:厘米)

  二、新授。

  1、引入新课:前面我们学习了平行四边形面积的计算,今天我们来学习三角形面积的计算。

  2、教学三角形面积公式。

  (1)用数方格的方法计算三角形的面积。

  出示课本P75上图中:

  A:让学生用数方格的方法求出这3个三角形的面积。

  B:引导学生观察:

  问:这三个三角形分别是什么三角形?每个三角形的底和高分别是多少?它们的面积相等吗?

  得出:这三个三角形的'底相等,高也相等,它们的面积也相等。但是这种数方格的方法不够精确也很麻烦,那么我们可以仿照前一节求平行四边形面积的方法,把三角形转化为我们已学过的图形,然后再来计算它的面积。

  (2)通过操作总结三角形面积的计算公式。

  A.让学生用两个完全一样的直角三角形拼成一个已学过的图形,巡堂检查。

  投影出示可以拼出的三角形、长方形、平行四边形,问:

  这3种图形中哪些图形的面积我们会算?(长方形和平行四边形)

  每个直角三角形的面积和拼出的图形面积有什么关系?

  (每个直角三角形的面积是拼成的长方形或平行四边形面积的一半)

  B.让学生拿出两个完全一样的锐角三角形,问:用两个完全一样的锐角三角形能不能拼成一个平行四边形?

  要求:同桌两个学生一同拼摆。然后教师演示。

  问:每个锐角三角形的面积和拼出的平行四边形的面积有什么关系?

  (每个锐角三角形的面积是拼出的平行四边形面积的一半)

  C.让学生拿出两个完全一样的钝角三角形,问:用两个完全一样的钝角三角形能拼成我们学过的图形吗?

  要求:学生自己拼一拼,教师巡视,对有困难的学生给予帮助。

  指一名学生在黑板用两个钝角三角形摆出一个平行四边形。

  问:每个钝角三角形的面积和拼出的平行四边形的面积有什么关系?(每个钝角三角形的面积是拼出的平行四边形面积的一半)

  D.小结:教师结合黑板上分别用两个完全相同的三角形拼成的平行四边形的图指出:通过上面的实验,两上完全一样的三角形,不论是直角三角形、锐角三角形、还是钝角三角形,都可以拼成一个平行四边形。提问:

  (1)这个平行四边形的底和三角形的底有什么关系?

  (2)这个平行四边形的高和三角形的高有什么关系?

  (3)这个平行四边形的面积和其中一个三角形的面积有什么关系?

  (4)平行四边形的面积怎样求?一个三角形的面积是这个平行四边形面积的一半,那么这个三角形的面积应该怎样求呢?

  学生回答后,教师板书:

  三角形的面积=底×高÷2

  再问:在这个算式里为什么要除以2呢?(因为平行四边形的面积是底×高,而三角形的面积是这个平行四边形面积的一半,所以三角形的面积要再除以2)

  E.教学用字母表示三角形的面积公式。

  师:前面平行四边形的面积公式我们用S=ah来表示,同样的我们用a表示三角形的底,用h表示三角形的高,用字母S表示三角形的面积。那三角形的面积公式又可怎样表示呢?

  学生试写,教师板书:S=a×h÷2或S=ah÷2

  三、巩固练习。

  (单位:厘米)

  底

  高

  面积

  四、小结。

  这节我们学习了什么知识?怎样求三角形的面积?三角形的面积计算公式是怎样推导出赤的。

数学教案三角形面积的计算4

  教学目标:

  1、使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。

  2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。

  教学重点:

  理解并掌握三角形面积的计算公式

  教学难点:

  理解三角形面积公式的推导过程

  教学过程:

  一、复习导入:

  复习平行四边形面积公式的推导过程

  二、探究新知:

  1、教学例4:

  师:仔细观察这3个平行四边形,请说出如何求每个涂色的三角形的面积?先自己想,随后在小组中交流。

  学生讨论后汇报(平行四边形的面积÷2)

  师:为什么可以用“平行四边形的面积÷2”求出每个涂色的三角形的面积?三角形与平行四边形究竟有怎样的关系?三角形的面积有应当如何计算?今天继续运用“转化”的方法来研究三角形面积的计算。(板书课题:三角形面积的计算)

  2、教学例5:

  (1)出示例5:

  师:用例5中提供的三角形拼成平行四边形。(注意:组内所选的三角形都要齐全)

  (2)小组交流:

  你认为拼成一个平行四边形所需要的两个三角形有什么特点?

  要使学生明确:用两个完全一样的三角形可以拼成一个平行四边形。

  (3)测量数据计算拼成的平行四边形的面积和一个三角形的面积并填表。

  师:如何计算一个三角形的面积?从表中可以看出三角形与拼成的平行四边形还有怎样的关系?(小组交流)

  得出以下结论:

  这两个完全一样的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成一个平行四边形。

  这个平行四边形的底等于三角形的底

  这个平行四边形的`高等于三角形的高

  因为每个三角形的面积等于拼成的平行四边形面积的一半

  所以三角形的面积=底×高÷2

  板书如下:

  平行四边形的面积=底×高

  2倍一半

  三角形的面积=底×高÷2

  (4)用字母表示三角形面积公式:S=ah

  三、巩固练习:

  1、完成试一试:

  2、完成练一练:

  (1)先让学生回忆拼得过程,再回答。

  (2)要让学生说清是如何想的。

  3、完成练习三第1—3题:

  四、课外延伸:

  介绍“你知道吗”

  五、全课总结:

  师:通过今天的学习有哪些收获?

  板书设计:三角形面积的计算

数学教案三角形面积的计算5

  教学目标

  1、理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算、

  2、培养学生观察能力、动手操作能力和类推迁移的能力、

  3、培养学生勤于思考,积极探索的学习精神、

  教学重点

  理解三角形面积计算公式,正确计算三角形的面积、

  教学难点

  理解三角形面积公式的推导过程、

  教学过程

  一、复习铺垫、

  (一)教师提问:我们学过了哪些平面图形的面积?计算这些图形面积的公式是什么?

  教师:今天我们一起研究“三角形的面积”(板书课题)

  (二)共同回忆平行四边形面积的计算公式的推导过程、

  二、指导探索

  (一)数方格面积、

  1、用数方格的方法求出第69页三个三角形的面积、(小组内分工合作)

  2、演示课件:拼摆图形

  3、评价一下以上用“数方格”方法求出三角形面积、

  (二)推导三角形面积计算公式、

  1、拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小、

  2、启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

  3、用两个完全一样的直角三角形拼、

  (1)教师参与学生拼摆,个别加以指导

  (2)演示课件:拼摆图形

  (3)讨论

  ①两个完全一样的直角三角形拼成一个大三角形(第三种拼法)能帮助我们推导出三角形面积公式吗?为什么?

  ②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?

  4、用两个完全一样的锐角三角形拼、

  (1)组织学生利用手里的学具试拼、(指名演示)

  (2)演示课件:拼摆图形(突出旋转、平移)

  教师提问:每个三角形的'面积与拼成的平行四边形的面积有什么关系?

  5、用两个完全一样的钝角三角形来拼、

  (1)由学生独立完成、

  (2)演示课件:拼摆图形

  6、讨论:

  (1)两个完全相同的三角形都可以转化成什么图形?

  (2)每个三角形的面积与拼成的平行四边形的面积有什么关系?

  (3)三角形面积的计算公式是什么?

  (4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

  (三)教学例1、

  例1、一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米、这个三角形的面积是多少平方厘米?

  1、由学生独立解答、

  2、订正答案(教师板书)

  5.6×4÷2=11.2(平方厘米)

  答:这个三角形的面积是11.2平方厘米、

  三、质疑调节

  (一)总结这一节课的收获,并提出自己的问题、

  (二)教师提问:

  (1)要求三角形面积需要知道哪两个已知条件?

  (2)求三角形面积为什么要除以2?

  (3)把三角形转化成已学过的图形,还有别的方法吗?

  (演示课件:三角形剪拼法)

  四、反馈练习

  (一)下面平行四边形的面积是12平方厘米,求画斜线的三角形的面积、

  (二)计算下面每个三角形的面积、

  1、底是4.2米,高是2米;

  2、底是3分米,高是1.3分米;

  3、底是1.8米,高是.1.2米;

  五、板书设计

  教案点评:

  本节课的主要特点是:

  1、重视知识形成的过程,注意引导学生积极参与教学过程,突出了以学生为主体,老师为主导的教学指导思想。

  2、注意渗透转化的思维方法和平移的思想,抓住新旧知识的衔接点和新知的生长点,形成良好的认知结构,同时培养了学生的逻辑思维能力。

  探究活动

  三角形面积计算公式

  活动目的

  1、掌握三角形面积公式的推导过程、

  2、培养学生主动探究知识的能力、

  活动准备

  若干张长方形和三角形白纸、

  活动过程

  1、引导学生以长方形的一条边为三角形的底,画一个最大的三角形,观察三角形面积与长方形面积的关系、

  2、引导学生用两个同样的三角形沿着其中一个三角形的高剪开,拼成一个长方形,观察三角形面积与长方形面积的关系、

  3、启发学生将三角形折成两个长方形,并观察三角形面积与长方形面积的关系、

  4、分小组讨论这种方法与新课所学三角形面积公式推导过程的异同点、

数学教案三角形面积的计算6

  教学内容:人教版9册 三角形面积公式推导部分

  教学目的:

  1、通过让学生主动探索三角形面积计算公式,经历三角形面积公式的探索过程,进一步感受转化的数学思想和方法。

  2、使学生理解三角形面积计算公式,能正确地计算三角形的面积。

  3、通过操作、观察、比较,培养学生问题意识、概括能力和推理能力,发展学生的空间观念。

  教学过程:

  一、阅读质疑。

  先请同学们自己阅读以下材料,然后以小组为单位交流一下你们都学会了哪些知识,可以提出什么问题,并把问题随手记录下来。

  1厘米

  学生阅读后首先回顾了平行四边形、长方形地面积公式及推导过程。然后学生提出了质疑,主要问题有:

  (1)数方格怎么求三角形的面积?

  (2)不数方格怎么求三角形的面积?有没有一个通用公式?

  (3)能把三角形也转化成我们学过的图形求面积吗?

  (4)转化成的这些图形跟三角形有什么关系吗?

  (析:孔子曾说:“疑是思之始,学之端”。这里老师打破了学生等待老师提问的常规,要求学生把阅读材料作为学习主题,通过阅读提出问题,真正体现了“以生为本”。)

  二、点拨激思

  1。数方格的问题

  学生根据学习材料可以解答用数方格的方法求三角形的面积。

  老师接着问:有一个很大的三角形池塘,你来用数方格求它的面积。

  学生小声笑了起来。为什么笑?老师问到。学生说数方格太麻烦了,池塘也不好划分方格。

  嗯,看来数方格求面积是有一定局限性的, 今天我们就来研究三角形的面积。

  (析:一石激起千层浪,学生由数方格方法的局限性这一认识的困惑与冲突,有效地引发了学生探究面积计算公式的生长点,使学生有了探究发现的空间。)

  2。转化的问题

  你想把三角形转化成什么图形?学生会转化成平行四边形、长方形、正方形。梯形行吗?这时学生会有两种答案,有的说行,有的说不行,为什么不行?老师追问,学生在讨论中达成共识:必须转化成学过的,可以计算面积的图形。

  师:三角形怎样才能转化成这些图形?请同学们利用手中学具,通过拼一拼,折一折,剪一剪,利用转化成这些图形来解决下面的几个问题。

  (析:这里把“新”问题转化成了“老”问题来解决,有效地把学法指导融入到了教学中,给学生创造了更广阔、更真实的自主空间,无疑有利于学生可持续性发展。)

  三、探索解疑

  学生操作,讨论,汇报。

  1。转化的图形

  学生的答案有很多种,把两个完全一样的三角形转化成了平行四边形、长方形和正方形,还有把一个三角形沿高剪下拼成了正方形、长方形,还有把一个三角形沿中位线对折,两边也折转化成了2层的长方形。

  2。 解决转化前后图形间的关系

  (1)大小的关系

  通过比较学生们发现,两个完全一样的三角形拼成的图形跟三角形关系是S = S÷2。一个三角形转化成的图形跟三角形关系是S =S

  (2)底和高的关系

  拼割前后各部分有什么关系?(指底和高)能推导出三角形的面积公式吗?

  生1:两个完全一样的锐角三角形转化成了平行四边形,三角形的高就是平行四边形的高,三角形的底就是平行四边形的底。因为平行四边形的面积是底×高,它是由两个三角形拼成的,所以三角形的面积是底×高÷2

  师:思路真清晰,为什么÷2,谁还想说。

  (学生依次讲拼成的长方形,正方形这两种情况)

  (3)公式推导

  师;同学们真了不起,想出了这么多好方法推出了三角形的面积公式,那谁能给大家说说三角形的面积等于什么?

  生:底×高÷2

  师:如果我用S表示三角形的面积,a表示三角形的底,h表示三角形的高,那三角形的面积公式该怎么表示呢?

  生:S=a×h÷2

  (4)推导拓展

  师:我们再来看第二组,你能通过一个三角形的转化来推导它的面积公式吗?

  学生1:我是把一个等腰三角形对折,然后从中间剪开拼成了一个长方形,这个长方形的底是三角形的`底的一半,高是三角形的高,因为长方形的面积是长×宽,长方形的面积等于三角形的面积,所以三角形的面积是底×高÷2。

  学生2:我是把一个直角三角形的上面对折下来,然后剪开,把它补在一边,拼成了一个长方形。这个长方形的长是三角形的底,高是三角形高的一半,所以也能推出三角形的面积是底×高÷2。

  生3:我是把一个三角形沿着两边的重点对折,然后又把底边的重点这样对折,折成了一个长方形,这个长方形的底是三角形底的一半,宽是三角形高的一半,再乘以2,也可以推出三角形的面积是底×高÷2

  师:这个方法怎样,谁来评价一下。学生评价,太棒了。

  生4:我还有一种办法。把一个长方形沿对角线折叠,因为长方形的面积是长×宽,长方形是两个三角形拼成的,所以,三角形的面积是底×高÷2

  (析:把探究的权利充分的交给学生,学生自由组合,利用已有的知识经验,通过折、移、拼、剪,得到了不同的图形,虽然是不同的角度、不同的手段、不同的方法,但达到了同一目的,得到了正确的三角形面积计算公式,更重要的是探究过程中学生的思维空间得到了拓展,思维个性得到了发挥。)

  <三>归纳小结

  出示学习材料2,学生阅读后谈感想。体会祖国的古代科学家得了不起,20xx多年前就推导出了这个公式。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?

  师:好,今天这节课我们研究了三角形的面积,你们学到了哪些知识,有什么收获?回去继续反思整理,写出你们的反思报告。

  (析:课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,学后有什么感想,要有意识的促进学生反思:我还有什么疑问?打算怎么办?,把课后反思纳入到学习的系统连续的过程中。)

  总析:本节课有以下两个特点

  1。 充分体现了“问题意识的培养”。

  老师用了一种新的教学流程进行教学。即以“提出问题”,“研究问题”,“解决问题”为主线。当一个问题得到解决后,新的问题接着出现,学生始终处于“愤”和“悱”及对问题的探究中,有效地调动学生的学习的兴奋点,学生的问题意识得到发展。

  2。重视研究问题的过程。

  这节课以思维训练代替了重复练习,以发展学生的创造思维为重点,引导学生用多种方法进行转化,然后通过观察、操作、比较、归纳、抽象概括推导出公式,没有通过太多的练习却获得了超常规的解题能力。这个过程是学生自主探究的过程,这个过程是学生综合能力培养和提高的过程。

数学教案三角形面积的计算7

  教学目标

  1、理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算。

  2、培养学生观察能力、动手操作能力和类推迁移的能力。

  3、培养学生勤于思考,积极探索的学习精神。

  教学建议

  教材分析

  本小节内容是三角形面积的计算。是在学生已经掌握了三角形的特征和平行四边形面积计算的基础上,运用转化思想和方法来学习的。牢固掌握这种解决问题的思想和方法,是将来学习数学的一条捷径。

  本小节教材分为三个部分。第一部分是用数方格的方法求出三角形面积。通过数三个不同类型三角形的面积,使学生真正体会到这种方法太麻烦,不易数对,盟生一种探求更好、更简捷的计算公式,进一步调动学生继续探索的积极性。第二部分是用转化的方法推导出三角形面积的.计算公式。用两个完全一样的直角三角形,锐角三角形和钝角三角形通过平移、旋转分别拼摆成平行四边形,通过发现每个三角形与拼成的平行四边形(或长、正方形)的面积关系,从而渗透“三角形面积=底×高÷2”的计算公式。第三部分是应用三角形面积公式计算。

  本节课的教学重点是理解掌握三角形面积的计算公式及面积计算公式的应用。难点是三角形面积公式的推导过程。

  教法建议

  教师要先复习三角形的特征,能画出并指出各种不同类型三角形的底和高,再复习平行四边形面积公式的推导过程,为解决三角形面积公式做铺垫。

  在推导三角形面积计算公式之前,先用数方格求面积的方法,然后引导学生联想平行四边形面积公式的推导过程,启发提问:能不能也把今天学习的三角形转化成我们学过的其它图形?首先利用书后材料剪下不同类型的三角形,按照书中安排的层次,先研究把两个直角三角形转化成学过的不同图形,重点解决为什么不把它们转化成三角形的道理。这样在研“两个锐角三角形”时,就不会转化成没学过面积公式的图形,第二层中要注意解决旋转的问题,为了便于理解,可借助课件,形象地展现在学生面前。第三层次则由学生自主探索完成,通过以上(三种不同情况)转化前后的对比,得出三角形的面积计算公式。并重点提问为什么要除以2?由于已有平行四边形面积计算公式的基础,关于三角形面积公式和字母公式就可由学生自己解决了。

  本节课要注重发挥学生的主体地位,注意培养学生的动手能力,在操作中学会新知。

数学教案三角形面积的计算8

  教学内容

  p27~28

  教学目标

  1、使学生理解并掌握三角形面积的计算公式。能正确地计算三角形的面积。

  2、通过操作,培养学生的分析推理能力。培养学生应用所学知识解决实际问题的能力,发展学生的空间概念。

  3、引导学生运用转化的方法探索规律。

  教学重点:

  理解并掌握三角形面积的计算公式。

  教学难点:

  理解三角形面积计算公式的推导过程。

  教学准备:

  投影和自制三角形面积演示纸板等

  教学过程:

  一、创设情境,引入课题

  右图是一张三角形彩纸,它的面积是多少?

  提问:这块彩纸是什么形状?你会算出它的面积吗?

  引入:怎样把三角形转化成我们已学过的图形,然后算出它的面积呢?我们这节课就来探讨这个问题。

  二、探索新知

  1.推导三角形面积计算公式。

  (1)操作感知:让学生用学具并用自己喜欢的办法探索怎样把三角形转化成平行四边形。

  (2)汇报、交流,总结两种转化方法。

  重点讨论:

  ①拼成的平行四边形与原来的.三角形有什么关系?

  ②怎样计算三角形的面积?

  形成共识:

  ①两个完全一样的三角形都可以拼成一个平行四边形,这个平行四边形的底等于三角形的底,这个平行四边形的高等于三角形的高。②因为三角形的面积=拼成的平行四边形面积÷2

  强化理解推导过程:三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?

  板书:三角形面积=底×高÷2

  (3)用字母公式表示。

  如果用s表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:s=ah÷2。(板书)

  2.即时练习:让学生完成课前引入中的求彩纸面积的问题,并组织交流。

  4×3÷2=12÷2=6(c㎡)

  通过交流引导学生进一步认识三角形面积和平行四边形面积计算方法的异同点。

  三、巩固练习

  指导学生完成p28“试一试”。

  四、总结全课

  让学生谈谈这节课的收获和体会:怎样求三角形的面积?三角形面积的计算公式是怎样推导的?

  五、作业

  1.课内作业:p28“练一练”第一题。

  2.课外作业:优化作业相关练习。

数学教案三角形面积的计算9

  教学目标:

  1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算。

  2.培养学生观察能力、动手操作能力和类推迁移的能力。

  3.培养学生勤于思考,积极探索的学习精神。

  教学重点

  理解三角形面积计算公式,正确计算三角形的面积。

  教学难点

  理解三角形面积公式的推导过程。

  教学过程:

  一、复习铺垫。

  1.剪下第137页的三角形,标出它的底和高(量出底和高的长度)

  2.出示长方形、正方形、平行四边形、三角形的图片

  提问:我们学过了哪些平面图形的面积?计算这些图形面积的公式是什么?

  师:今天我们一起研究“三角形的面积”(板书课题)

  3.学习新知识之前共同回忆平行四边形面积的计算公式是怎样得出的?(电脑演示推导过程)

  二、指导探索

  第一部分:数方格面积。

  1.用数方格的方法求出第69页三个三角形的面积。(小组内分工合作)

  2.订正:看一看电脑博士数出的每个三角形的面积。

  (演示课件:拼摆图形下载)

  3.评价一下以上用“数方格”方法求出三角形面积。

  第二部分:推导三角形面积计算公式。

  拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小。

  启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

  1.用两个完全一样的直角三角形拼。

  (1)教师参与学生拼摆,个别加以指导

  (2)电脑演示拼摆过程(演示课件:拼摆图形下载)

  (3)讨论:①两个完全一样的直角三角形拼成一个大三角形(第三种拼法)能帮助我们推导出三角形面积公式吗?为什么?

  ②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?

  2.用两个完全一样的锐角三角形拼。

  (1)组织学生利用手里的学具试拼。(指名演示)

  (2)电脑演示拼摆的过程(突出旋转、平移),(演示课件:拼摆图形下载)

  提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?

  3.用两个完全一样的钙角三角形来拼。

  (1)由学生独立完成。

  (2)(演示课件:拼摆图形下载)

  4.讨论:

  (1)两个完全相同的三角形都可以转化成什么图形?

  (2)每个三角形的面积与拼成的平行四边形的面积有什么关系?

  (3)三角形面积的计算公式是什么?

  (4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

  第三部分:三角形面积的应用。

  1.例1、一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米。这个三角形的面积是多少平方厘米?

  2.由学生独立解答。

  3.订正答案(教师板书)

  5.6×4÷2=11.2(平方厘米)

  答:这个三角形的面积是11.2平方厘米。

  三、质疑调节

  1.总结这一节课的收获,并提出自己的问题。

  2.教师提问:

  (1)要求三角形面积需要知道哪两个已知条件?

  (2)求三角形面积为什么要除以2?

  (3)把三角形转化成已学过的图形,还有别的方法吗?

  四、反馈练习

  1.下面平行四边形的面积是12平方厘米,求画斜线的三角形的面积。

  2.计算下面每个三角形的面积。

  (1)底是4.2米,高是2米;

  (2)底是3分米,高是1.3分米;

  (3)底是1.8米,高是.1.2米;

  3.指出P69三个三角形的底和高,算出它们的面积各是多少?

  五、板书设计

  典型例题

  1、一个三角形的底是18厘米,面积是126平方厘米,高是多少厘米?

  分析:两个完全一样的三角形可以拼成一个平行四边形,三角形与拼成的平行四边形等底等高。

  先用三角形面积乘以2,求出平行四边形面积,再用平行四边形面积除以底(18厘米),就是平行四边形的高,也就是三角形的高。

  解:(厘米)

  答:三角形的高是14厘米。

  2、如图,正方形ABCD,三角形(1)的面积比三角形(2)的面积大8平方厘米,厘米,求DE的`长。

  分析:正方形中包括梯形AOCD,三角形ADE中也包括梯形AOCD。三角形(1)的面积比三角形(2)大8平方厘米,说明三角形ADE的面积比正方形ABCD的面积大8平方厘米。正方形面积是(平方厘米),那么三角形ADE的面积就是(平方厘米),已知三角形ADE的面积和高,就可以求出三角形的底(DE)。

  解:(平方厘米)

  (厘米)

  答:DE的长为21.6厘米。

  3、一个等腰直角三角形的斜边长是6分米,这个等腰直角三角形的面积是多少?

  指导:按常规方法,只有找出三角形的底和高才能求出三角形的面积,显然此种途径用小学所学的数学知识是行不通的。我们可以把四个完全一样的等腰直角三角形拼成一个正方形(如图)

  边长是6分米的正方形是一个等腰直角三角形面积的4倍。

  (平方分米)

  答:这个等腰直角三角形的面积是9平方分米。

  例4下图中平方厘米,D、E、F分别是BC、AC、AD的中点,求

  分析:三角形ABD和三角形ADC是两个等底等高的三角形,所以它们的面积相等,三角形ADC的面积占三角形ABC的一半,面积是平方厘米。在三角形ADC中,三角形ADE和三角形CDE等底等高,所以三角形ADE的面积占三角形ACD面积的一半,是平方厘米。在三角形ADE中,AEF和DEF是两个等底等高的三角形,它们的面积相等,所以三角形DEF的面积相当于三角形ADE的一半,即平方厘米。

  (平方厘米)

  答:三角形DEF的面积是3平方厘米。

数学教案三角形面积的计算10

  重点难点

  使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积

  教学准备(含资料辑录或图表绘制)

  教和学的过程

  一、练习

  二、总结

  一、第5题

  可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的.比较上。

  二、第6题

  要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。

  三、第9题

  测量红领巾高时,可以启发学生把红领巾对折后再测量。

  四、第10题

  要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。

  五、思考题

  每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。

  通过今天的练习我们对三角形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以至用的目的。

  做练习

数学教案三角形面积的计算11

  内容:小学数学第九册(84页--87页)

  教学目标:

  1、学会用旋转、平移的方法,推导三角形面积计算公式。

  2、使学生理解、掌握和运用三角形面积计算公式。

  3、培养学生自学能力和动手操作的能力。渗透爱国主义情感教育。

  教学重点:三角形面积的计算

  教学难点:每个三角形面积与它同底等高的平行四边形面积之间关系。

  教具准备:动像投影片(锐角三角形、钝角三角形、直角三角形各两个)

  学具准备:印发锐角三角形、钝角三角形、直角三角形各一对。

  设计说明:

  小学数学教学如何体现素质教育?我认为,重要措施之一就是要让学生生动、活泼、主动地学习与发展。在获取知识的同时,掌握数学思维方法,发展探究推理能力。教学要改革,首先是教师的教育思想、教学观念的更新,由传授知识为主的教学观,转变为引导学生主动探究、主动研讨、主动发展,结合教学内容有机进行操作训练、听说训练、思维训练。基于以上认识,在教学《三角形面积计算》一课时,改变常规“先分后总”的方法为“先总后分”给学生最大限度地提供操作、探究、思考的时间与空间,让学生在观察中思考,感知三角形面积计算规律;在操作中思考,分层验证公式;在练习中思考,训练思维能力。

  教学过程:

  一、观察--思考--感知规律

  出示一个平行四边形。

  回忆:平行四边形面积怎样计算?

  观察:沿平行四边形对角线剪开成两个三角形。两个三角形的状,大小有什么关系?(完全一样)

  思考、讨论:(1)三角形面积与原平行四边形的面积有什么关系?

  (2)三角形面积计算规律是什么?

  [说明:这一剪多问,学生在观察的基础上通过建立与平行四边形及面积的比较,直觉感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,引发了深层次的`心理动机]

  二、操作--思考--验证公式

  “底×高÷2”这个规律适用于所有形状的三角形面积计算吗?学生持怀疑态度,又怀着较强烈的好奇心。教师因势利导让学生利用自己的学具进行操作、剪拼、思考、归纳。

  三角形面积计算是一个什么样的计算规律呢?教师随着这个问题提出以下要求:

  (1)学具袋里有一些三角形,同学们可以利用学过的知识进行剪、摆、拼、思考一下三角形面积是不是都有“底×高÷2”的计算规律。

  (2)同桌同学可共同讨论、研究。

  (3)有结论以后可到黑板前面展示其过程,并说明理由。随学生展示出现以下情况:

  摆拼一:用两个完全一样的三角形摆拼

  (两个锐角三角形)(两个钝角三角形)

  平行四边形面积=底×高

  三角形面积=底×高÷2

  (两个直角三角形)

  长(正)方形面积=长×宽

  三角形面积=底×高÷2

  剪拼二:用一个三角形剪拼。

  图(1)(2)(3)三角形面积=平行四边形(长方形)面积。

  (1)三角形面积=底×(高÷2)=底×高÷2

  (2)三角形面积=(底÷2)×高=底×高÷2

  (3)三角形面积=底×(高÷2)=底×高÷2

  从而归纳三角形面积=底×高÷2

  4.引导学生用字母表示面积公式.

  教师:如果用S表示三角形的面积,用a和h分别表示三角形的底和高,那么三角形的面积计算公式还可以表示成:

  S=ah÷2

  [说明:学生怀着验证三角形面积是不是“底×高÷2”的强烈心理动机在课堂提供了较大“自由”空间里。主动进行摆拼、剪拼、思考、讨论。归纳并验证了“三角形面积=底×高÷2”的求积公式。手、口、脑并用,操作能力、听说能力、概括能力、思维能力、得到了充分的训练]

  5.出示第85页的例题,让学生独立做在练习本上,抽一学生板演,集体订正.

  三、练习--思考--培养能力

  1.完成第85页上的“做一做”.要求学生先指出三角形的底和高各是多少,再算出它的面积.订正时,教师引导学生重点弄清为什么要除以2?

  2.独立练习86面练习十六第1.2.3题。

  3.想一想,下面说法对不对?为什么?

  (1)三角形面积是平行四边形面积的一半()

  (2)两个等底等高三角形可以拼成一个平行四边形()

  (3)一个三角形面积为20cm2与它等底等高平行四边形面积是40cm2

  4.思考:

  (1)右图中甲、乙面积是()

  A.一样大B.甲大

  C.乙大D.不能判断

  (2)如右面三角形A.B.C的面积

  为6cm2,底边AB长为4cm

  在图中画出第三个顶点C的位置。

  顶点C的位置仅有一处吗?

  你能作几处呢?

  [说明:练习分三个层次设计,第一层基本练习,旨在巩固、熟练公式;第二层设计判断练习,学生在思考中,从正、反两方面强化对求积公式的理解;第三个层次,主要训练学生思维的灵活性与逆向思维能力,同时深化对三角形求积公式的认识。]

  四、课堂小结

  教师:今天这节课,我们主要学习了什么知识?你有什么收获?

  板书设计:

  平行四边形面积=底高

  等底等高三角形面积=底高2

数学教案三角形面积的计算12

  教学内容:

  六年制人教版第九册75~77页,数学教案-三角形的面积计算。

  教学目标:

  1、使学生理解三角形面积公式的推导过程,并能正确的计算三角形的面积。

  2、培养学生分析、推理的能力和实际操作的能力。

  3、通过三角形面积计算公式的推导,引导学生运用转化的思考方法探索规律。

  4、通过小组合作,交流,培养学生爱学数学,乐学数学的情感。

  教具、学具准备:每个学生准备两个完全一样的锐角三角形、直角三角形、钝角三角形。多媒体课件。

  教学过程:

  一、复2、习导入

  1、出示一个底是4分米,高是3分米的平行四边形。这是一个什么图形?它的面积如何计算?是多少? (板书平行四边形的面积计算公式)

  2、老师用一条线段把这个平行四边形的对角连接起来,这个平行四边形被分成了两个什么图形?(三角形)我们已经学过了几种三角形?同学们能不能猜一猜其中一个三角形的面积是多少?

  3、通过重合验证其中一个三角形的面积是6平方分米。

  4、出示三个三角形,同学们能不能猜一猜这三个三角形的面积各是多少?(如下图)

  覆盖方格图,现在同学们能够知道这三个三角形的面积了吗?

  我们称这种计算面积的方法是什么方法?(学生分组数方格计算三角形的面积。观察三种三角形的底、高和面积。初步感知三角形等底等高,面积相等。)

  4、“如果我们河头镇的地形是一个三角形,也用数方格的方法来计算他的面积,方便吗?象这种数方格的方法既麻烦又不准确,那我们能否像研究平行四边形的面积计算公式那样,把三角形转化为我们已经学过的图形呢?

  5、今天这节课我们就一起来研究三角形面积的计算。”(出示课题)

  【评:数学活动必须建立在学生认知发展水平和已有知识经验基础之上。本课复习导入设计精妙,利用本课的重点,删繁就简,既为新课的学习作了铺垫,又调动了学生积极探索新知的积极性。利用一环紧扣一环的情境设计,使学生体验到一种“山重水复疑无路,柳暗花明又一村” 的感受,感受到来自知识的挑战,激起学生主动学习的欲望。】

  二、新课

  1、通过操作总结三角形面积的计算公式。

  (1)学生独立尝试。

  四人一小组,学生利用手中的学具进行操作。

  (2)交流尝试结果。

  我们来看一看同学们都拼成了哪些图形?

  让操作好的学生上台展示自己拼成的图形,并贴在黑板上展示。

  【评:让学生在操作、感受、体验的过程中,实现数学的“再发现”,只有让学生在具体情境中去感受、体验,才能使学生有真情实感,才能真正理解数学,继而实现数学的“再创造”。】

  (3)引导探索规律。

  1、“我们一起来看一看,我们用两个完全一样的三角形已经拼成了几种图形?

  “长方形是特殊的`平行四边形,因此,今天我们着重研究三角形和拼成的平行四边形之间的关系。我们来观察一下三角形和拼成的平行四边形的情况(三种情况),“这边的平行四边形是由哪两个完全一样的三角形拼成的?每一个三角形和拼成的平行四边形面积之间究竟有什么样的关系呢?”

  2、学生小组讨论得出只要用两个完全一样的三角形都可以拼成一个平行四边形,三角形的底就是平行四边形的底,三角形的高就是平行四边形的高,每个三角形的面积是拼成的平行四边形的面积的一半,小学数学教案《数学教案-三角形的面积计算》。

  3、归纳总结规律。

  学生根据讨论结果总结三角形面积计算公式。(板书)

  三角形面积=底×高÷2

  S=ah÷2

  4、思想教育

  “通过同学们的努力,我们研究得出了三角形的面积计算公式,其实大约在两千多年前,我国数学名著《九章算术》中就已经论述了三角形面积计算的方法。因此,我们一定要以他们为榜样,奋发图强,为中华之崛起而努力!”

  【评:公式的推导过程及结论的得出,是在学生动手实践、分组讨论中不断完善、提炼出来的,教师这一举措,完全的把学生置于学习的主体,把数学知识彻底的转化为数学活动,使学生在活动中获取知识,受到教育,有效的提高课堂的生命活力。】

  5、教学例1。

  出示例1,学生独立完成。

  三、巩固练习

  1、口答。

  试一试:计算下面每个三角形的面积。

  (1) 底是 4.2米,高是2米。

  (2) 底是6分米,高是3分米。

  (3) 底是1.6米,高是5米。

  2、做一做:

  指出下面每个三角形的底和高,并分别计算它们的面积。

  3、说理题。

  金坛经济开发区有一块三角形土地准备拍卖,底是80米,高是60米。底价为每平方米200元。如果有一位开发商准备用50万元买这块土地,你认为钱够不够?请说明理由。

  【评:练习设计层层深入,形式多样,满足了不同学生的需求,并且与现实生活紧密联系,使学生真真切切地感受到生活之中有数学,生活之中处处用数学,提高了学数学 、用数学的意识。】

  四、小结。

  学生小结 ,质疑问难。

  五、作业。(略)

  总评:本课教材挖掘得深,知识间的联系把握的准,整节课以严谨的教学风格,师生间的和谐默契配合、轻松活跃的课堂气氛,给人一种新颖独特、耳目一新的感觉。

  1、准确定位教学目标2、

  教师在确定教目标时,既重视知识技能目标,又注重发展性领域目标和情感目标,指导学生学会与他人合作,学习数学的表达和交流。

  3、创造性的使用教材

  教师能创造性的使用教材,教学环节紧凑,层次分明,过渡自然,很好的体现了以学生“学”为中心。整节课大部分时间学生都在操作,有合作、有独立、有分析、有概括、有猜想、有验证。教学手段丰富,学生的能力和应用意识得到了实实在在的培养。

  4、重视学生情感体验。

  在课堂教学过程中,关注学生在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。教师在数学学习过程中,既是组织者、引导者,又是合作者。】

  数学教案-三角形的面积计算

【数学教案三角形面积的计算】相关文章:

《三角形面积的计算》教案06-01

三角形面积的计算说课稿05-28

《三角形面积计算》说课稿01-03

三角形面积的计算说课稿01-08

《三角形的面积计算》教案09-15

《三角形面积的计算》教学反思03-12

《三角形面积计算》的教学反思03-14

三角形面积的计算教学反思04-14

三角形面积的计算说课稿14篇11-12

三角形面积的计算说课稿(14篇)02-16