当前位置:育文网>教学文档>教案> 反比例函数教案优秀

反比例函数教案优秀

时间:2024-05-14 12:10:02 教案 我要投稿
  • 相关推荐

反比例函数教案优秀

  作为一名人民教师,总不可避免地需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。那么大家知道正规的教案是怎么写的吗?下面是小编帮大家整理的反比例函数教案优秀,仅供参考,欢迎大家阅读。

反比例函数教案优秀

反比例函数教案优秀1

  教学目标:

  1.能运用反比例函数的相关知识分析和解决一些简单的实际问题。

  2.在解决实际问题的过程中,进一步体会和认识反比例函数是刻

  画现实世界中数量关系的一种数学模型。

  教学重点运用反比例函数解决实际问题

  教学难点运用反比例函数解决实际问题

  教学过程:

一、情景创设

  引例:小丽是一个近视眼,整天眼镜不离鼻子,但自己一直不理解自己的眼镜配制的原理,很是苦闷,近来她了解到近视眼镜的度数y(度)与镜片的焦距为x(m)成反比例,并请教师傅了解到自己400度的近视眼镜镜片的焦距为0.2m,可惜她不知道反比例函数的概念,所以她写不出y与x的函数关系式,我们大家正好学过反比例函数了,谁能帮助她解决这个问题呢?

  反比例函数在生活、生产实际中也有着广泛的应用。

  例如:在矩形中S一定,a和b之间的.关系?你能举例吗?

  二、例题精析

  例1、见课本73页

  例2、见课本74页

  例3、某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(千帕)是气球体积V(米3)的反比例函数(1)写出这个函数解析式(2)当气球的体积为0.8m3时,气球的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积不小于多少立方米?

  四、课堂练习课本P74练习1、2题

  五、课堂小结反比例函数的应用

  六、课堂作业课本P75习题9.3第1、2题

  七、教学反思

反比例函数教案优秀2

  教学目标:

  1、能运用反比例函数的相关知识分析和解决一些简单的实际问题。

  2、在解决实际问题的过程中,进一步体会和认识反比例函数是刻

  画现实世界中数量关系的一种数学模型。

  教学重点运用反比例函数解决实际问题

  教学难点运用反比例函数解决实际问题

  教学过程:

一、情景创设

  引例:小丽是一个近视眼,整天眼镜不离鼻子,但自己一直不理解自己的眼镜配制的原理,很是苦闷,近来她了解到近视眼镜的度数y(度)与镜片的焦距为x(m)成反比例,并请教师傅了解到自己400度的近视眼镜镜片的焦距为0.2m,可惜她不知道反比例函数的概念,所以她写不出y与x的函数关系式,我们大家正好学过反比例函数了,谁能帮助她解决这个问题呢?

  反比例函数在生活、生产实际中也有着广泛的应用。

  例如:在矩形中S一定,a和b之间的.关系?你能举例吗?

  二、例题精析

  例1、见课本73页

  例2、见课本74页

  例3、某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(千帕)是气球体积V(米3)的反比例函数

  (1)写出这个函数解析式

  (2)当气球的体积为0.8m3时,气球的气压是多少千帕?

  (3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积不小于多少立方米?

  三、课堂练习课本P74练习1、2题

  四、课堂小结反比例函数的应用

  五、课堂作业课本P75习题9.3第1、2题

  六、教学反思

反比例函数教案优秀3

  教学目标:

  经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的 概念。

  教学程序:

 一、导入:

  1、从现实情况和已有知识经验出发,讨论两个变量之间的相依关系,加强对函数概念的理解,导入反比例函数。

  2 、U=IR,当U=220V时,(1)你能用含 R的代数式 表示I吗?

  (2)利用写出的关系式完成下表:

  R(Ω) 20 40 60 80 100

  I(A)

  当R越来越大时,I怎样 变化?

  当R越来越小呢?

  ( 3)变量I是R的函数吗?为什么?

  答:① I = UR

  ② 当R越来越大时,I越来越小,当R越来越小时,I越来越大。

  ③变量I是R的函数 。当给定一 个R的值时,相应地就确定了一个I值,因此I是R的函数。

  二、新授:

  1、反比例函数的概念

  一般地,如果两个变量x, y之间的`关系可以表示成 y=kx (k为常数,k≠0)的形式,那么称y是x的反比例函 数。

  反比例函数的自变量x 不能为零。

  2、做一做

  一个矩形的 面积为20cm2,相邻两条边长分别为xcm和 ycm,那么变量y是变量x的 函数吗?是反比例函数吗?

  解:y=20x ,是反比例函数。

  三、课堂练习

  P133,12

  四、作业:

  P133,习题5.1 1、2题

反比例函数教案优秀4

  教学目标:

  (一)教学知识点

  1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程。

  2、体会数学与现实。

  生活的紧密联系,增强应用意识。提高运用代数方法解决问题的能力

  (二)能力训练要求

  通过对反比例函数的应用,培养学生解决问题的能力。

  (三)情感与价值观要求

  经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题。理解问题,并能综合运用所学的知识和技能解决问题。发展应用意识,初步认识数学与人类生活的密切联系及对人类历史发展的作用。

  教学重点:

  用反比例函数的知识解决实际问题。

  教学难点:

  如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题。

  教学方法:

  教师引导学生探索法。

  教学过程:

  Ⅰ、创设问题情境,引入新课

  [师]有关反比例函数的表达式,图象的特征我们都研究过了,那么,我们学习它们的目的是什么呢?

  [生]是为了应用。

  [师]很好。学习的目的是为了用学到的`知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。

  Ⅱ、新课讲解

  投影片:(5.3A)

  某校科技小组进行野外考察,途中遇到片十几米宽的烂泥湿地。为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务。你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600N,那么:

  (1)用含S的代数式表示p,p是S的反比例函数吗?为什么?

  (2)当木板画积为0.2m2时。压强是多少?

  (3)如果要求压强不超过6000Pa,木板面积至少要多大?

  (4)在直角坐标系中,作出相应的函数图象。

反比例函数教案优秀5

一、知识与技能

  1、能灵活列反比例函数表达式解决一些实际问题。

  2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。

  二、过程与方法

  1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

  2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

  三、情感态度与价值观

  1、积极参与交流,并积极发表意见。

  2、体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

  教学重点:掌握从实际问题中建构反比例函数模型。

  教学难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

  教具准备

  1、教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等)。

  2、学生准备:

  (1)复习已学过的反比例函数的图象和性质

  (2)预习本节课的内容,尝试收集有关本节课的情境资料。

  教学过程

  一、创设问题情境,引入新课

  复习:反比例函数图象有哪些性质?

  反比例函数 y?k

  x 是由两支曲线组成,当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;

  当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大。

  二、讲授新课

  [例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。

  (1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?

  (2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?

  (3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。

  设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系。而关键是充分运用反比例函数分析实际情况,建立函数模型,并且利用函数的性质解决实际问题。

  师生行为:

  先由学生独立思考,然后小组内合作交流,教师和学生最后合作完成此活动。

  在此活动中,教师有重点关注:

  ①能否从实际问题中抽象出函数模型;

  ②能否利用函数模型解释实际问题中的现象;

  ③能否积极主动的阐述自己的见解。

  生:我们知道圆柱的容积是底面积×深度,而现在容积一定为104m3,所以S·d=104.变形就可得到底面积S与其深度d的函数关系,即S=

  所以储存室的底面积S是其深度d的反比例函数。

  104 生:根据函数S= ,我们知道给出一个d的值就有唯一的S的值和它相d

  对应,反过来,知道S的一个值,也可求出d的值。

  题中告诉我们“公司决定把储存室的底面积5定为500m2,即S=500m2,”施工队施工时应该向下挖进多深,实际就是求当S=500m2时,d=?m.根据S=104104 ,得500=,解得d=20. dd

  即施工队施工时应该向下挖进20米。

  生:当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石。为了节约建设资金,公司临时改变计划,把储存室的深度改为15m,即d=15m,相应的储存室的底面积应改为多少才能满足需要;即当d=15m,S=?m2呢?

  104 根据S=,把d=15代入此式子,得 d

  S=104 ≈666.67. 15104. d

  当储存室的探为15m时,储存室的底面积应改为666.67m2才能满足需要。 师:大家完成的很好。当我们把这个“煤气公司修建地下煤气储存室”的问题转化成反比例函数的数学模型时,后面的`问题就变成了已知函数值求相应自变量的值或已知自变量的值求相应的函数值,借助于方程,问题变得迎刃而解,  三、巩固练习

  1、(基础题)已知某矩形的面积为20cm2:

  (1)写出其长y与宽x之间的函数表达式,并写出x的取值范围;

  (2)当矩形的长为12cm时,求宽为多少?当矩形的宽为4cm,求其长为多少?

  (3)如果要求矩形的长不小于8cm,其宽至多要多少?

  2、(中档题)如图,某玻璃器皿制造公司要制造一种窖积为1升(1升=1立方分米)的圆锥形漏斗。

  (1)漏斗口的面积S与漏斗的深d有怎样的函数关系?

  (2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?

  设计意图:

  让学生进一步体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,更进一步激励学生学习数学的欲望。

  师生行为:

  由两位学生板演,其余学生在练习本上完成,教师可巡视学生完成情况,对“学困生”要提供一定的帮助,此活动中,教师应重点关注:①学生能否顺利建立实际问题的数学模型;②学生能否积极主动地参与数学活动,体验用数学模型解决实际问题的乐趣;③学生能否注意到单位问题。

  生:解:

  (1)根据圆锥体的体积公式,我们可以设漏斗口的面积为Scm,漏斗的深为dcm,则容积为1升=l立方分米=1000立方厘米。

  13000 所以,S·d=1000, S= 。 3d

  (2)根据题意把S=100cm2代入S=30003000中,得 100= 。d=30(cm)。 dd

  所以如果漏斗口的面积为100c㎡,则漏斗的深为30cm.

  3、(综合题)新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5X103m2.

  (1)所需的瓷砖块数n与每块瓷砖的面积s又怎样的函数关系?

  (2)为了使住宅楼的外观更加漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块砖的面积都是80cm2,灰、白、蓝瓷砖使用比例为2:2:1,则需要三种瓷砖各多少块?

  四、小结

  1、通过本节课的学习,你有哪些收获?

  列实际问题的反比例函数解析式

  (1)列实际问题中的函数关系式首先应分析清楚各变量之间应满足的分式,即实际问题中的变量之间的关系立反比例函数模型解决实际问题;

  (2)在实际问题中的函数关系式时,一定要在关系式后面注明自变量的取值范围。

  2、利用反比例函数解决实际问题的关键:建立反比例函数模型。

  五、布置作业

  P54—55.第2题、第5题

  六、课时小结

  本节课是用函数的观点处理实际问题,并且是蕴含着体积、面积这样的实际问题,而解决这些问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么?可以是什么?逐步形成考察实际问题的能力,在解决问题时,应充分利用函数的图象,渗透数形结合的思想。

反比例函数教案优秀6

  【教学目的】

  1、知识目标:经历观察、归纳、交流的过程,探索反比例函数的主要性质及其图像形状。

  2、能力目标:提高学生的观察、分析能力和对图形的'感知水平。

  3、情感目标:让学生进一步体会反比例函数刻画现实生活问题的作用。

  【教学重点】

  探索反比例函数图象的主要性质及其图像形状。

  【教学难点】

  1、准确画出反比例函数的图象。

  2、准确掌握并能运用反比例函数图象的性质。

  【教学过程】

  活动1、汇海拾贝

  让学生回忆我们所学过得一次函数y=kx+b(k≠0),说出画函数图像的一般步骤。(列表、描点、连线),对照图象回忆一次函数的性质。

  活动2、学海历练

  让学生仿照画一次函数的方法画反比例函数y=2/x和y=—2/x的图像并观察图像的特点

  活动3、成果展示

  将各组的成果展示在大家的面前,并纠正可能出现的问题。

  活动4、行家看台

  1、反比例函数的图象是双曲线

  2、当k>0时,两支双曲线分别位于第一,三象限内当k<0时,两支双曲线分别位于第二,四象限内

  3、双曲线会越来越靠近坐标轴,但不会与坐标轴相交

  活动5、星级挑战

  活动6、终极挑战

  如图,矩形abcd的对角线bd经过坐标原点,矩形的边分别平行于坐标轴,点c在反比例函数y=(k2—5k—10)/x的图像上,若点a的坐标是(—2,—2)则k的值为?

【反比例函数教案优秀】相关文章:

反比例函数教案02-14

《反比例函数图像和性质》说课稿07-06

反比例函数教案第一课时01-22

反比例函数教学反思(通用20篇)02-20

初中数学反比例函数知识点11-02

初中数学反比例函数知识点归纳08-05

《反比例函数图像和性质》说课稿2篇11-22

反比例教案02-17

《函数的应用》教案02-26

反比例的意义教案04-01