人教版高一数学必修一教案
作为一名无私奉献的老师,有必要进行细致的教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。那么教案应该怎么写才合适呢?下面是小编收集整理的人教版高一数学必修一教案,欢迎大家借鉴与参考,希望对大家有所帮助。
人教版高一数学必修一教案1
教学目标:
1、理解集合的概念和性质。
2、了解元素与集合的表示方法。
3、熟记有关数集。
4、培养学生认识事物的能力。
教学重点:
集合概念、性质
教学难点:
集合概念的理解
教学过程:
1、定义:
集合:一般地,某些指定的对象集在一起就成为一个集合(集)。元素:集合中每个对象叫做这个集合的元素。
由此上述例中集合的.元素是什么?
例(1)的元素为1、3、5、7,
例(2)的元素为到两定点距离等于两定点间距离的点,
例(3)的元素为满足不等式3x—2> x+3的实数x,
例(4)的元素为所有直角三角形,
例(5)为高一·六班全体男同学。
一般用大括号表示集合,{?}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。则上几例可表示为??
为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(1)确定性;(2)互异性;(3)无序性。
3、元素与集合的关系:隶属关系
元素与集合的关系有“属于∈”及“不属于?(?也可表示为)两种。如A={2,4,8,16},则4∈A,8∈A,32?A。
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A记作a?A,相反,a不属于集A记作a?A(或)
注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q??
元素通常用小写的拉丁字母表示,如a、b、c、p、q??
2、“∈”的开口方向,不能把a∈A颠倒过来写。
4
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。
(2)非负整数集内排除0的集。记作NXX或N+ 。Q、Z、R等其它数集内排除0
的集,也是这样表示,例如,整数集内排除0的集,表示成ZXX
请回答:已知a+b+c=m,A={x|ax2+bx+c=m},判断1与A的关系。
人教版高一数学必修一教案2
一、教学目标
1、知识与技能:
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2、过程与方法:
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3、情感态度与价值观:
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪。
四、教学过程
(一)创设情景,揭示课题
1、由六根火柴最多可搭成几个三角形?(空间:4个)
2、在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?
3、展示具有柱、锥、台、球结构特征的空间物体。
问题:请根据某种标准对以上空间物体进行分类。
(二)、研探新知
空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;
旋转体(轴):圆柱、圆锥、圆台、球。
1、棱柱的`结构特征:
(1)观察棱柱的几何物体以及投影出棱柱的图片,思考:它们各自的特点是什么?共同特点是什么?
(学生讨论)
(2)棱柱的主要结构特征(棱柱的概念):
①有两个面互相平行;②其余各面都是平行四边形;③每相邻两上四边形的公共边互相平行。
(3)棱柱的表示法及分类:
(4)相关概念:底面(底)、侧面、侧棱、顶点。
2、棱锥、棱台的结构特征:
(1)实物模型演示,投影图片;
(2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。
棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。
棱台:且一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
3、圆柱的结构特征:
(1)实物模型演示,投影图片——如何得到圆柱?
(2)根据圆柱的概念、相关概念及圆柱的表示。
4、圆锥、圆台、球的结构特征:
(1)实物模型演示,投影图片
——如何得到圆锥、圆台、球?
(2)以类似的方法,根据圆锥、圆台、球的结构特征,以及相关概念和表示。
5、柱体、锥体、台体的概念及关系:
探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?
圆柱、圆锥、圆台呢?
6、简单组合体的结构特征:
(1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。
(2)实物模型演示,投影图片——说出组成这些物体的几何结构特征。
(3)列举身边物体,说出它们是由哪些基本几何体组成的。
(三)排难解惑,发展思维
1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱?(反例说明)
2、棱柱的何两个平面都可以作为棱柱的底面吗?
3、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
(四)巩固深化
练习:课本P7练习1、2;课本P8习题1.1第1、2、3、4、5题
(五)归纳整理:由学生整理学习了哪些内容
人教版高一数学必修一教案3
一、指导思想与理论依据
数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
二、教材分析
三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有非常重要的地位。
三、学情分析
本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。
四、教学目标
(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;
(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;
(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;
(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。
五、教学重点和难点
1.教学重点
理解并掌握诱导公式。
2.教学难点
正确运用诱导公式,求三角函数值,化简三角函数式。
六、教法学法以及预期效果分析
“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究。下面我从教法、学法、预期效果等三个方面做如下分析。
1.教法
数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质。
在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的`喜悦。
2.学法
“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情。如何能让学生程度的消化知识,提高学习热情是教者必须思考的问题。
在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。
3.预期效果
本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。
七、教学流程设计
(一)创设情景
1.复习锐角300,450,600的三角函数值;
2.复习任意角的三角函数定义;
3.问题:由,你能否知道sin2100的值吗?引如新课。
设计意图
自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法。
(二)新知探究
1.让学生发现300角的终边与2100角的终边之间有什么关系;
2.让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;
3.Sin2100与sin300之间有什么关系。
设计意图
由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫。
(三)问题一般化
探究一
1.探究发现任意角的终边与的终边关于原点对称;
2.探究发现任意角的终边和角的终边与单位圆的交点坐标关于原点对称;
3.探究发现任意角与的三角函数值的关系。
设计意图
首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二。同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进
(四)练习
利用诱导公式(二),口答下列三角函数值。
(1).;(2).;(3)..
喜悦之后让我们重新启航,接受新的挑战,引入新的问题。
(五)问题变形
由sin3000=-sin600出发,用三角的定义引导学生求出sin(-3000),Sin1500值,让学生联想若已知sin3000=-sin600,能否求出sin(-3000),Sin1500)的值。学生自主探究
人教版高一数学必修一教案4
教学目标
1、使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数确定的。
(2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式。
(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项。
2、通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力。
3、通过由求的过程,培养学生严谨的科学态度及良好的思维习惯。
教学建议
(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的'内容心中有数,如书中所给的例子,还有物品堆放个数的计算等。
(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系。在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列。函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法。由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法。
(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助。
(4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等。如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系。
(5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况。
(6)给出一些简单数列的通项公式,可以求其项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的。
人教版高一数学必修一教案5
【教学目标与解析】
1、教学目标
(1)理解函数的概念;
(2)了解区间的概念;
2、目标解析
(1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;
【问题诊断分析】在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。
【教学过程】
问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.
1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?
1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?
设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。
问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有的'一个臭氧层空洞面积S与之相对应。
问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。
设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。
问题4:上述三个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义?
4.1在一个函数中,自变量x和函数值y的变化范围都是集合,这两个集合分别叫什么名称?
4.2在从集合A到集合B的一个函数f:A→B中,集合A是函数的定义域,集合B是函数的值域吗?怎样理解f(x)=1,x∈R?
4.3一个函数由哪几个部分组成?如果给定函数的定义域和对应关系,那么函数的值域确定吗?两个函数相等的条件是什么?
人教版高一数学必修一教案6
教学目的:
(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;
(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
教学重点:
集合的交集与并集、补集的概念;
教学难点:
集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;
【知识点】
1、并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)
记作:A∪B读作:“A并B”
即:A∪B={x|x∈A,或x∈B}
Venn图表示:
第4 / 7页
A与B的所有元素来表示。 A与B的交集。
2、交集
一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的.交集(intersection)。
记作:A∩B读作:“A交B”
即:A∩B={x|∈A,且x∈B}
交集的Venn图表示
说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。
拓展:求下列各图中集合A与B的并集与交集
A
说明:当两个集合没有公共元素时,两个集合的交集是空集,不能说两个集合没有交集
3、补集
全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。
补集:对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementary set),简称为集合A的补集,
记作:CUA
即:CUA={x|x∈U且x∈A}
第5 / 7页
补集的Venn图表示
说明:补集的概念必须要有全集的限制
4、求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分
交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。
5、集合基本运算的一些结论:
A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩A
A?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A
(CUA)∪A=U,(CUA)∩A=?
若A∩B=A,则A?B,反之也成立
若A∪B=B,则A?B,反之也成立
若x∈(A∩B),则x∈A且x∈B
若x∈(A∪B),则x∈A,或x∈B
¤例题精讲:
【例1】设集合U?R,A?{x|?1?x?5},B?{x|3?x?9},求A?B,?U(A?B)。解:在数轴上表示出集合A、B。
【例2】设A?{x?Z||x|?6},B??1,2,3?,C??3,4,5,6?,求:
(1)A?(B?C);(2)A??A(B?C)。
【例3】已知集合A?{x|?2?x?4},B?{x|x?m},且A?B?A,求实数m的取值范围。
XX且x?N}【例4】已知全集U?{x|x?10,,A?{2,4,5,8},B?{1,3,5,8},求
CU(A?B),CU(A?B),(CUA)?(CUB),(CUA)?(CUB),并比较它们的关系。
【高一数学必修一教案】相关文章:
高一数学必修一教案02-06
语文高一必修一教案11-26
高一必修三语文教案03-26
高一人教版化学必修一教案12-05
人教版高一必修《涉江采芙蓉》精品教案07-19
高一语文必修1语文教案范文01-03
高一化学必修一说课稿02-05
高一历史必修一教学计划02-08