最小公倍数教案
作为一名教职工,常常要根据教学需要编写教案,借助教案可以更好地组织教学活动。那要怎么写好教案呢?以下是小编收集整理的最小公倍数教案,希望能够帮助到大家。
最小公倍数教案1
【教学内容】:
人教版五年级下册教科书第88—90页内容。
【设计理念】:
数学于生活,有作用于生活。在本堂课的教学,我把数学与生活紧密的联系在一起,从而构建一种生活化的数学课堂。让学生根据现实生活中一些能够反映公倍数、最小公倍数的实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验,进而激发学生兴趣,去解决这些实际问题,真切地体会到数学与外部生活世界的联系,体会到数学的特点和价值,体会到“数学化”的真正含义,从而帮助他们获得对数学的正确认识。真正达到“人人学有价值的'数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展”。
【教学目标】:
1、知识与技能:通过创设具体情境(三个情景片断)和操作活动,使学生认识并理解公倍数和最小公倍数的概念,初步了解两个数的公倍数和最小公倍数在现实生活中的应用,会找两个数的公倍数和它们的最小公倍数。
2、过程与方法:通过自主探索解决问题的方法,使学生经历探索找两个数的公倍数和最小公倍数的过程,鼓励学生思考多样化,简洁化,进行有条理的思考。
3、情感态度价值观:在自主探索与合作交流的过程中,进一步发展与同伴的合作交流能力,获得成功的体验。使学生感受到数学于生活,体会公倍数和最小公倍数在生活中的实际价值。
【教学重点】:
1、理解公倍数与最小公倍数的概念
2、能找出两个数的公倍数与最小公倍数,会解决实际生活中的一些问题
【教学难点】:
能找出两个数的公倍数与最小公倍数,会解决实际生活中的一些问题
【教具、学具准备】:
多媒体、日历。
最小公倍数教案2
教学要求
①使学生理解公倍数、最小公倍数的概念。
②使学生初步掌握求两个数的最小公倍数的方法。
③培养学生抽象概括的能力和实际操作的能力。
教学重点理解公倍数、最小公倍数的概念。
教学难点求两个数的最小公倍数的方法。
教学用具投影仪
教学过程
一、创设情境
1、口答:求下面每组数的最大公约数。
3和86和1113和2617和51
2、求30和42的最大公约数。
二、揭示课题。
前面我们已学过两个数的约数和最大公约数,现在我们来研究两个数的倍数。
三、探索研究
1.教学例1。
投影出示例1及画好的数轴。
(1)学生口述4和6的倍数,投影显示在数轴上。
(2)观察并回答。
①4和6公有的倍数是哪几个?
②其中最小的一个是多少?有无最大的?为什么?
(3)归纳并板书。
①4和6公有的倍数有:12、24、36......
其中最小的一个是12。
②也可以用图来表示。
4的倍数6的倍数
48162012246830
..................
4和6的公倍数
(4)抽象、概括。
①什么是公倍数、最小公倍数?(让学生说)
②指导学生看教材第71页有关公倍数、最小公倍数的概念。
(5)尝试练习。
做教材第73页的“做一做”,先让学生分别填写出6和8的倍数,再让学生说:两个圈交叉部分应该填什么数?为什么不打省略号?填好后集体订正。
2.教学例2。
(1)出示例2并说明:我们通常用分解质因数的'方法来求几个数的最小公倍数。
(2)把18和30分解质因数,写出短除的竖式并指出它们公有的质因数是哪些?
218230
39315
35
18=2×3×3
30=2×3×5
(3)观察、分析。
①18(或30)的倍数必须包含哪些质因数?
②如果2×3×3(或2×3×5)再乘以2或3或5得到36、54、90(或60、90、150)都是18(或30)的什么?
③18和30的公倍数必须包含哪些质因数?(2×3×3×5)
(4)归纳:18和30的最小公倍数里,必须包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了,所以18和30的最小公倍数是:
2×3×3×5=90
(5)教学求最小公倍数的一般方法。
为了简便,我们通常用短除分解质因数的方法,写成下面的形式,求最小公倍数,如:1830并让学生分组讨论写成这种形式后该怎样做。
①每次用什么作除数去除?
②一直除到什么时候为止?
③再怎样做就可以求出最小公倍数了?
(6)尝试练习。
做教材第74页上面的“做一做”,学生解答后,点几名学生说说是怎样做的,然后集体订正。
(7)抽象、概括求最小公倍数的方法。
①谁能说说求最小公倍数的方法。
②指导学生看第74页求两个数的最小公倍数的方法。
四、课堂实践
1.做练习十五的第1题,让学生讲讲为什么?
2.做练习十五的第4题,先让学生也按要求去做,再回答谁做得对,谁做错了,错在什么地方?
五、课堂小结
学生小结今天学习的内容及方法。
六、课堂作业
做练习十五的第2、3题。
最小公倍数教案3
教学要求 在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的。
教学重点 掌握求两个数的的方法。
教学难点 正确、熟练地求出特殊情况下两个数的。
教学过程
一、创设情境
1.口算练习:将练习十五的第五题做在书上,做完后集体修订正。
2.回答问题:什么是公倍数?什么是是?
3.求24和32的。
4.说说下面每组中的两个数有什么关系?
12和36 4和5
二、揭示课题
我们已经学会求两个数的,这节课我们将继续学习求特殊情况下两个数的。(板书课题:求特殊情况下两个数的)
三、探索研究
1.教学例3
(1)先让学生用上节课学的方法分别求出这两组数的。
(2)观察结果:通过这两组数的,你发现了什么?
(3)归纳方法:先让学生讲,再指导学生看教材第73页的结论。
(4)尝试练习。
做教材第74页下面的做一做,先让学生判断每组中两个数的关系,再解答出来集体订正。
四、课堂实践
1、做练习十五的第6题,先让学生写,再让学生说,最后集体订正。
2、做练习十五的第7题,先让学生观察每组中两个数的关系,再让学生正确、熟练地说出它们的,并订正。
3、做练习十五的第9题。先让学生独立判断,对的打,错的打,再点几名学生讲打或的理由。
五、课堂小结
学生小结今天学习的内容、方法。
六、课堂作业
做练习十五的第8题。
课题三:求三个数的
教学要求 使学生在理解的基础上学会求三个数的。
教学重点 求三个数的与求两个数的的区别。
教学难点 会求三个数的。
教学过程
一、创设情境
求下面各组数的。(学生做完后,集体订正时,点几名学生说怎样求两个数的)
5和8 7和28 12和16
二、揭示课题
我们已经学会求两个数的,怎样求三个数的呢?现在我们一起来学习。(板书课题:求三个数的)
三、探索研究
1.教学例4。
(1)请同学们把8、12、和30分解质因数,并指出公有质因数是哪些?(教师根据学生的回答板书如下)
8=222
12=223
30=2 35
(2)分组讨论。
①8、12、30的必须包含哪些质因数?
②如果先取这三个数公有质因数1个2,再取每两个数公有质因数1个2和1个3,最后取各自独有的质因数2和5 ,(22235)这些质因数是否包含了8、12和30所有的质因数?
③8、12和30的是多少?
(3)归纳:8、12和30的,必须包含这三个数全部公有的质因数(1个2)和每两个数公有的质因数(1个2和1个3)以及各自独有的(2和5),这些质因数积(22235=120)就是8、12和30的。
(4)求三个数的的方法。
求三个数的与求两个数的的'方法大同小异。(板书短除式)
8 12 30
①先用什么数作除数去除?
②再用什么数作除数去除?(重点指导:另一个数要移下来)
③一直除到什么时候为止?
④最后怎样做就可以求出三个数的?
(5)比较求三个数的与求两个数的有什么不同?(先可让学生说,然后老师归纳)
相同点:都是用短除的形式分解质因数,都是把所有的除数和商连乘起来。
不同点:求两个数的时,除到两个商是互质数这止;而求三个数的时,要先用三个数公有的质因数去除,再用两个数的公有的质因数去除,一直除到三个商中每两个数都是互质数(两两互质)为止。
四、课堂实践
1.做教材第75页的做一做。
2.做练习十五的第12题,先让学生看,再指出它的错误,使学生明确:错在三个数公有的质因数还没有找完。在用6除时把8移下来,就等于在里多取了一个质因数2。
3.做练习十五的第13题,学生口答。
五、课堂小结
学生小结今天学习的内容、方法。
六、课堂作业
1.做练习十五的第10、11、14题。
2.有兴趣、有余力的学生可做练习十五的第21*~23*题。
课题四:最大公约数和的比较
教学要求 通过比较,使学生进一步分清求最大公约数和的相同点和不同点,并能正确地求出几个数的最大公约数和。
教学重点 比较求两个数的最大公约数和的不同点。
教学用具 在投影片上画好教材第80页的表格(留空备用)
教学过程
一、创设情境
1.做练习十六的第1题,先让学生将能被2整除的数用△圈起来;能被3整除的数用○圈起来;能被5整除的数用□圈起来,做在书上,集体订正。
2.很快说下面每组数的。
5和7 9和45 9和12 2、3和11 8、10和40 3、4和6
二、探索研究
1.教学例5。
(1)出示例5(点2名学生在黑板上做,其余的学生做在练习本上):
28 42 28 42
7 14 6 7 14 6
2 3 2 3
28和42的最大公约数是: 42和28的是:
27=14 2723=84
(2)揭示课题:我们现在来比较一下,求两个数的最大公约数和的方法有什么相同点和不同点。(板书课题:最大公约数和的比较)
(3)出示留空的表格。
先让同桌的学生互相说说,再点几名学生谈自己的看法,最后归纳填表。
(4)看表上的不同点回答。
为什么它们在计算时不相同?
使学生明确:①因为两个数最大公约数只包含这两个数全部公有质因数,所以只把这两个数全部公有质因数连乘起来,也就是把所有的除数乘起来,就得到它们的最大公约数。②而两个数的不仅包含这两个数全部公有的质因数,还包含它们各自独有的质因数,所以要把这两个数全部公有的质因数以及各自独有的质因数连乘起来,也就是把所有的除数和商乘起来,就得到它们的。
(5)尝试练习。
做教材第80页的做一做,然后点几名学生说一说是怎样做的。
三、课堂实践
做练习十六的第2题。
四、课堂小结
学生小结求两个数的最大公约数和的异同点。
五、课堂作业 。做练习十六的3、4、5、6*题。
最小公倍数教案4
设计说明
1.充分利用教材中的素材创设情境,让学生在情境中解决问题。
结合具体的生活情境学习,有助于学生获取知识。“铺墙砖”这一生活情境,学生有一定的生活经验,也具有一定的挑战性,能有效地激发学生的学习兴趣,让学生在实践操作中加强思考与探索,经历知识的形成过程。
2.放手让学生自主探究,获取新知。
著名数学家波利亚认为:“学习任何知识的最佳途径是由自己去发现,因为这种发现,理解最深刻,也最容易掌握其中的内在规律、性质和联系。”为了使学生积极主动地参与学习过程,必须引导学生自己去观察,去思考,去探索。本设计直接出示例题,引导学生利用已有的知识经验,经过自主探究和充分的讨论,获取解决问题的方法,在解决问题的过程中,积累经验,提高解决问题的能力。
课前准备
教师准备 PPT课件
学生准备 若干张长3 dm、宽2 dm的卡片
教学过程
⊙创设情境,引入新课
1.引导学生回忆。
师:同学们还记得前面我们学习的给贮藏室铺地砖的例题吗?这节课我们来学习“铺墙砖”的知识。
2.课件出示例3:用一种长3 dm,宽2 dm的墙砖铺一个正方形(用的墙砖必须都是整块),正方形的边长可以是多少分米?最小是多少分米?
设计意图:在以前学习过的“铺地砖”的基础上创设类似的情境,让学生在实践操作中加强思考与探索,经历知识的形成过程,完成数学建模。
⊙小组合作,解决问题
1.拼一拼。
(1)用长3 dm、宽2 dm的卡片代替墙砖拼正方形。
(2)在印有格子的纸上画出拼成的'正方形。边操作边思考:正方形的边长可以是多少分米?最小是多少分米?正方形的边长与墙砖的长和宽有什么关系?
2.说发现。
师:你拼出来了吗?想一想,正方形的边长必须满足什么条件?(正方形的边长必须是2和3的公倍数)
3.解决问题。
师:正方形的边长可以是多少分米?最小是多少分米?(正方形的边长可以是6 dm,12 dm,18 dm,…最小是6 dm)
4.回顾解决“铺墙砖”问题的关键。
把“铺墙砖”问题转化成求公倍数和最小公倍数的问题,也就是铺成的正方形的边长必须是墙砖长和宽的公倍数,铺成的正方形的边长最小是墙砖长和宽的最小公倍数,这样才能保证用的墙砖都是整块。
⊙学习公倍数的应用
1.解决教材72页11题。
爸爸、妈妈和我一起跑步,爸爸跑一圈用3分钟,妈妈跑一圈用4分钟,我跑一圈用6分钟。如果爸爸、妈妈同时起跑,至少多少分钟后两人在起点再次相遇?此题爸爸、妈妈分别跑了多少圈?[学生分组讨论,教师巡视指导,各组汇报:求至少多少分钟后两人在起点再次相遇,就是求3和4的最小公倍数,3和4的最小公倍数是12,也就是至少12分钟后两人在起点再次相遇,此时爸爸跑了12÷3=4(圈),妈妈跑了12÷4=3(圈)]
2.引导学生在组内提出其他数学问题并合作解答,明确求三个数的最小公倍数的方法。
预设
生1:我和爸爸同时起跑,至少多少分钟后我们在起点再次相遇?
(3和6的最小公倍数是6,也就是至少6分钟后我们在起点再次相遇)
生2:我和妈妈同时起跑,至少多少分钟后我们在起点再次相遇?
(4和6的最小公倍数是12,也就是至少12分钟后我们在起点再次相遇)
生3:三人同时起跑,至少多少分钟后三人在起点再次相遇?
最小公倍数教案5
教学目标:
理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。
教学重点:最小公倍数的概念。
教学难点:两个数最小公倍数的算理。
教法:新授、小组合作、自主探究
学法:练习、自学、小组合作
课前准备:课件
教学过程:
一、定向导学(3分钟)
(一)复习
1、什么是最大公因数?
2、最大公因数与两个数的质因数之间有什么关系?
3、怎样求两个数的最大公约数?
(二)出示目标
理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。
二、自主学习(6分钟)
自学内容:68—69页内容
自学方法:先独立看书,思考问题,再小组交流老师提出的问题(先从4号、3号开始回答,组长负责组织,提问,副组长负责记录,以及和老师的交流。)
自学思考:
1、什么是公倍数?最小公倍数?并背诵。
2、如何求两个数的最小公倍数?
3、两个数的公倍数和他们的最小公倍数之间有什么关系?
4、两个数有没有最大的公倍数?为什么?
三、合作交流(15分钟)
1.最小公倍数的概念。
(1)学生先独立思考。
(2)再合作讨论自己是如何做的。
(3)全班交流。
2.小结:6,12,18,…是3和2公有的倍数,叫做它们的`公倍数。其中,6是最小的公倍数,叫做它们的最小公倍数。
3.举例说明:求6和8的最小公倍数。
(1)学生独立完成,全班交流。
(2)学生的方法有:①列举法:先找倍数,再找公倍数,最后找出最小公倍数。
例如:6的倍数:6,12,18,24,30,36,42,48,…
8的倍数:8,16,24,32,40,48,…
6和8公倍数:24,48,…
6和8的最小公倍数:24
②大数翻倍法:8,16,24,…
6和8的最小公倍数:24
③分解质因数法:
8=2×2×2 6=2×3
8和6的最小公倍数包括8和6的公有质因数和各自独有的质因数。
④画图法。
4.用喜欢的方法求12和15的最小公倍数。
学生汇报。
5.用分解质因数法求18和8的最小公倍数。
四、质疑探究(4分)
求下面每组数的最小公倍数,看看有什么发现?
4和5 13和7 48和16 17和85
小结:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,大数是两数的最小公倍数。
五、小结检测(6分钟)
(一)小结:谈谈你本节课的收获?
(二)检测:
1.求下面每组数的最小公倍数。
[15,9][18,24][18,27][14,21]
[32,40][25,45][26,39][54,63]
2.下面的说法对吗?说一说你的理由。
(1)两个数的最小公倍数一定比这两个数都大。
(2)两个数的积一定是这两个数的公倍数。
六、堂清(6分钟)
找出下列每组数的最小公倍数。你发现了什么?
3和6 2和8 5和6 4和9 3和9 5和10
最小公倍数教案6
一、教学内容:
课本P88~90例1、例2。
二、教学目标
1.知识与技能:解公倍数、最小公倍数的概念,理解、掌握求两个数最小公倍数的方法。
2.过程与方法:使学生经历探索理解公倍数、最小公倍数的概念,求两个数最小公倍数的方法,培养学生的迁移能力和分析研究问题的能力。
3.情感、态度与价值观(育人目标):在师生共同探讨的学习过程中,激发学生的学习兴趣,培养学生良好的学习习惯。
三、重点难点:
求两个数最小公倍数的方法。
四、教学设计
(一)、小组长汇报“前置小研究”完成情况
怎样求3和2的最小公倍数?
第一步:3的倍数有:()
2的倍数有:()
第二步:3和2的公倍数有:()
第三步:3和2的最小公倍数是:()
(二)、小组交流、探讨“前置小研究”
1、要求小组内互相解决出现的错误,并能说说自己的方法;
2、要求学生说说:
(1)什么是公倍数和最小公倍数?
(2)两个数的公倍数的个数是怎样的?
(三)引课:今天我们就来探究最小公倍数(板书课题)
1、出示书P88例1题
一种墙砖长3 dm,宽2 dm。如果用这种墙砖铺一个正方形(用的墙砖都是整块),正方形的边长可以是多少分米?最小是多少分米?
(1)、学生进行讨论:
(2)、出示分别用6个、24个、54个长方形摆成的边长是6分米、12分米、18分米的正方形的动画
(3)、学生反馈:这个正方形的边长必须既是3的倍数,又是2的倍数。
(4)、还可以怎样表示求3和2的最小公倍数?
①求3和2的最小公倍数,还可以用用集合圈的方法表示②全班交流并板书。
可以铺出边长是6 dm,12 dm,18 dm,···的正方形,最小的正方形边长是6 dm。
3的倍数2的.倍数
6,6是最小的公倍数,叫做它们的最小公倍数。
2、考考你:用新学的知识解决问题:完成P89做一做
3、教学例2:怎样求6和8的最小公倍数?
(1)学生独立完成,全班交流。
(2)学生交流方法有(交流时课件演示)
①列举法:先找倍数,再找公倍数,最后找出最小公倍数。例如:6的倍数:6,12,18,24,30,36,42,48,?
8的倍数:8,16,24,32,40,48,?
6和8公倍数:24,48,?
6和8的最小公倍数:24
②用图表示也很清楚。
③6的倍数中有哪些是8的倍数呢?
你还有其他方法吗?和同学讨论一下。
教师介绍:①大数翻倍法:8,16,24,?6和8的最小公倍数:24 ②分解质因数法:
数的乘积。
4、通过观察,想一想:①两个数的公倍数的个数是怎样的?②两个数的公倍数和它们的最小公倍数之间有什么关系?
5、考考你会求两个数的最小公倍数吗?
完成书P90做一做:求下面每组数的最小公倍数,看看有什么发现?3和6 2和8 5和6 4和9
6、交流你的发现:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,较大数是两数的最小公倍数。
7、我能很快说出每组数的最小公倍数。
8和9() 24和8 () 30和5()4和12() 36和4()48和6 () 17和13() 14和15() 23和24()
(四)巩固练习:书P91第1题。
(五)全课总结:通过这节课的学习,你有什么收获?
板书设计最小公倍数
公倍数:两个数公有的倍数
最小公倍数:两个数公有的倍数中最小的那个数找“最小公倍数”的方法:
个数的公倍数中找出两个数的最小公倍数
2、特殊情况:
①当两数成倍数关系时,这两个数的最小公倍数就是较大的数;②当两个数是互质数时,这两个数的最小公倍数就是这两个数的积。
最小公倍数教案7
教学内容:教科书五年级上册第81——82页及练习。
教学目标:
1、在异分母分数大小比较的活动中,经历认识最小公倍数和用短除法求最小公倍数的过程。
2、了解最小公倍数,学会用短除法求两个数的最小公倍数。
3、能积极主动参与数学活动,获得积极的学习体验,提高对数学的兴趣。
教学重点:学会用短除法求两个数的最小公倍数。
教学过程:
一、课前活动——对口令
师:上课前我们先来做个游戏——对口令,老师说一个数请你对出它的倍数1、对9、12的倍数。
2、对出一个数,它既是2的倍数也是3的倍数。
二、创设情境,感知概念
1、两个数的公倍数和最小公倍数的概念教学
师:同学们,我们每周都会上微机课,老师想了解一下同学打字情况,那谁愿意介绍一下你一分钟能打多少个字呢?
请几位学生说说自己一分钟能打多少个字。学生打字的速度各有不同,教师可进行激励性。如:真不错,你一分钟能打这么多字;打得慢了点,没关系,只要你经常练习,一定会越来越快。
师:你们知道吗?我们的小伙伴红红和聪聪都是打字的能手,他俩打同样一份稿件进行了一次打字比赛。
出示教材上的情境图。
师:从两个人的对话中了解到哪些数学信息?
生1:聪聪用了5/6小时。
生2:红红用3/4小时就打完了。
师:他们两个人谁打得快呢?请同学们当裁判,通过比较两个分数的大小来解决这个问题。
学生独立思考并比较,教师巡视,了解通分的方法和结果。师:谁来说说是怎样比较的?谁打得快呢?
师:谁来说说是怎样比较的?谁打得快呢?
学生交流,教师进行板书。
生1:因为6×4=24,我先把和进行通分,都化成分母是24的分数,然后再进行比较。
5/6=5×4/6×4=20/24,3/4=3×6/4×6=18/24
20/24>18/24,所以5/6>3/4。
红红打得快。
生2:我也认为红红打得快。但是我把5/6和3/4进行通分,都化成分母是12的`分数,然后再进行比较。
5/6=5×2/6×2=10/12,3/4=3×3/4×3=9/12
10/12>9/12,所以5/6>3/4。
……
如果学生只有分母是24或12的一种方法,教师要作为参与者介绍另一种方法。
师:现在请大家观察这两种方法,你发现有什么相同的地方和不同的地方?
学生可能有不同的表达方式,概括一下,应有如下回答:
●相同的地方
(1)这两种方法都是先把5/6和3/4进行通分后,再比较大小的。
(2)两种方法通分时用的分母12和24都是6和4的公倍数。
教学预设
●不同的地方
(1)第一种方法,通分时用两个分数分母的积24作分母,第二种方法,通分时用4和6的公倍数12作分母。
(2)24是12的2倍。
……
师:同学们观察得非常仔细,两种通分方法中,12和24都是6和4的公倍数。那么,4和6的公倍数还有哪些?请同桌的同学合作,在老师发给你们的椭圆形纸片上分别写出50以内4和6的倍数,再圈出它们的公倍数。
学生自己找,教师巡视。
师:说说你们是怎么找的?4和6的公倍数都有哪些呢?生:我先找出4和6各自的倍数
4的倍数有:4,8,12,16,20,24,28,32,36,40,44,48,师:如果让你继续找下去,4的倍数还有没有?用什么表示?
生:还有无数个,用省略号表示。
生:6的倍数有:6,12,18,24,30,36,42,48,师:如果让你继续找下去,6的倍数还有没有?用什么表示?
生:还有无数个,也用省略号表示。
生:然后找4和6的公倍数有:12,24,36,48,……。
教师根据学生的回答出示课件。
师:观察我们找到的50以内6和4的这几个公倍数,想一想,如果继续找下去,48后面一个公倍数是几?说一说你是怎样判断的?
学生可能会说:
生:继续找下去,48后面一个公倍数是60。因为每两个公倍数之间都相差12,48加12等于60。
师:60后面还有没有?还有多少个?
生:还有无数个,用省略号表示。
师:有没有最大公倍数?
生:没有最大公倍数。因为4和6的公倍数有无数个,找不到最大的一个。
师:同学们说的很好。现在再来观察4和6的这些公倍数,没有最大的我们能找到一个最小的谁?
生:12。
师:还有比12小的公倍数吗?
生:没有了。
师:我们给它起个名字叫做这两个数的最小公倍数。这节课我们就来重点研究一下最小公倍数。(教师板书课题:最小公倍数)
师:我们对公倍数和最小公倍数有了一些认识,谁能用自己的话说说什么是公倍数?什么是最小公倍数?同桌的同学现互相说说。
学生之间互相交流。
教师引导学生出概念(出示课件)让学生读一读。
师:刚才我们找了4和6的最小公倍数,现找了4的倍数,又找了6的倍数,最后找到4和6的最小公倍数。这种方法太麻烦,其实有一种更简便的方法——短除法(教师边说边板书用短除法求4和6的最小公倍数)
用短除法求两个数的最小公倍数与上学期我们学过的求两个数的最大公因数的书写方式一样。
板书设计:
最小公倍数教案8
教学目标
(1)继续巩固求几个数的最小公倍数的方法。
(2)理解求最大公约数和最小公倍数方法之间的联系和区别,能正确地求几个的最大公约数和最小公倍数。
教学重点、难点
重点、难点:能正确地求几个的最大公约数和最小公倍数。
教具、学具准备
教学过程
备注
一、复习巩固,熟练方法
1、直接写出下列各组数的最小公倍数
5和812和183和2435和720和158和68和106和95、3和69、6和182、3和415、20和5
(1)教师逐题出示,要求学生直接在作业本上写出得数(例;[5、8]=40)
(2)检查:学生报,同桌互相批改,再订正。
(3)提问:5、3和62、3和4的最小公倍数为什么不是它们的连乘积?
2、改错练习
(1)学生自己判断P.64第8题并思考,不正确的错在哪里?
(2)讨论:两种方法中,哪种方法正确?错误的方法错在哪里?求三个数的最小公倍数要注意什么?
(3)师生归纳:求三个数的最小公倍数,一定要先用三个数的公约数去除,一直到三个数只有公约数1时,才能用两个数的公约数去除,直到“两两互质”。
3、练习:求下列各组数的最小公约数
24、16和308、11和20
14、21和356、9和10
(1)学生练习。(四人做在黑板上)
(2)反馈:师生共同讨论板演题目
二、比较练习,加深理解
1、出示:求下列各组数的最小公倍数和最大公约数,并把它们填到表中:
36和5472和1844和5510和9
两数关系举例最大公约数最小公倍数
一般关系
倍数关系
教学过程
备 注
互质关系
(1)学生练习。
(2)反馈并比较
(3)师生讨论,将练习结果填到表格中。
(4)用自己的话将表格的意思说一说(重点说求的方法)。
(5)教师小结:求一般关系的两个数的最大公约数和最小公倍数通常用短除法,除数相乘为最大公约数,除数与商相乘为最小公约数;倍数关系两个数的最大公约数是较小的数,最小公倍数是较大的'数;而互质关系的两个数的最大公约数为1,最小公倍数为它们的乘积。
2、出示:求30、60和80的最大公约数和最小公倍数。
(1)两人板演,其余边算边思考:用“短除法”求三个数的最大公约数和最小公倍数A、除数有什么不同要求?B、最后的商有什么不同要求?C、在连乘的时候有什么不同?
(2)学生练习后,将以上问题讨论明确,并填好下表:
最大公约数最小公倍数
......
(3)总结以上表格内容。
3、练习:
求;24、18和3616、20和80的最大公约数和最小公倍数。
(1)学生练习。
(2)对照表格检查后提问:能不能把求三个数的最大公约数和最小公倍数简缩为一个短除式?要注意什么?
明确:熟练以后可以用一个短除式同时求三个数的最大公约数和最小公倍数,但要注意要先用三个数的公约数去除,三个数只有公约数1时,才能用两个数的公约数去除,并做好记号。
例:
(24、18、36)=2×3=6
(24、18、36)=2×3×2×3×2×1×1=72
4、课堂总结。
三、综合练习
求下列各组数的最大公约数和最小公倍数
60和456、9和182、3和515、25和45
34和857、12和246、12和245、7和10
(1)学生练习。
(2)反馈:说一说求2、3和5、5、7和10两组的最小公倍数的方法有什么不同?为什么?
(3)说一说求7、21和36、12和24两组的最大公约数的方法有什么不同?为什么?
四、作业《作业本》
注意讲清计算方法,避免求最大公约数和求最小公倍数的方法混淆;加强混合练习,让学生在实际练习中区别它们的异同。
最小公倍数教案9
课题一:两个数的
教学要求 ①使学生理解公倍数、的概念。②使学生初步掌握求两个数的的方法。③培养学生抽象概括的能力和实际操作的能力。
教学重点 理解公倍数、的概念。
教学难点 求两个数的的方法。
教学用具 投影仪
教学过程
一、创设情境
1、口答:求下面每组数的最大公约数。
3和8 6和11 13和26 17和51
2、求30和42的最大公约数。
二、揭示课题。
前面我们已学过两个数的约数和最大公约数,现在我们来研究两个数的倍数。
三、探索研究
1.教学例1。
投影出示例1 及画好的数轴。
(1)学生口述4和6的倍数,投影显示在数轴上。
(2)观察并回答。
①4和6公有的倍数是哪几个?
②其中最小的一个是多少?有无最大的`?为什么?
(3)归纳并板书。
①4 和6公有的倍数有:12、24、36
其中最小的一个是12。
②也可以用图来表示。
4的倍数 6的倍数
4 8 16 20 12 24 6 8 30
4 和6 的公倍数
(4)抽象、概括。
①什么是公倍数、?(让学生说)
②指导学生看教材第71页有关公倍数、的概念。
(5)尝试练习。
做教材第73页的做一做,先让学生分别填写出6和8的倍数,再让学生说:两个圈交叉部分应该填什么数?为什么不打省略号?填好后集体订正。
2.教学例2。
(1)出示例2并说明:我们通常用分解质因数的方法来求几个数的。
(2)把18和30分解质因数,写出短除的竖式并指出它们公有的质因数是哪些?
2 18 2 30
3 9 3 15
3 5
18=233
30=235
(3)观察、分析。
①18(或30)的倍数必须包含哪些质因数?
②如果233(或235)再乘以2或3或5得到36、54、90(或60、90、150)都是18(或30)的什么?
③18和30的公倍数必须包含哪些质因数?(2335)
(4)归纳:18 和30 的里,必须包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了,所以18 和30 的是:
2335=90
(5)教学求的一般方法。
为了简便,我们通常用短除分解质因数的方法,写成下面的形式,求,如: 18 30 并让学生分组讨论写成这种形式后该怎样做。
①每次用什么作除数去除?
②一直除到什么时候为止?
③再怎样做就可以求出了?
(6)尝试练习。
做教材第74页上面的做一做,学生解答后,点几名学生说说是怎样做的,然后集体订正。
(7)抽象、概括求的方法。
①谁能说说求的方法。
②指导学生看第74页求两个数的的方法。
四、课堂实践
1.做练习十五的第1题,让学生讲讲为什么?
2.做练习十五的第4题,先让学生也按要求去做,再回答谁做得对,谁做错了,错在什么地方?
五、课堂小结
学生小结今天学习的内容及方法。
六、课堂作业
做练习十五的第2、3题。
最小公倍数教案10
说课:
“公倍数与最小公倍数”是纯数学知识,对于小学生来讲是抽象的概念,因此通过情景设计----让学生在寻找最佳慰问点,以此来激发学生学习的兴趣并导入新课。
由于学生在学习“公约数与最大公约数”时已掌握了枚举法、分解质因数及短除法,因此在设计本节课时意图让学生通过已有知识经验去探究新知,而且,在探究活动中让学生根据自己的需要、根据自己的实际知识面来选择探究的问题,这样处理更能激发学生学习的欲望,调动每一个学生学习的积极性。在成果汇报时,让学生站到讲台前,讲述自己对某一问题的理解,并通过实例来补充说明,这样可以培养学生的自信心。
教学目标:
1、理解公倍数、最小公倍数的意义;会用列举法、分解质因数、短除法求两个数的最小公倍数;会求是互质数或有倍数关系的两个数的最小公倍数。
2、在知识的探究过程中,让每个学生体验成功的喜悦,并培养学生大胆质疑的习惯。
教学过程:
一、情景导入
1、从我们学校到中山公园可乘坐A、B两种车,A车大约每隔400米设有一个车站, B车大约每隔600米设有一个车站。天气越来越热了,我们少先队员开展送爱心活动,在这条线路上摆几个慰问点,为驾驶员、售票员送上毛巾擦擦汗、送上凉水解解渴。现在请你们小组商量一下,慰问点设在哪里可以同时慰问两条线路的司售人员,并且要说明你的理由。
2、在这里,我们找A、B两车的.车站就是运用了有关倍数的知识,那么,你是否知道同时有两个车站的这几个数字表示的是什么呢?
出示课题:公倍数
谁能用自己的话说一说什么叫公倍数?
这一个是最小的,我们又称它为什么?
补充课题:最小公倍数
谁能再来说一说什么叫最小公倍数?
今天我们就来研究公倍数与最小公倍数。
二、探究
1、看了这个课题,你想在这节课中了解些什么?请学生写在纸上,并贴到黑板上。
2、四人一组合作解决1--2个问题,举例说明,组长笔录。可以翻书请教,在P.69-- P.71。
3、成果汇报:(由学生任选一种方法)
(1)公倍数有多少个?
(2)求最小公倍数的几种方法:
①枚举法:根据学生举例填写集合圈并说出各部分所表示的内容(参见下左图):
②分解质因数:如:12与30的最小公倍数(见上右图)
最小公倍数是两个数全部公有质因数与各自独有之因数的乘积。
=2×3×2×5=60
从这两个分解质因数的式子里你能看出12与30的最大公约数是几?
最大公约数与最小公倍数之间有什么关系?参见下左图。
最小公倍数是两个数的最大公约数与各自独有质因数的乘积。
短除法:如求:36和45的最小公倍数,参见上右图。
讨论:与求最大公约数比较有什么异同之处?
短除法与分解质因数有什么联系?
任选一种方法,求下列各组数的最小公倍数(第一组必做,其它可任选,看谁做的又快又多又正确):
16和20;65和130;4和15;18和24。
得出两个特殊情况:当两个数是互质数时,最小公倍数是这两个数的乘积;当两个数有倍数关系时,最小公倍数是较大的数。
4、总结:今天你们根据自己所提出的问题进行了研究学习,每个人的研究都非常成功,对于今天所学的内容还有什么疑问?
三、回家作业布置(感兴趣的同学做)
世纪大道是浦东新区最为壮观的轴线大道,它横贯陆家嘴金融贸易区,起于东方明珠电视塔,止于花木行政文化中心,全长4200米。请你当一位设计师,在大道的一旁每隔()米种一棵香樟,在大道的另一旁每隔()米种一棵银杏,那么,每()米一棵香樟和一棵银杏正好面对面,这样的情况共有()组相对的树木。
教学反思:
我们的教学是要真正地为学生服务,教师的职责不是将知识灌输给学生,而是在学生在知识的海洋中遨游时帮他们把好舵。讲台不是老师的,而是师生共同的,谁都能在这里发表自己的见解。学生只有在被肯定、被信任的时候,才能提高学习兴趣、学习动机。
最小公倍数教案11
教学要求:
1、通过练习,使学生发现求两个数的最小公倍数的一些简捷的方法,并能根据两个数的关系选择用合理的`方法求两个数的最小公倍数。
2、让学生感受数学与生活的联系,体会解决问题策略的多样性。
教学重点与难点:
让学生在用不同方法找两个数的公倍数和最小公倍数的过程中,逐步掌握方法,形成技能。
教学流程:
一、基础练习找出下面每组数的最小公倍数。4和63和75和910和6
二、完成第25页的5~8题。
1、第5题
⑴①让学生观察左边4题,说说这几组数有什么共同的特点。
②找出每组两个数的最小公倍数。
③比较和交流:有什么发现?(两个数的最小公倍数就是它们的乘积。)
⑵独立完成右边4题,再比较交流发现了什么?
2、第6题
3、第7题先让学生用列表的方法找出答案,并通过交流使学生体会到列表的过程实际上就是求7和8的最小公倍数。
4、第8题先让学生说说求几月几日小林和小军再次相遇,可以先求哪两个数的最小公倍数,再让学生独立解答。
三、小结:通过今天这一节课的学习,你有什么收获?
四、思考题
提示:先用列举法找3、4和6的最小公倍数。
最小公倍数教案12
教学目标
1.掌握公倍数、最小公倍数两个概念.
2.理解求最小公倍数的算理,掌握用分解质因数求最小公倍数的方法.
教学重点
建立公倍数和最小公倍数的概念,掌握求两个数最小公倍数的方法.
教学难点
理解求两个数最小公倍数的算理.
教学步骤
一、铺垫孕伏.
1.导入:这节课我们开始学习有关最小公倍数的知识.
(板书:最小公倍数)
2.复习倍数的概念.
二、探究新知.
教学例1
例1、顺次写出4的几个倍数和6的几个倍数.它们公有的倍数是哪几个?其中最小的是多少?
4的倍数有:4、8、12、16、20、24、28、32、36……
6的倍数有:6、12、18、24、30、36……
4和6的公倍数有:12、24、36……
其中最小的一个是12.
1、学生分组讨论总结公倍数、最小公倍数的意义.
2、用集合图表示4和6的公倍数.
3、质疑:两个数的公倍数有什么特点?有没有最大的公倍数?
明确:因为每一个数的倍数的个数都是无限的,所以两个数的公倍数的个数也是无限的.因此,两个数没有最大的倍数.
4、反馈练习.
把6和8的倍数和公倍数不超过50的填在下面的空圈里,再找出它们的最小公倍数是几.
明确:50以内6和8的公倍数只有2个;如果扩展数的范围,也就是50以外6和8的公倍数则是无限的.
(二)教学例2
引入:我们用分解质因数的方法求两个数的最小公倍数.
例2:求18和30的最小公倍数.
1、用短除式分别把18和30分解质因数.
板书:18=2×3×3
30=2×3×5
教师提问:18的'倍数必须包含哪些质因数?
(18的倍数包含18的所有质因数)
30的倍数必须包含哪些质因数?
(30的倍数包含30的所有质因数)
18和30的公倍数必须包含哪些质因数?
(既要包含18的所有质因数,又要包含30的所有质因数)
2、观察集合图:18和30的最小公倍数应包含哪些质因数?
教师明确:18和30的最小公倍数里,只要包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了.2×3×3×5=90,所以18和30的最小公倍数是90.
3、小组讨论:如果少一个或多一个质因数行不行?
教师明确:如果少一个质因数,就不能保证公倍数里包含18和30全部的质因数,因而就不能得到它们的最小公倍数;如果多一个质因数,虽是18和30的公倍数,但不能保证是最小公倍数.
板书:
18和30的最小公倍数是2×3×3×5=90
4、反馈练习.
(1)先把下面两个数分解质因数,再求出它们的最小公倍数.
30=()×()×()
42=()×()×()
30和42的最小公倍数是()×()×()×()=()
(2)A=2×2B=2×2×3
A和B的最小公倍数是()×()×()=()
(3)用分解质因数法求24和18的最小公倍数时,小华得72,小林得144.谁做错了?
可能错在哪里?
5、求最小公倍数的一般书写格式.
①引导学生把两个短除式合并成一个.
板书:
②明确:综合短除式中所有除数和商与18和30的最小公倍数90所包含的所有质因数是一一对应的,因此把短除式中所有的除数和商乘起来,就得到18和30的最小公倍数.
③反馈练习:求30和45的最小公倍数.
④总结方法:求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来.
⑤反馈练习:求下面每组数的最小公倍数
6和824和20xx和2116和72
三、全课小结.
今天这节课我们主要研究了用什么方法求两个数的最小公倍数,它是为以后学习通分做准备的,希望大家能熟练的掌握这部分知识.
四、随堂练习
1.填空.
A=2×2×5
B=()×5×()
A和B和最小公倍数是().A和B的最小公倍数是2×2×5×7=140.
2.判断.
(1)两个数的积一定是这两个数的公倍数.()
(2)两个数的积一定是这两个数的最小公倍数.()
五、布置作业.
求下面每组数的最小公倍数.
12和1530和4036和5422和33
最小公倍数教案13
教学内容:书~23页例1、例2和“练一练”,练习四第1~4题。
教学目标:1、让学生认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。2、让学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。3、让学生在学习过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
教学重点:1、理解公倍数和最小公倍数的含义。
2、掌握求两个数的最小公倍数的方法。
教学过程:
一、游戏导入,激发兴趣
谈话:今天我们先玩找朋友的游戏。
(黑板上标有4、6数字,其他同学的号码是他们其中一位手中卡片的倍数就请站起来,两位同学收上符合要求的号码贴在黑板上。)
出现争朋友的情况提问:你们为什么争朋友?(12、24等既是4的倍数,同时也是6的倍数)
那么12、24等数与4、6是什么关系呢?今天我们就来继续研究关于倍数的知识。
二、教学例1,认识公倍数
多媒体出示例1
1、想一想
谈话:如果用一些长是3厘米、宽是5厘米的长方形纸片分别铺在这两个正方形上,看看铺的结果怎样?(教师提供材料,如果学生不能解决可以拼一拼)
学生说猜想的结果和想法。
2、议一议
提问:为什么用这样的长方形纸片能正好铺边长6厘米的正方形?学生观察正方形的边长与长、宽之间的关系。
引导:用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺几次?怎样用算式表示?
铺边长8厘米的正方形呢?每条边都能正好铺完吗?
提问:这样的长方形纸片还能正好铺满边长是多少厘米的正方形?(同桌交流讨论)
组织学生说一说。
提问:能说说你的理由吗?
引导学生明确12、18、24……除以2和3都没有余数。
提问:6、12、18、24……这些数与2有什么关系?与3呢?学生发现6、12、18、24……既是2的倍数,又是3的倍数。
谈话:只要正方形的边长既是2的倍数,又是3的倍数,这样的正方形就能正好铺满。6、12、18、24……既是2的倍数,又是3的倍数它们是2和3的公倍数。(板书:公倍数)
提问:两个数的公倍数的个数是有限的还是无限的?为什么?
明确:因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,可以用省略号来表示。
提问:8是2和3的公倍数吗?为什么?
学生回答:8是2的倍数,但8不是3的倍数,所以8不是2和3的公倍数。
三、教学例2,求两个数的公倍数和最小公倍数。
1、多媒体出示:6和9的公倍数有哪些?其中最小的`公倍数是几?你有什么好方法能很快找出来?
学生讨论交流做法和想法。
教师组织交流:
学生想到的方法可能有:
(1)依次分别写出6和9的倍数,然后再找出它们的公倍数。
(2)先找出6的倍数,再从6的倍数中找出9的倍数。
(3)先找出9的倍数,再从9的倍数中找出6的倍数。
引导:这三种方法你觉得哪一种方法简捷一些?
谈话:6和9的公倍数中最小的一个是18,18就是6和9的最小公倍数。(板书:最小公倍数)
3、集合图
谈话:我们可以画图表示6的倍数、9的倍数和6和9的公倍数之间的关系。
展示书上的集合图,你能从图中看出哪些数是6的倍数吗?哪些数是9的倍数?6和9的公倍数是哪些数?图中的三个省略号各表示什么?6和9的最小公倍数是多少?
4、给课始活动时的板书加上集合圈。提问这里是否需要加省略号?明确什么情况下需要加省略号。
四、巩固练习,加深对公倍数和最小公倍数的认识
1、完成“练一练”。
2、做练习四第2题。
引导:4与一个自然数的乘积都是4的什么数?5、6与一个自然数的乘积呢?怎样找4和5的公倍数?填空时还要注意什么?
3、做练习四第4题。
说明题意,引导学生思考,哪些方格两种棋都会走到?这些方格中的数有什么共同特点?动笔涂一涂。
然后同桌开展活动,玩一玩,看看红棋和黄棋是否都走到涂色的方格中。
五、全课小结(略)
六、布置作业1、练习四第1、3两题。 2、补充习题11页。
课后反思:
1、我为谁备课?
根据教材的安排,教学中可以将引进概念的环节分成三个步骤。第一个步骤是操作,让学生用长3厘米、宽2厘米的长方形纸片分别铺长6厘米和8厘米的两个正方形。备课时,我认为这个环节简直是低估学生,上学期学生多次做过类似这样的题目,学生解决这个问题不是“小菜一碟”吗?于是,我制作一套材料以备不时之需。课中,发现有些学生对能否铺满边长8厘米的正方形有异议。还好准备一套,立即演示给学生看。看似解决了问题,其实是我剥夺了学生操作感悟的机会。所以,有时自己的想法往往又高估了学生,备课还是要从学生的实际出发。当然,要从学生的实际出发,这一节课的内容就无法完成,是想照顾到全体还是想完成一节课,孰是孰非?
2、我为谁上课?
按照教材的建议,这一课时要完成例1、例2和练一练以及练习四1~4题的教学。每次公开课后我都发现学生的课后作业令人失望。究其原因,为完成教学任务,课上即使发现学生没有得到充分的思考,或者练习没有都完成,也不肯为他们停留,为他们等待,而是硬着头皮往下开,导致“夹生饭”的出炉。其实,我知道学生参差不齐,想要在一节课中让每个人都能研究透那是不可能的,所以我把希望寄托在下一节课。公开课只想给听课老师留下一个完整的一节课的印象,感觉公开课不是为学生而开了。所以我也特别希望听课的评价体制能够有所变化,我们是想听真实的课,了解学生的真实情况,还是想看一节课的流程,至少这是我的一个困惑。我究竟应该怎样上课?
最小公倍数教案14
教材分析:
本课教学内容是要让学生学会用数学的眼光来思考并分析身边的问题,教材中的铺砖这一实际生活离学生的实际生活还有一定的距离,课前我特意创造性加入了课前的游戏将公倍数知识蕴藏在游戏活动中,让学生在解决实际问题前能够感悟知识与生活的紧密联系。
学情分析:
五年级下学期的学生已经具备了一定的生活实际经验,但是铺砖的生活情境离学生还是有一定的距离,让学生在课堂当中动手操作,可以给学生更多的思考和交流空间。让抽象的数学知识更形象。
教学内容:
人教版数学五年级下册70页以及相关练习。
教学目标:
1.学会用公倍数和最小公倍数的知识解决简单的现实问题,体验数学与生活的密切联系。
2.结合解决问题理解公倍数和最小公倍数的现实意义,进一步熟悉求两个数的公倍数和最小公倍数的方法。
3.在学生愉快的活动过程中,培养学生学好数学的信心以及小组成员之间互相合作的精神,感受到数学学习的快乐和价值,让学生学会用数学的眼光分析并解决生活实际问题。
教学重难点:
重点:学会用公倍数和最小公倍数的知识解决简单的实际问题。
难点:体会公倍数和最小公倍数的现实意义。色圃中小
课前准备:
多媒体课件,方格纸,长方形学具,水彩笔。
教学过程:
一、课前引入
1.师课前谈话:各位亲爱的同学,我们已经认识了最小公倍数和公倍数,而且还学会了如何找两个数的最小公倍数和公倍数。为了表示对你们在学习上的收获。周老师在今天的这节课带给大家一首最原生态的歌曲,看看我们在共同庆贺的时候,还能在学习上得到什么!
2.师出示歌唱要求:一起来看歌唱要求:男生每2秒唱出歌词“嘿”,而女生则每3秒唱出歌词“哈”。师:大家已经明白要求了吗?一起来试一试。让我们一起关注时钟上跳动的数字,按照要求一起唱出歌词。
3.在学生完成第一次试唱后,教师提问:根据要求,在哪些时钟数字时男生会唱出歌词?大家同意吗?师板书,同时小结(2的倍数)然后继续提出:男生已经找到了他们的时钟数字,看一看在下一次的歌声中,女同学也能找到属于你们的时钟数字吗?一起准备,请关注滚动的时钟数字。女同学们,你们是否已经找到了属于你们的时钟数字。请告诉我们,大家同意吗?师板书,同时小结(3的倍数)现在我们把歌声中再加入一点配乐,一起来看。能够做到吗?设计意图欢快的歌声让抽象的数学知识瞬间变得触手可及。而在欢快的歌声中,学生能够很自然地运用倍数的知识来说明并解决问题。让学生在不知不觉中建立起数学知识和活动要求的联系。以达到润物无声的效果。欢快的歌声也会激发出学生的学习兴趣和欲望,同时这样的数学课堂也别具感染力。能够增强学生参与课堂学习的积极性。
二、新授
1.看看我们的歌声中,加入了配乐会有多么的雄壮。并播放课件出示要求:男生每2秒唱出歌词“嘿”,同时拍桌子,而女生则每3秒唱出歌词“哈”同时击掌。
2.学生在完成歌唱后,教师提出:在我们的歌声中,只有男同学齐唱,女同学齐唱的歌声吗?(不是),那还有什么?对,还有男女生的合唱。你能找出男女生在哪些时候会一起唱出歌词呢?师板书数字,同时小结(2和3的公倍数)
3.在学生指出合唱时间后,教师相机提出:看来我们在歌声中还找到了关于倍数和公倍数的知识。接下来,让我们带上知识走入生活,一起解决实际问题。一起来看。
三、引入新知
师:出示张叔叔要用长3分米,宽2分米的长方形瓷砖在外墙铺一个正方形。(用的都是整块),你觉得可以铺出边长是多少分米的正方形?边长最小是多少分米?
1.阅读与理解师:请孩子们仔细读题,你知道了哪些数学信息?抽生回答,老师提取有价值的数学信息帮助学生理解。
2.分析与解答师:这个正方形的边长可能是多少?最小是多少?师:让我们带着自己的猜想分小组合作探究,教师出示活动要求:
(1)请你通过画一画,铺一铺或者写一写等方式去验证自己的猜想。
(2)小组长组织小组成员分工合作,积极参与,并讨论交流各自的操作发现。
(3)小组长对本组交流意见进行整理,填好记录单。
学生分小组操作(教师巡视,参与其中)师:哪些小组使用摆的方法,哪些小组使用了画的方法。请小组内成员展示自己组内的摆或者画的成果。配以记录单进行说明或者讲解。
(1)汇报铺出的正方形边长是多少?
(2)对铺出正方形的过程加以说明
(3)使用记录单,说明铺出的图形各边长度的变化
(4)确定正方形的边长数字是多少?
3.回顾与反思。
师提出:就只有这几种铺法吗?难道就要这样一直画下去、摆下去吗?
生:不需要,只要是2和3的公倍数都可以是正方形的边长。
师:看来,我们要把铺砖的实际问题转化成公倍数的问题,就能很容易地解决了。
师:用这样的瓷砖能铺出边长是4分米的正方形吗?能铺出边长是9分米的正方形吗?
师:看来要解决生活中这样的问题,首先要找到什么?
设计意图本环节的教学注重了学生对于解决问题的思考步奏,让学生在充分的活动中体验知识的生成过程,达到知其然而所以然的效果。学生的铺砖环节能够充分感受问题转化的过程,而记录单上数据的变化过程能够进一步提高学生归纳和总结的准确性和科学性。在回顾与反思中,让学生中我解决此类问题的`基本方法和基本过程。既对知识进行了总结,还对解决问题的策略进行了渗透。
四、练习巩固
1.练习一看来,我们在歌声中再一次认识了公倍数和最小公倍数,而且也帮助张叔叔铺砖的实际问题。现在让我们带上知识走入生活,体会数学学习的价值!并出示:xx班同学参加植树活动,每6人一组,每9人一组都刚好完。而人数在40人以内,人数肯能是多少人?一起来看大屏幕,根据你的阅读并理解,你知道了哪些数学信息?现在呢?请告诉我们你的结果。
2.练习二
(1)出示练习二。xx班共有学生40人,参加植树活动,每4人一组,每6人一组都要刚好分完。如果全班同学都要参加,至少还要从别的班借多少人?
(2)阅读收集数学信息。
(3)抽生根据数学信息分析并解答。
3.走入生活第二季:
(1)出示:李老师生日的月份数是2的倍数,又是5的倍数,李老师可能出生在几月份?
(2)师提出:根据阅读,你作出了怎样的分析?在学生回答后,继续提出:现在我们可以把问题当中的一个词换作哪一个词?师:月份数一定是在10月,那日期数又是哪一天呢?继续探秘:
(3)出示:生日的日期数比4的倍数多1,比6的倍数也多1,李老师生日的日期数可能是多少?现在你如何分析呢?抽生回答。
五、课堂总结
在学生回答后,教师小结并赞美,顺势提出:让我们再一次走入歌声中,一起找到属于数学的快乐。一起题前祝愿李老师生日快乐。在学生的歌唱后继续追问:
第1次合唱是几秒?
第3次合唱是多少秒?
第101次合唱是多少秒?
现在怀着快乐的心情,你想告诉所有的同学和老师一点什么?
在学生总结后,出示结束语。
设计意图:
本环节使用歌声让学生来作为课堂总结的前奏,既能够让数学课堂充满乐趣,还能够让课堂教学首尾照应。快乐的歌声能够让学生在祝福的同时再一次提升对于公倍数知识的理解和认识,同时也是对学生在思想情感上的一次感悟,达到了知识渗透与情感育人并行的目的。
板书设计:
解决问题
长边铺出2,4,6,6,8,10,…(2的倍数)
宽边铺出3,6,9,12,15,…(3的倍数)
正方形边长6,12,18,…(2和3的公倍数)
最小公倍数教案15
教学目的:
1、知识与能力:使学生理解最小公倍数的意义,学会求特殊情况下两个数的最小公倍数。
2、过程与方法:通过小组合作学习,培养学生的团结协作精神。
3、情感与态度:提高学生的逻辑思维能力,培养学生科学的思维方法和创新意识。
教学重点:
使学生理解最小公倍数的意义。
教学难点:
学会求特殊情况下两个数的最小公倍数。
教具、学具:
多媒体计算机、课件,练习纸。
教学过程:
一、课堂引入:
你们坐过公共汽车吗?今天老师特意给大家带来个坐车的信息,请看:(电脑显示)
人民公园是1路和3路汽车的起点站。1路汽车每4分钟发车
一次,3路汽车每6分钟发车一次。这两路汽车同时发后,至少再过多少分钟又同时发车?
师:这正是我们今天要研究的内容。
二、新课:
1、这节课我们学习,(板书课题):最小公倍数。
2、看到这课题,你想知道什么?
3、刚才同学们提的问题很好,就让我们带着这些问题一起学习,请看:
出示例1:请顺次找出4的倍数和6的倍数。
师:齐读题目。
师:好!下面先自己找,找完后小组交流,看谁找得最快、最准确、用的方法最多。请把结果写在练习纸上。
师:谁来汇报4的倍数和6的倍数有哪些?
你是怎样找的?
你们都同意吗?
师:谁还有不同的找法?
(电脑同时在数轴上显示:)
板书:
4的倍数有:4、8、12、16、20、24、28、32、36......
6的倍数有:6、12、18、24、30、36......
师:非常聪明,找倍数的方法有:
A:原数分别乘以自然数1、2、3、4、5......。
B:连续加上原数的方法。
C:在数轴上找倍数的方法。
你认为那种方法找倍数较快,就用哪种方法找。下面仔细观察4的倍数和6的倍数(指着4和6倍数和数轴),师:你们发现了什么?小组讨论。
(12、24、36既是4的倍数又是6的倍数)电脑同时把它们变色、闪动。
师:你们同意吗?
师:对,12、24、36既是4的倍数又是6的倍数。所以这些数是4和6公有的倍数。
板书:4和6公有的倍数有:12、24、36......
师:就这几个吗?能不能把4和6公有的倍数都说出来?为什么?同位互相说说。
(不能,因为一个数的倍数的个数是无限的,所以它们公有的倍数的'个数也是无限的)
师:个数是无限的。怎样表示呢?(用......,在电脑加上......);
师:把这句话自由读一遍。
师:说得好。请观察(显示)这两组数,按这两个思考题,四人小组讨论。
思考:①、两组数分别是谁的倍数?
②、这两组数有没有公有的倍数?如果有,请找出来。
电脑显示:3、6、9、12、15、18、21、24、27、30......
5、10、15、20、25、30、35、......
电脑显示:3的倍数。
5的倍数。
(15、30......)变色,闪动。
板书:3和5公有的倍数有:15、30......
师:两个数公有的倍数大家都会找,三个数公有的倍数你们会找吗?
师:请看(电脑显示):
3的倍数有:3、6、9、12、15、18、21、24、27、30、33、
36、39......。
6的倍数有:6、12、18、24、30、36......
9的倍数有:9、18、27、36、45、54......
师:请把3、6、9公有的倍数找出来,找到后请告诉同桌。
(18、36......)变色,闪动。
板书:3、6和9公有的倍数有:18、36......
师:两个数有公有的倍数,三个数也有公有的倍数。这些公有
的倍数叫什么?其中最小的又叫什么?
请大家打开课本71页,带着问题自学课本,看课本是怎样说的?
(公倍数,最小公倍数)
师:齐读一遍。
师:刚才我们找出的这些公有的倍数,其实就是它们的公倍数。(电脑显示)
师:同桌找出这三组的最小公倍数各是几?(12、15、18闪动、变色)
师:这些最小公倍数你是怎样找的?
板书:倍数→公倍数→最小公倍数
教师小结上面找倍数的方法,加深印象。
师:谁还有不同的方法?
师:几个数有最小的公倍数,有没有最大的公倍数?为什么?
(一个数的倍数是无限的,因此几个数的公倍数也是无限的,所以没有最大的公倍数)
师:我们已学过用图表示一个数的倍数,同样也可以用图来表示几个数的倍数和公倍数,请看电脑:
4的倍数6的倍数4的倍数6的倍数
4和6的公倍数
引导:(指图)12、24、36这些数既在这圈(4的倍数),又在那圈
(6的倍数),所以这些是公倍数。
回应:刚才那道题(显示),你有正确的答案吗?为什么?
(因为12是4和6的最小公倍数)
质疑:刚才学习了找最小公倍数,其实你们提出的问题已经解决了,还有什么不明白的地方?
过渡:刚才学习得很好,下面我们根据这三个思考题(显示),四
人小组讨论,完成这些题目,完成后小组交流一下,你发现
了什么?
思考:
①、找出下面各组数的最小公倍数。
②、你是用什么方法找最小公倍数的?
③、通过找最小公倍数,你发现了什么?
1、1)、2和4的最小公倍数是
2)、8和4的最小公倍数是
3)、12和36的最小倍数是
2、1)、2和3的最小公倍数是
2)、4和5的最小公倍数是
3)、3和7的最小公倍数是
师:谁来回答第一个思考题?
师:你是用什么方法找的?
师:你发现了什么?
板书:贴出规律。
师:齐读一遍。
游戏:刚才我们学习了两组特殊数找最小公倍数的方法,下面我们
就用这个知识来玩一个游戏。
1)、老师出一组数,你们找出他们的最小公倍数,看哪个同学反应最快?(卡片:2和5、3和6)
2)、同学们反应真快,同桌之间也来玩。一人出题,一人出答案,相互进行。
师:这个游戏下课后可以继续玩,也可以和家人一起玩;这个知识在生活中也应用很广,请看:
从今天开始,小明的妈妈每工作2天休息一天,爸爸每工作3天也休息一天,爸爸、妈妈第一次同时休息要经过几天?(12天)
师:你是怎样想的?
师:谁还有不同的想法?
师:同意6的请举手,同意12的请举手。
师:究竟是6还是12呢?大家讨论。
师:请看电脑老师。
出示辅助图:
代表工作,代表休息。
爸爸:
妈妈:
师:那个对呢?为什么?
三、社会调查,渗透思想教育:
在日常生活和学习中,你发现还有哪些有应用最小公倍数的?
四、课堂小结:
今天你学习到什么知识?
五、布置作业:
1、预习例2。
2、第75页第3、7题。
板书设计:
最小公倍数
倍数→公倍数→最小公倍数
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
【最小公倍数教案】相关文章:
《最小公倍数》教案03-03
《最小公倍数》优秀教案02-23
最小公倍数优秀教案03-07
《最小公倍数》教案15篇03-05
公倍数与最小公倍数教案02-26
《最小公倍数》教案(精选10篇)05-25
《最小公倍数》教案五篇04-03
《最小公倍数》教案6篇10-12
《最小公倍数》教案4篇05-30
《最小公倍数》教案十篇04-15