当前位置:育文网>教学文档>教案> 圆数学教案

圆数学教案

时间:2024-05-19 13:02:54 教案 我要投稿

圆数学教案

  作为一名默默奉献的教育工作者,常常要根据教学需要编写教案,教案是教学活动的总的组织纲领和行动方案。怎样写教案才更能起到其作用呢?下面是小编收集整理的圆数学教案,希望对大家有所帮助。

圆数学教案

圆数学教案1

  教学目标:

  1、在复习巩固圆面积、扇形面积的计算的基础上,会计算弓形面积;

  2、培养学生观察、理解能力,综合运用知识分析问题和解决问题的能力;

  3、通过面积问题实际应用题的解决,向学生渗透理论联系实际的观点.

  教学重点:扇形面积公式的导出及应用.

  教学难点:对图形的分解和组合、实际问题数学模型的建立.

  教学活动设计:

  (一)概念与认识

  弓形:由弦及其所对的弧组成的图形叫做弓形.

  弦AB把圆分成两部分,这两部分都是弓形.弓形是一个最简单的组合图形之一.

  (二)弓形的面积

  提出问题:怎样求弓形的面积呢?

  学生以小组的形式研究,交流归纳出结论:

  (1)当弓形的弧小于半圆时,弓形的面积等于扇形面积与三角形面积的差;

  (2)当弓形的弧大于半圆时,它的面积等于扇形面积与三角的面积的和;

  (3)当弓形弧是半圆时,它的面积是圆面积的一半.

  理解:如果组成弓形的弧是半圆,则此弓形面积是圆面积的一半;如果组成弓形的弧是劣弧则它的面积等于以此劣弧为弧的扇形面积减去三角形的面积;如果组成弓形的弧是优弧,则它的面积等于以此优弧为弧的扇形面积加上三角形的面积.也就是说:要计算弓形的面积,首先观察它的弧属于半圆?劣弧?优弧?只有对它分解正确才能保证计算结果的正确.

  (三)应用与反思

  练习:

  (1)如果弓形的弧所对的'圆心角为60°,弓形的弦长为a,那么这个弓形的面积等于_______;

  (2)如果弓形的弧所对的圆心角为300°,弓形的弦长为a,那么这个弓形的面积等于_______.

  (学生独立完成,巩固新知识)

  例3、水平放着的圆柱形排水管的截面半径是0.6m,其中水面高是0.3m.求截面上有水的弓形的面积.(精确到0.01m2)

  教师引导学生并渗透数学建模思想,分析:

  (1)“水平放着的圆柱形排水管的截面半径是0.6m”为你提供了什么数学信息?

  (2)求截面上有水的弓形的面积为你提供什么信息?

  (3)扇形、三角形、弓形是什么关系,选择什么公式计算?

  学生完成解题过程,并归纳三角形OAB的面积的求解方法.

  反思:①要注重题目的信息,处理信息;②归纳三角形OAB的面积的求解方法,根据条件特征,灵活应用公式;③弓形的面积可以选用图形分解法,将它转化为扇形与三角形的和或差来解决.

  例4、已知:⊙O的半径为R,直径AB⊥CD,以B为圆心,以BC为半径作 .求 与 围成的新月牙形ACED的面积S.

  解:∵ ,

  有∵ ,

  , ,

  ∴ .

  组织学生反思解题方法:图形的分解与组合;公式的灵活应用.

  (四)总结

  1、弓形面积的计算:首先看弓形弧是半圆、优弧还是劣弧,从而选择分解方案;

  2、应用弓形面积解决实际问题;

  3、分解简单组合图形为规则圆形的和与差.

  (五)作业 教材P183练习2;P188中12.

圆数学教案2

  教学目标:

  1.使学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

  2.使学生进一步体会“转化”方法的价值,培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力.

  教学过程:

  一、导入新课

  1.谈话:关于圆这个图形,我们已经认识了它的特征和画法,还掌握了它的周长公式,今天我们要继续学习圆的有关知识。那么你还想学习关于圆的哪些知识呢?(学生回答后揭示课题:圆的面积)

  2.追问:你认为要学习圆的面积,我们需要研究哪些问题?

  根据学生的回答重点整理出:(1)圆的面积公式是怎样的?(2)怎样推导出圆的面积公式?

  二、教学例7

  1.初步猜想:猜一猜圆的面积可能与什么有关?

  2.实验验证:圆的面积与半径或直径究竟有着怎样的关系呢?我们可以来做个实验。

  (1)教师逐步出示例题中的第一幅图:先出示正方形,再以。正方形的边长为半径画一个圆。

  提问:①图中正方形的面积与圆的半径有什么关系?②猜一猜,圆的面积大约是正方形的几倍?

  (2)指出:只用一个圆,还不足以验证猜想,我们再找两个圆,并用上面的方法算一算。

  让学生观察例题中的下面两幅图,计算并填写图下的表格。

  3.交流归纳:从上面的过程中,你能发现圆的面积和它的半径之间有什么关系吗?

  学生交流中相机总结:(1)圆的面积是它的半径平方的3倍多一些。(2)圆的面积可能是半径·平方的丌倍。

  三、,教学例8

  1.谈话导人:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些。那么圆的面积究竟应该怎样来计算呢?我们继续学习。

  2.操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。再让学生用预先已经平均分成l6份的圆,仿照教师的拼法拼一拼。

  提问:拼成的图形像个什么图形?

  追问:为什么说它像一个平行四边形?(拼成的图形上下的边不够直)

  3.初步想像:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比将会有怎样的变化?用实物或投影演示,验证或修正学生的想像。

  4.进一步想像:如果将圆平均分成64份、128份......也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?

  交流后,教师出示如教科书所示的箭头、省略号、长方形虚线框。

  5.推导公式。

  (1)拼成的长方形与原来的'圆有什么联系?在小组里讨论交流。

  交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽是圆半径;长方形的长是圆周长的一半。

  追问:如果圆的半径是厂,长方形的长和宽各应怎样表示?(重点引导学生理解c/2=2πr/2=πr)

  (2)根据长方形面积的计算方法,怎样来计算圆的面积?

  得出公式:S=πr。

  追问:①看着公式再回忆一下刚才的猜想,圆的面积是半径平方的多少倍?②有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?

  6.做“练一练”。

  核对答案后,先引导学生比较两题的不同之处,再引导学生总结已知直径求圆面积的方法。

  四、教学例9

  1.谈话导人:在日常生活中,经常会遇到与圆面积计算有关的实际问题:

  2.出示例9。学生读题后,可以先问问学生有没有在生活中见过自动旋转喷水器,再让学生想像自动旋转喷水器旋转一周后喷灌的地方是什么图形,最后借助多媒体动画或挂图帮助学生理解喷灌的地方是一个近似的圆,圆的半径就是喷水的最远距离。

  3.学生独立列式解答,并组织交流。

  五、做练习十九的第1题

  1.指名读题,并要求说说对题意的理解。

  2.学生独立尝试解答。

  3.反馈交流。对解答错误的学生帮助其分析错误的原因。

圆数学教案3

  教学目标:

  (1)巩固正多边形的有关概念、性质和定理;

  (2)通过证明和画图提高学生综合运用分析问题和解决问题的能力;

  (3)通过例题的研究,培养学生的探索精神和不断更新的创新意识及选优意识。

  教学重点:

  综合运用正多边形的有关概念和正多边形与圆关系的有关定理来解决问题,要理解通过对具体图形的证明所给出的一般的证明方法,还要注意与前面所学知识的联想和化归。

  教学难点:

  综合运用知识证题。

  教学活动设计

  (一)知识回顾

  1。什么叫做正多边形?

  2。什么是正多边形的中心、半径、边心距、中心角?

  3。正多边形有哪些性质?(边、角、对称性、相似性、有两圆且同心)

  4。正n边形的每个中心角都等于。

  5。正多边形的有关的定理。

  (二)例题研究:

  例1、求证:各角相等的圆外切五边形是正五边形。

  已知:如图,在五边形ABCDE中,∠A=∠B=∠C=∠D=∠E,边AB、BC、CD、DE、EA与⊙O分别相切于A’、B’、C’、D’、E’。

  求证:五边形ABCDE是正五边形。

  分析:要证五边形ABCDE是正五边形,已知已具备了五个角相等,显然证五条边相等即可。

  教师引导学生分析,学生动手证明。

  证法1:连结OA、OB、OC,

  ∵五边形ABCDE外切于⊙O。

  ∴∠BAO=∠OAE,∠OCB=∠OCD,∠OBA=∠OBC,

  又∵∠BAE=∠ABC=∠BCD。

  ∴∠BAO=∠OCB。

  又∵OB=OB

  ∴△ABO≌△CBO,∴AB=BC,同理BC=CD=DE=EA。

  ∴五边形ABCDE是正五边形。

  证法2:作⊙O的半径OA’、OB’、OC’,则

  OA’⊥AB,OB’⊥BC、OC’⊥CD。

  ∠B=∠C∠1=∠2=。

  同理===,

  即切点A’、B’、C’、D’、E’是⊙O的5等分点。所以五边形ABCDE是正五边形。

  反思:判定正多边形除了用定义外,还常常用正多边形与圆的关系定理1来判定,证明关键是证出各切点为圆的等分点。由同样的方法还可以证明“各角相等的圆外切n边形是正边形”。

  此外,用正多边形与圆的关系定理1中“把圆n等分,依次连结各分点,所得的多边形是圆内接正多边形”还可以证明“各边相等的圆内接n边形是正n边形”,证明关键是证出各接点是圆的等分点。

  拓展1:已知:如图,五边形ABCDE内接于⊙O,AB=BC=CD=DE=EA。

  求证:五边形ABCDE是正五边形。(证明略)

  分小组进行证明竞赛,并归纳学生的证明方法。

  拓展2:已知:如图,同心圆⊙O分别为五边形ABCDE内切圆和外接圆,切点分别为F、G、H、M、N。

  求证:五边形ABCDE是正五边形。(证明略)

  学生独立完成证明过程,对B、C层学生教师给予及时指导,最后可以应用实物投影展示学生的证明成果,特别是对证明方法好,步骤推理严密的学生给予表扬。

  例2、已知:正六边形ABCDEF。

  求作:正六边形ABCDEF的外接圆和内切圆。

  作法:1过A、B、C三点作⊙O。⊙O就是所求作的正六边形的外接圆。

  2、以O为圆心,以O到AB的距离(OH)为半径作圆,所作的圆就是正六边形的内切圆。

  用同样的方法,我们可以作正n边形的.外接圆与内切圆。

  练习:P161

  1、求证:各边相等的圆内接多边形是正多边形。

  2、(口答)下列命题是真命题吗?如果不是,举出一个反例。

  (1)各边相等的圆外切多边形是正多边形;

  (2)各角相等的圆内接多边形是正多边形。

  3、已知:正方形ABCD。求作:正方形ABCD的外接圆与内切圆。

  (三)小结

  知识:复习了正多边形的定义、概念、性质和判定方法。

  能力与方法:重点复习了正多边形的判定。正多边形的外接圆与内切圆的画法。

  (四)作业

  教材P172习题4、5;另A层学生:P174B组3、4。

  探究活动

  折叠问题:(1)想一想:怎样把一个正三角形纸片折叠一个最大的正六边形。

  (提示:①对折;②再折使A、B、C分别与O点重合即可)

  (2)想一想:能否把一个边长为8正方形纸片折叠一个边长为4的正六边形。

  (提示:可以。主要应用把一个直角三等分的原理。参考图形如下:

  ①对折成小正方形ABCD;

  ②对折小正方形ABCD的中线;

  ③对折使点B在小正方形ABCD的中线上(即B’);

  ④则B、B’为正六边形的两个顶点,这样可得满足条件的正六边形。)

  探究问题:

  (安徽省20xx)某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:

  甲同学:这种多边形不一定是正多边形,如圆内接矩形;

  乙同学:我发现边数是6时,它也不一定是正多边形。如图一,△ABC是正三角形,形,==,可以证明六边形ADBECF的各内角相等,但它未必是正六边形;

  丙同学:我能证明,边数是5时,它是正多边形。我想,边数是7时,它可能也是正多边形。

  (1)请你说明乙同学构造的六边形各内角相等。

  (2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图二)是正七边形(不必写已知、求证)。

  (3)根据以上探索过程,提出你的猜想(不必证明)。

  (1)[说明]

  (2)[证明]

  (3)[猜想]

  解:(1)由图知∠AFC对。因为=,而∠DAF对的=+=+=。所以∠AFC=∠DAF。

  同理可证,其余各角都等于∠AFC。所以,图1中六边形各内角相。

  (2)因为∠A对,∠B对,又因为∠A=∠B,所以=。所以=。

  同理======。所以七边形ABCDEFG是正七边形。

  猜想:当边数是奇数时(或当边数是3,5,7,9,……时),各内角相等的圆内接多边形是正多边形。

圆数学教案4

  教案目标:

  1、认识圆形,能区分圆形与其它形状;

  2、能举出生活中的圆形物体;

  3、能初步了解圆形在生活中的用途。

  教案准备:

  1、五张画有圆形的纸;一张画三角形的纸,一张画正方形的纸。

  2、小羊、小鸡、小熊、小猫、小狗、小兔头饰各一个。

  3、轮胎、呼拉圈、镜子、足球、碟片各一。

  教案过程:

  1、认识圆形:出示画有圆形的纸,幼儿观察。

  教师:这是什么啊?幼儿答。

  教师:对了,有的小朋友说是圆圈圈。今天我们就是讲这个圆。它叫圆形,跟老师念:圆形。它长得圆乎乎的,没有角,没有边,像圆圆的饼干,也像圆圆的太阳,也像圆圆的皮球。

  2、区分圆形与正方形、三角形:同时出示正方形、三角形、圆形,让幼儿观察并区分是否是圆形。

  3、画圆形:幼儿伸出右手在空中画圆:跟着老师先确定一个起点,向左转圆圆地转向右边再回到起点,就像圆圆的`太阳升起在天空,也像圆圆的足球放在地上。

  4、导入故事讲述:我们认识了圆、区分了圆、也画了圆,小朋友们知道圆在生活中的用途吗?请听故事:《小羊卖圆》。请五位幼儿协助老师讲述故事。

  5、听了故事,小朋友们也看到了生活中的圆的应用,那你们还能不能找出其它的圆形物体呢?幼儿举手回答。教师记录。

  6、结束部分:游戏《拉个圆圈走一走》。

  教师:小朋友们认识了圆形,那我们现在用小手来做个大圆圈好不好?开始游戏。

  活动延伸:

  让幼儿回家同家长一起找家中的圆形物品,加深对圆形的认识。

圆数学教案5

  教学内容:

  六年制小学数学教科书第十一册第一单元《圆的面积》中的第一节课,数学-圆的面积。

  教学目的:

  1、通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  2、能正确地应用圆面积计算公式进行圆面积的`计算,并能解答有关圆的实际问题。

  教学重点:

  理解和掌握圆面积的计算公式的推导过程

  教学难点:

  圆面积计算公式的推导

  教学过程:

 一、创设情境,提出问题

  (课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题)

  生:1羊走一圈有多长?

  2羊最多能吃到多少草?

  3羊能吃到草的最大面积是多少?

  二、引导探究,构建模型

  A:启发猜想

  师:羊吃到草的最大面积最大是圆形:

  1、这个圆的面积有多大猜猜看;

  2、试想圆的面积和哪些条件有关?

  3、怎样推导圆的面积公式?(生试说)

  B:分组实验,发现模型

  学生分小组将平均分成16等分、32等分的圆放在桌上自由拼摆,拼成以前学过的平面图形摆好后想一想:

  1、你摆的是什么图形?

  2、你摆的图形与圆的面积有什么关系?

  3、图形各部分相当于圆的什么?

  4、你如何推导出圆的面积?

  请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况。

  三、应用知识,拓展思维

  1、师:要求圆的面积必须知道什么?

  2、运用公式计算面积

  A完成羊吃草的面积

  B完成课后“做一做”

  C一个圆的直径是10厘米,它的面积是多少平方厘米?

  D找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

  测量物直径(厘米)半径(厘米)面积(平方厘米)

  3、应用知识解决身边的实际问题(知识应用)

  下面是一个体育场的平面图,请你算一算跑道的周长是多少米?长方形体育场的占地面积是多少平方米?学校要请师傅给体育场铺草皮,已知每平方米的草皮是2.4元,学校一共要付多少钱才能完成?

  四、归纳总结,完善认知

  今天学了什么,这些知识我们是用什么方法学来的,你懂得了什么?

圆数学教案6

  【教学内容】

  圆的周长

  【教学目标】

  知识与技能:

  1、让学生知道什么是圆的周长。

  2、理解并掌握圆周率的意义和近似值。

  3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。

  过程与方法:让学生通过测量几组圆的直径和周长,自主发现周长和直径的比值是一个固定值,从而引出圆周率的.概念,并总结出圆的周长计算公式。

  情感、态度与价值观:培养和发展学生的空间观念,培养学生抽象概括能力和解决简单的实际问题能力。

  【教学重难点】

  重点:理解和掌握圆的周长的计算公式。

  难点: 对圆周率的认识。

  【知识回顾】

  圆的周长与直径之间有何关系?

  【新知探究】

  例1、一辆自行车的轮子半径大约是33厘米,它转动一同,大约可以走多远?(结果保留整米数)小明家离学校1KM,轮子大约转了多少圈?

  C=2 r

  2×3.14×33=2.7.24≈2(m)

  1km=1000m

  1000÷2=500(圈)

  答:………

  【知识梳理】

  本节课你学习了哪些知识?

  【随堂练习】

  1、一张圆桌面的直径是0.95米,求它的周长是多少米?(得数保留两位小数)

  2、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?

  3、钟面直径40厘米,钟面的周长是多少厘米?

  4、钟面分针长10厘米,它旋转一周针尖走过多少厘米?

  5、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?

圆数学教案7

  教学 目标:

  (1)掌握圆的一般方程及其特点.

  (2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径.

  (3)能用待定系数法,由已知条件求出圆的一般方程.

  (4)通过本节课学习,进一步掌握配方法和待定系数法.

  教学 重点:

  (1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径.

  (2)用待定系数法求圆的方程.

  教学 难点:

  圆的一般方程特点的研究.

  教学 用具:

  计算机.

  教学 方法:

  启发引导法,讨论法.

  教学 过程

  【引入】

  前边已经学过了圆的标准方程

  把它展开得

  任何圆的方程都可以通过展开化成形如

  ①

  的方程

  【问题1】

  形如①的方程的曲线是否都是圆?

  师生共同讨论分析:

  如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的.我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得

  ②

  显然②是不是圆方程与 是什么样的数密切相关,具体如下:

  (1)当 时,②表示以 为圆心、以 为半径的圆;

  (2)当 时,②表示一个点 ;

  (3)当 时,②不表示任何曲线.

  总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示.

  圆的一般方程的定义:

  当 时,①表示以 为圆心、以 为半径的圆,

  此时①称作圆的一般方程.

  即称形如 的方程为圆的一般方程.

  【问题2】圆的一般方程的特点,与圆的标准方程的异同.

  (1) 和 的系数相同,都不为0.

  (2)没有形如 的二次项.

  圆的一般方程与一般的二元二次方程

  ③

  相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件.

  圆的一般方程与圆的标准方程各有千秋:

  (1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然.

  (2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用.

  【实例分析】

  例1:下列方程各表示什么图形.

  (1) ;

  (2) ;

  (3) .

  学生演算并回答

  (1)表示点(0,0);

  (2)配方得 ,表示以 为圆心,3为半径的圆;

  (3)配方得 ,当 、 同时为0时,表示原点(0,0);当 、 不同时为0时,表示以 为圆心, 为半径的圆.

  例2:求过三点 , , 的圆的方程,并求出圆心坐标和半径.

  分析:由于学习了圆的标准方程和圆的一般方程,那么本题既可以用标准方程求解,也可以用一般方程求解.

  解:设圆的方程为

  因为 、 、 三点在圆上,则有

  解得: , ,

  所求圆的方程为

  可化为

  圆心为 ,半径为5.

  请同学们再用标准方程求解,比较两种解法的.区别.

  【概括总结】通过学生讨论,师生共同总结:

  (1)求圆的方程多用待定系数法.其步骤为:由题意设方程(标准方程或一般方程);根据条件列出关于待定系数的方程组;解方程组求出系数,写出方程.

  (2)如何选用圆的标准方程和圆的一般方程.一般地,易求圆心和半径时,选用标准方程;如果给出圆上已知点,可选用一般方程.

  下面再看一个问题:

  例3: 经过点 作圆 的割线,交圆 于 、 两点,求线段 的中点 的轨迹.

  解:圆 的方程可化为 ,其圆心为 ,半径为2.设 是轨迹上任意一点.

  ∵

  ∴

  即

  化简得

  点 在曲线上,并且曲线为圆 内部的一段圆弧.

  【练习巩固】

  (1)方程 表示的曲线是以 为圆心,4为半径的圆.求 、 、 的值.(结果为4,-6,-3)

  (2)求经过三点 、 、 的圆的方程.

  分析:用圆的一般方程,代入点的坐标,解方程组得圆的方程为 .

  (3)课本第79页练习1,2.

  【小结】师生共同总结:

  (1)圆的一般方程及其特点.

  (2)用配方法化圆的一般方程为圆的标准方程,求圆心坐标和半径.

  (3)用待定系数法求圆的方程.

  【作业】课本第82页5,6,7,8.

  【 板书 设计】

  圆的一般方程

  圆的一般方程

  例1:

  例2:

  例3:

  练习:

  小结:

  作业:

圆数学教案8

  学习目标:

  1. 了解圆的定义,理解弧、弦、半圆、直径等有关圆的概念.

  2. 从感受圆在生活中大量存在到圆形及圆的形成过程,探索圆的有关概念.

  重点、难点:

  1、 重点:圆的相关概念

  2、 难点:理解圆的相关概念

  教学过程:

  [课前预习]

  1、知识准备

  (1)举出生活中的圆的例子.

  (2)圆既是 对称图形,

  又是 对称图形。

  (3)圆的周长公式C=

  圆的面积公式S=

  2、探究

  (1)圆的定义1:在一个平面内,线段OA绕它固定的一个端点O旋转 ,另一个端点所形成的图形叫做 .固定的'端点O叫做 ,线段OA叫做 .以点O为圆心的圆,记作“ ”,读作“ ”

  决定圆的位置, 决定圆的大小。

  圆的定义2:到 的距离等于 的点的集合.

  (2)弦:连接圆上任意两点的 叫做弦

  直径:经过圆心的 叫做直径

  (3)弧: 任意两点间的部分叫做圆弧,简称弧

  半圆:圆的任意一条 的两个端点把圆分成两条弧,每一条 都叫做半圆

  优弧: 半圆的弧叫做优弧。用 个点表示,如图中 叫做优弧

  劣弧: 半圆的弧叫做劣弧。用 个点表示,如图中 叫做劣弧

  等圆:能够 的两个圆叫做等圆

  等弧:能够 的弧叫做等弧

  [课堂活动]

  活动1:预习反馈

  活动2:典型例题

  例1 如果四边形ABCD是矩形,它的四个顶点在同一个圆上吗?如果在,这个圆的圆心在哪里?

  例2 已知:如图,在⊙中,AB,CD为直径

  求证:

  活动3:随堂训练

  1、 如何在操场上画一个半径是5m的圆?说出你的理由。

  2、 你见过树木的年轮吗?从树木的年轮,可以很清楚的看出树木生长的年轮。把树木的年轮看成是圆形的,如果一棵20年树龄的红杉树的树干直径是23cm,这棵红杉树的半径平均每年增加多少?

  活动4:课堂小结

圆数学教案9

  【活动目标】

  1、认识半圆和椭圆,能从许多图形中找出这两种图形,并能点数其数量。

  2、能从活动中体验圆与半圆、椭圆之间的异同,拼出自己感兴趣的物体。

  3、引发幼儿学习图形的兴趣。

  4、发展幼儿的观察力、空间想象能力。

  【活动准备】

  1、圆,半圆,椭圆,数量若干(每种同类图形的大小,颜色有区别,如有红圆,绿圆,大圆小圆等)。

  2、用几种图形拼成的金鱼、熊猫等。

  3、操作材料每人一份。

  【活动过程】

  一、认识半圆和椭圆,区分他们与圆的不同。

  1、认识半圆,并与圆做比较。

  (出示圆)这是什么?圆宝宝会变魔术,看看他变成了什么?半圆和圆有什么不一样?

  2、认识椭圆并与圆做比较。

  圆宝宝又要变了,现在又变成了什么?

  (出示椭圆)谁知道这个图形叫什么?椭圆和圆有什么不同?

  二、游戏:看谁拿的对。

  游戏:每个幼儿手拿一个圆形(圆、半圆或椭圆)

  例如:教师说圆宝宝,手拿圆形的小朋友把手举高并大声说我是圆形。

  三、在拼贴的图形中找出半圆和椭圆,并用电子表现其数量。

  1、出示拼贴好的金鱼,让幼儿找一找哪里是半圆和椭圆,并能数出他的圆、半圆和椭圆的数量,并用数字来表示。

  2、出示拼贴好的熊猫,让幼儿找一找哪里是半圆哪里是椭圆形,并能数出他的圆、半圆和椭圆的数量,并用数字来表示。

  四、幼儿操作,展示幼儿作品。

  活动反思:

  此次活动中

  1.首先在时间的控制上,没有能够准确的把握好时间,所以最后的'展示操作进行评说没有能够很好的进行。

  2.在纪律上,以后还要多多的加强小朋友们好的日常行为习惯的培养,控制好课堂的纪律。

  3.本次活动的重难点有些不突出,在让幼儿找圆和半圆的时候,应该把椭圆也一起放在图形中,让幼儿的知识及时得以巩固。

  4.展示图形组成的图案时,没有能够很好的和操作材料进行结合演示。

  这次的教研活动不能说是成功的,但我也学习了很多,我想我会在以后的学习中,多多的思考,多多的提问,多多的记录,不断提升自己的业务水平,让幼儿们在轻松愉快的氛围中,快乐的学习,开心的成长。

圆数学教案10

  一、教学目标

  (一)知识与技能

  根据生活实际,通过观察、操作、自学教材等活动认识圆,掌握圆的特征,了解圆的各部分名称并能用字母表示对应的名称。

  (二)过程与方法

  了解可以应用不同的工具画圆,掌握用圆规画圆的方法,会用圆规正确地画圆。运用画、折、量等多种手段,理解同圆或等圆中半径和直径的特征和关系。

  (三)情感态度和价值观

  通过对圆的了解,进一步体会数学和日常生活的密切联系,提高数学学习的兴趣。

  二、教学重难点

  教学重点:圆的各部分名称和特征,用圆规正确地画圆。

  教学难点:归纳并理解半径和直径的`关系。

  三、教学准备

  多媒体课件、学具(圆规、尺子、剪刀、绳、钉子、各种物体表面有圆形的实物等)。

  四、教学过程

  (一)情境创设,揭示课题

  1.谈话引入。

  教师:我们学过的平面图形有哪些?

  (1)学生回忆交流:有长方形、正方形、三角形、平行四边形、圆……

  (2)今天我们要更深入地来认识“圆”。(板书课题:圆的认识。)

  2.列举生活实例。

  教师:在生活中,圆形的物体随处可见。

  (1)展示教材图片:从奇妙的自然界到文明的人类社会,从手工艺品到各种建筑……到处都可以看到大大小小的圆。

  (2)教师:你能说说自己所见过的圆吗?(学生列举回答。)

  【设计意图】通过简短的“平面图形有哪些”的谈话直接引出课题,简洁明了,同时无形中也巩固了“圆是平面图形”这一知识点;学生对圆已有一定的认识,因此通过主题图欣赏生活中的圆,让学生找找自己生活中见过的圆,使学生对圆有了初步的了解,激发了进一步学习圆的兴趣。

  (二)利用素材,尝试画圆

  1.尝试运用不同的工具画圆。

  教师:如果请你在纸上画出一个圆,你会怎样画?

  预设:

  (1)利用圆形的实物模型的外框画圆;

  (2)用线绕钉子旋转画圆;

  (3)用三角尺;

  (4)用圆规……

  2.运用圆规画圆。

  (1)认识圆规。

  课件出示圆规图片,帮助学生认识圆规。

  圆规的组成:一只“带有针尖的脚”,一只“装有铅笔的脚”。

  (2)用圆规画圆。

  学生自己尝试画圆,边尝试边小结方法:定好两脚间的距离——把带有针尖的脚固定在一点上——把装有铅笔的脚旋转一周,就画出一个圆。

  教师:说说用圆规画圆要注意什么?

  预设:

  ①固定住针尖;

  ②两只脚之间的距离不随意改变。

  【设计意图】学习画圆的过程让学生充分经历了自主尝试的过程,从最初的利用实物外框、三角尺等工具画圆,让学生经历了从实物抽象出平面图形的过程;运用圆规画圆,重点说说画圆时的注意事项,更是培养了学生自主解决问题的数学素养。

圆数学教案11

  【教学内容】

  北师大版小学数学第十一册第一单元P16--18圆的面积

  【教学目标】

  1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

  2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

  3、在估一估和探究圆面积公式的活动中,体会化曲为直的思想,初步感受极限思想。

  【教学重点】

  能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

  【教具准备】

  投影仪,CAI课件,等分好的圆形纸片。

  【学具准备】

  等分好的圆形纸片。

  【教学设计】

  【教学过程】

  【教学过程说明】

  一、 创设情境。提出问题

  (投影出示P16中草坪喷水插图)

  师:请同学们观察这幅插图,说说从图中你能发现数学知识吗?

  学生观察并讨论,然后指名回答。

  生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。

  生2:对,这个圆形的半径就是喷头喷水的距离,也就是5米;周长也就是喷水所走过的路线;

  生3:我补充一点,这个圆形的中心就是喷头所在的地方。

  师:同学们说得很好。晴大家说说这个圆形的面积指的是哪部分呢?

  生4:被喷到水的草坪大小就是这个圆形的面积。

  师:说得很好,今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)

  二、探究思考。解决问题

  1、估计圆面积大小

  师:请大家估计半径为5米的圆面积大约是多大?

  (让同学们充分发挥自己感官,估计草坪面积大小)

  2、用数方格的方法求圆面积大小

  ①投影出示P16方格图,让同学们看懂图意后估算圆的'面积,学生可以讨论交流。

  ②指明反馈估算结果,并说明估算方法及依据。

  生1、我是根据圆里面的正方形来估计的,外面

  方格图面积为1010=100平方米,圆里面的正方形面积大约为50平方米,那么这个圆形的面积大约在50--100平方米之间;

  生2:我是用数方格的方法来估计的。我把这个圆形平均分成4份,其中一份大约为20平方米,那么这个圆形的面积约有80平方米;

  生3:还可以通过计算来得到圆的面积。圆形外面的正方形可以看作边长为2r的正方形,面积就是2r2r=4r2

  而圆形里面的正方形可以看作由4个小三角形拼成的正方形,三角形的直角边长为r,则一个三角形的面积是rr2=1/2r2,;那么四个三角形的面积即是41/2r2=2r2,那么圆形面积大约为3r2,

  师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。

  三、探索规律

  1、由旧知引入新知

  师:大家还记得我们以前学习的平行四边形、三角形、

  梯形面积分别是由哪些图形的面积来的吗?

  (学生回答,教师订正。

  那么圆形的面积可由什么图形面积得来呢。

  2、探索圆面积公式

  师:拿出我们剪好的图形拼一拼,看看能成为一个什

  么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)

  生:我拼成的图形接近一个平行四边形,平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。

  师:说得很好,大家看看自己拼成的图形与刚才这个同学说的是否一样呢?

  生:我拼成的图形更接近于长方形,这个长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。

  (学生在说的同时教师注意板书)

  师:现在请大家来观察一下刚才两个同学拼成的图形,哪个更接近长方形呢?

  生:等分为32份的更接近长方形。

  师:大家想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形呢?

  生:等分的份数越多,就越接近长方形。

  师:下面请大家观察黑板上的板书,你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。(生说,教师板书)

  生1:因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底高,那么圆形面积公式=圆周长的1/2半径即可。

  生2:因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长宽,那么那么圆形面积=圆周长的1/2半径即可。

  师:用字母怎么表示圆面积公式呢?

  生:S=RR

  生:还可以写作S=R2

  师:这说明求圆的面积只需要知道半径即可,那我只告诉你们圆的直径又如何求出圆的面积呢,请大家自己把这个公式写出来。教师板书。

  3、应用圆面积公式

  师:现在请大家用圆面积公式计算喷水头转动一周可

  以浇灌多大面积的农田。

  (学生独立解答,知名回答)

  四、应用圆面积公式解决实际问题

  1、P18,NO1

  学生独立解答,集体订正的时候要求学生说出每一步

  计算过程和依据。

  2、P18,NO2

  让学生理解题意后,鼓励学生在头脑中想象,猜一猜

  结果,然后在地上画一个半径是1米的圆,让学生看看,并试着站一站。在估计半径是10米的圆大约有几个教室大的时候,可以让学生先估计再算一算。

  五、小结

  师:谁能用自己的话说说圆面积的推导过程。

圆数学教案12

  活动目标

  1.能说出球体的名称,知道球体的外形特征,即不论从哪个方向看球体都是圆的,不论向哪个方向它都能转动。

  2.发展幼儿的观察力、空间想象能力。

  活动准备

  1.ppt课件:球和圆

  2.幼儿观察用乒乓球、圆片纸、圆柱操作材料。

  活动过程

  一、观察比较“球和圆”。

  1.课件演示:球和圆

  小朋友,看看图片上是什么?

  (球,乒乓球)

  再看看这张图片上是什么?

  (圆片,圆形图案)

  2.请幼儿拿乒乓球,从上(下)面、前(后)面、左(右)边等方向看乒乓球是什么形状的。

  请幼儿观察后回答。

  小结:乒乓球从各个方向看,它都是圆的。

  3.请幼儿拿圆片纸,比较圆片纸和乒乓球的不同,进一步了解球体的特征。

  引导幼儿从各个方向看圆片纸,从旁边看是一条线,幼儿观察回答。

  二、通过操作,感受球体。

  1.把球放在桌子上,让幼儿玩球。

  注意不要让球离开桌面,引导幼儿把球向前(后)、向左(右)等方向滚动。

  2.启发幼儿知道,球能向各个方向滚动。

  小结:球体的外部特征,从各个方向看都是圆的,能往各个方向滚动的,这样的形状叫球体。

  三、找球体

  1.课件演示

  找找哪个是球体,为什么?

  让幼儿互相说一说。

  2.找找哪些东西是球体的?

  请幼儿想想并找找日常生活中哪些东西的球体形状的?

  说说为什么要做成球体形状?

  大班数学活动:认识“”和“”幼儿园大班数学教案

  班数大学活动:认识“>”和“<”

  设计思路:

  对中班幼儿来说,“>”和“<”看起来很抽象,实际上只要让他们记住开口的方向,学习起来就容易多了,并且能增强他们学习的兴趣和积极性,本活动意在为幼儿创造一个良好的学习氛围。第一,根据“>”和“<”比较形象的特点,通过儿歌和身体感知,让幼儿记住开口的方向;第二,以游戏贯穿活动内容。

  活动目标:

  1、认识“>”和“<”,理解不等式的含义,理解大小的相对性。。

  2、学习把不等式转变为等式。

  3、培养幼儿思维的灵活性和可逆性,锻炼幼儿运用数学知识解决实际

  问题的能力。

  活动准备:

  1、7只蜜蜂,5只蝴蝶的图片。

  2、4朵红花、六朵黄花的图片。

  3、数字卡片“7”、“5”、“4”、“6”以及“>”、“<”、“=”卡片若干。

  4、数字头饰两套,小猴子头饰若干。

  5、数字小兔图一张,有关数字卡若干。

  6、数字卡10张(装入猫头包内),铃鼓一个,磁带、录音机等。

  活动过程:

  一、导入课题:认识“>”和“<”

  1、问:“小朋友,现在是什么季节?”(春季)“春天来了,蜜蜂蝴蝶飞呀飞呀,飞到我们幼儿园里来了,大家看一下,飞来了几只蜜蜂?几只蝴蝶?”教师展示蜜蜂和蝴蝶的图片,幼儿说出数量,教师贴上相应的数字卡。

  问:“蜜蜂和蝴蝶比,谁多?谁少?”“那么,7和5相比,哪个数字大?哪个数字小?”

  师:“我们可以在7和5之间放一个符号,让人一看就知道哪边的数字大,哪边的数字小。我们以前学过‘=’号,能放‘=’号吗?”启发引导幼儿,引出“>”,重点引导幼儿观察大于号像张着嘴巴对着大数笑,大于号表示前边的数比后边的数大,初步理解大于号的含义,说出“7”大于“5”。

  2、问:“蜜蜂和蝴蝶的家在哪里?”(花园里),展示红花和黄花的图片,让幼儿感知其数

  量的不同,引出“<”,重点观察小于号像是在向左弯腰,撅着屁股的样子,屁股撅给小数瞧,小于号表示前边的.数比后边的数小,说出“4小于6。”

  3、师:“大于号和

  小于号都有一个开口,长得也差不多,我们怎样记住它们呢?你们有什么好办法吗?”启发幼儿找出内在规律:“小朋友可以看一下,无论是大于号还是小于号,它们开口的方向都对着哪一个数(大数),尖尖的小屁股对着哪一个数(小数)。”

  学习儿歌:大于号,开口朝着大数笑,小于号屁股撅给小数瞧。

  二、表演游戏:学做“>”“<”

  请2名幼儿做数字娃娃,戴上数字头饰,一幼儿站在两个数字中间,用身体姿势表演>”“<”,幼儿读出“6大于4“4小于6。”

  设计思路:大班数学活动:认识“>”和“<”设计思路:

  对中班幼儿来说,“>”和“<”看起来很抽象,实际上只要让他们记住开口的方向,学习起来就容易多了,并且能增强他们学习的兴趣和积极性,本活动意在为幼儿创造一个良好的学习氛围。第一,根据“>”和“<”比较形象的特点,通过儿歌和身体感知,让幼儿记住开口的方向;第二,以游戏贯穿活动内容。

  活动目标:

  1、认识“>”和“<”,理解不等式的含义,理解大小的相对性。。

  2、学习把不等式转变为等式。

  3、培养幼儿思维的灵活性和可逆性,锻炼幼儿运用数学知识解决实际问题的能力。

圆数学教案13

  本章在“第三章 直线与方程”的基础上,在直角坐标系中建立圆的方程,并通过圆的方程,研究直线与圆、圆与圆的位置关系。

  在直角坐标系中,建立几何对象的方程,并通过方程研究几何对象,这是研究几何问题的重要方法。通过坐标系,把点与坐标、曲线与方程联系起来,实现空间形式与数量关系的结合。

  一、内容与课程学习目标

  本章主要内容是在直角坐标系中建立圆的方程,并通过圆的方程,研究直线与圆、圆与圆的位置关系。通过本章学习,要使学生达到如下学习目标:

  1.回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。

  2.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系。

  3.能用直线和圆的方程解决一些简单的问题。

  4.进一步体会用代数方法处理几何问题的思想。

  5.通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置。

  6.通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。

  二、内容安排

  本章内容共分三节,约需9课时,具体课时分配如下(仅供参考):

  4.1 圆的方程 约2课时

  4.2 直线、圆的位置关系 约4课时

  4.3 空间直角坐标系 约2课时

  小 结 约1课时

  本章知识结构如下:

  1.“直线与方程”一章研究了直线方程的各种形式、直线之间的位置关系以及直线之间位置关系的简单应用。本章在第三章的基础上,学习圆的有关知识——圆的标准方程、圆的一般方程;继续运用“坐标法”研究直线与圆、圆与圆的位置关系等几何问题;学习空间直角坐标系的有关知识,用坐标表示简单的空间的几何对象。

  2.“圆的方程”一节包括圆的标准方程、圆的一般方程两部分。首先提出确定圆的几何要素这个问题,指出圆心和半径是确定一个圆最基本的要素,然后引导学生用代数的语言(方程)描述圆,进而得到圆心为C(a,b ),半径为r的圆的标准方程(x-a)2+(y-b)2=r2。对圆的标准方程进行变形,可以得出圆的一般方程,它们是表示圆的方程的两种形式。

  3.“直线、圆的位置关系”中,先从几何角度指出它们之间的直线与直线、直线与圆的位置关系,然后用方程去描述它们,通过方程研究直线、圆的位置关系。最后安排了直线与圆的方程在解决实际问题和平面几何问题方面的应用。

  通过方程,研究直线与圆、圆与圆的位置关系是本章的主要内容之一。判断直线与圆、圆与圆的位置关系可以从两个方面入手:

  (1)曲线C1与C2有无公共点,等价于由它们的方程组成的方程组有无实数解.方程组有几组实数解,曲线C1与C2就有几个公共点;方程组没有实数解,C1与C2就没有公共点。

  (2)运用平面几何知识,把直线与圆、圆与圆的位置关系的结论转化为相应的代数问题。

  在本节的最后,进一步指出用坐标方法解决几何问题的“三部曲”:

  第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的'几何元素,将平面几何问题转化为代数问题;

  第二步:通过代数运算,解决代数问题;

  第三步:把代数运算结果“翻译”成几何结论。

  4.“空间直角坐标系”包括空间直角坐标系的概念,用坐标表示空间中简单的几何对象,以及空间中两点间的距离公式。

  5.为了使学生更好地了解“坐标法”,认识信息技术在探求轨迹方面的作用,本章安排了“阅读与思考 坐标法与机器证明”和“探究与发现 用《几何画板》探求点的轨迹(圆)”。“阅读与思考 坐标法与机器证明”介绍了坐标法、笛卡儿、坐标法与机器证明之间的关系、机器证明的思想,以及在机器证明方面作出重大贡献的的我国著名数学家吴文俊先生。目的是拓广学生的知识面,了解我国数学家作出的重大贡献,激发学生进一步深入学习数学的兴趣。“探究与发现 用《几何画板》探求点的轨迹(圆)”介绍了《几何画板》在探求点的轨迹,帮助学生猜想、发现方面的作用。

  三、编写中考虑的几个问题

1.始终贯穿“坐标法”的思想

  解析几何的特点是用代数的方法研究几何图形。对于义务教育阶段中判断圆与直线、圆与圆之间的位置关系的方法,学生并不陌生。这里研究问题的方法与以前不同,这就是坐标法.

  在建立圆的标准方程时,首先帮助学生回顾确定圆的要素,然后利用坐标法来刻画圆,建立了圆的标准方程;判断圆与直线、圆与圆的位置关系时,首先回顾义务教育阶段如何判断圆与直线、圆与圆的位置关系,然后利用坐标法研究它们。从另一个角度看,既然圆、直线都可以用方程来刻画,那么就可以通过对方程的研究来研究直线与圆、圆与圆的位置关系,这就是两曲线是否有公共点的问题,即它们的方程组成的方程组有没有实数解的问题。本章在进行圆与直线、圆与圆的位置关系判断时,常常采用这两种方法.

  2.从一个或几个数学问题展开知识内容

  问题是数学的心脏。引入知识内容时,常设置一个或几个问题,创设一种情境,一方面引起学生的兴趣,另一方面引起学生解决问题的求知欲望。

  比如“4. 1.2 圆的一般方程”,提出了两个思考题

  思考:方程x2+y2-2x+4y+1=0表示什么图形?方程x2+y2-2x-4y+6=0表示什么图形?

  实际上,对方程x2+y2-2x-4y+6=0配方,得(x-1)2+(y-2)2=-1,这个方程不表示任何图形。

  紧接着,教科书又提出一个让学生探究的问题。

  探究:形如x2+y2+Dx+Ey+F=0的方程在什么条件下表示圆?

  教科书环环相扣,把学生引入一个又一个“愤”与“悱”的境地,使得学生通过问题的解决学习新的知识。

  3.关注结论形成的过程,通过思考、探究,得出结论

  本章在编写时注意呈现方式,不直接给出结论,让学生证明。而是把结论放在学生经过一系列数学活动之后,通过思考、探究,得出结论。比如,用“坐标法”解决问题的“三部曲”就是通过解决一系列问题后得出。在例题的呈现时,增加了分析的过程,重点分析解题的思路。在探求点的轨迹时,提倡先用信息技术工具探究轨迹的形状,对问题有一个直观的了解,然后再分析轨迹形成的原因,找出解决问题的方法,使得学生抓住问题的本质,理清思路,制订合理的解题策略。

  4.充分利用教科书边空,提出具有一定思考价值的问题,强调重要的数学思想方法

  利用教科书边空不失时机地提出一些具有一定思考价值的问题,例如:

  (1)当一个问题解决之后,询问“还有其他不同的解法吗?”或者是“有更好的解法吗?”

  (2)当同一个问题有两种解法时,要求比较它们的优劣。如“请同学们比较这两种证明方法,并指出各自的特点?”在比较中加深理解,促使学生养成解题后反思的良好习惯.

  (3)当同一个问题有多种解法时,要求学生在教科书已经给出一种或两种解法的基础上再给出一种。

  归纳、抽象是重要的数学思想方法。在问题解决之后,要求学生进行一些简单的归纳。例如,“4. 1.1 圆的标准方程”,在学习了例2与例3之后,提出“比较例2和例3,你能归纳出求任意三角形外接圆的标准方程的两种方法吗?”

  通过问题的开放性,触类旁通地提出问题。比如,研究圆C1:x2+2+2x+8y-8=0与圆C2:x2+y2-4x-4y-2=0的关系时,把它们的方程相减,得到 x+2y-1=0。在边空处要求“画出圆C1与2以及方程x+2y-1=0表示的直线,你发现了什么?你能说明为什么吗?”更进一步,能否说,要研究圆C1与圆C2的关系只要研究直线x+2y-1=0与C1(或C2)的关系就可以了呢?这一问题,不仅体现了“化归”的思想,而且是颇具思考价值的.

  5.注意加强与实际问题、其他学科的联系

  本章内容的选择尽可能加强与学生的生活、生产实际的联系。比如,为说明研究直线与圆的位置关系的必要性,设置了一个渔船能否避开台风的问题:

  一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70 km处,受影响的范围是半径长为30 km的圆形区域. 已知港口位于台风中心正北40 km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?

  在直线与圆的方程的应用部分,设置了与圆拱桥有关的计算题。学习空间直角坐标系时,要求写出食盐晶胞中钠原子在空间直角坐标系中的位置(坐标)等等。

 6.介绍科技成果,渗透数学文化

  本章通过设置“阅读与思考 坐标法与机器证明”栏目,介绍科学家、数学史、数学在现代生活中的应用等,机器证明几何定理是坐标法的精彩应用,我国数学家吴文俊先生在这方面有着重要的贡献,较为详细地介绍了机器证明几何定理研究的历史。

  四、对教学的几个建议

  1.认真把握教学要求

  教学中,注意控制教学的难度,避免进行综合性强、难度较大的数学题的训练,避免在解题技巧上做文章。比如,义务教育阶段“空间与图形”部分涉及的许多结论都可以用坐标法来加以证明,而义务教育阶段的教学要求已经有所改变。因此,用坐标法证明平面几何题要求不宜过高,适可而止。再如,教科书不介绍圆的切线方程x0x+y0y=r2,这并不是说不涉及圆与直线相切这一位置关系。与直线相切这一位置关系的判断可以有两种方法,一种是利用圆心到直线的距离等于半径长;另一种是利用它们的方程组成的方程组只有一组实数解。

  2.关注重要数学思想方法的教学

  重要的数学思想方法不怕重复。《普通高中数学课程标准(实验)》要求“坐标法”应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。在教学中应自始至终强化这一思想方法,这是解析几何的特点。教学中注意“数”与“形”的结合,在通过代数方法研究几何对象的位置关系以后,还可以画出其图形,验证代数结果;同时,通过观察几何图形得到的数学结论,对结论进行代数证明,不应割断它们之间的联系,只强调其一方面。

  3.关注学生的动手操作和主动参与

  学习方式的转变是课程改革的重要目标之一。教学中,注意提供充分的数学活动和交流的机会,引导他们在自主探索的过程中获得知识、增强技能、掌握基本的数学思想方法。例如,判断直线与圆、圆与圆的位置关系以及它们的简单应用,探究点的轨迹等内容,可以先让学生画一画、想一想,然后进行代数论证。“观察”“思考”“探究”等栏目设置目的之一就是想让学生参与到数学活动中来。

  4.关注信息技术的应用

  平面解析几何是一门典型的数与形结合的学科,信息技术在加强几何直观,促使数与形结合方面有着特殊的作用。借助信息技术,可以形象、直观地帮助学生认识所研究的曲线。在动态演示中,观察曲线的性质,在直观了解的基础上,寻求形成这些性质的原因以及代数表示。通过对方程的研究,了解曲线与曲线的关系时,运用信息技术,可以进一步验证得到的结果,为抽象的认识增添了形象的支持。在探究点的轨迹时,可以借助信息技术,探究轨迹的形状等等。

圆数学教案14

  学材分析

  教学重点:

  面积计算公式的正确运用。

  教学难点:

  面积公式的推导过程。

  学情分析

  学生对圆面积公式的推导过程理解有一定的难度。

  学习目标

  1.理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  2.会用圆面积的计算公式,正确计算圆的面积。

  导学策略

  导练法、迁移法、例证法

  教学准备

  圆的面积模型、圆规、投影仪、投影片

  教师活动

  学生活动

  一.引入

  1.什么叫做圆面积?

  2.出示大小略有不同的两个圆,让学生比较哪个圆的面积大?大多少?(学生口答后把两圆重叠,比较大小。)相差多少呢?

  3.引出课题。

  二.推导

  1.问:小正方形面积怎样计算?(半径半径)圆面积与小正方形面积的3倍谁大谁小?圆面积与小正方形面积的4倍呢?2倍呢?

  2.师生共同操作:拿出一张正方形纸,按要求对折4次(注意第4次折的折法,是按角对分地折),然后拿尺量出一等腰三角形剪一刀,展开,得到一个近似于圆的纸片。

  3.教师操作:拿一张正方形纸,对折5次,剪一刀展开。与前一次剪的作比较,使学生知道,随着折的次数不断增加,剪下的`图形也就越接近圆。

  4.分析推导。师生共同拿出剪好的图形分析:这个图形等分成若干块,每一块都是什么形状?(等腰三角形)这个图形的面积怎么求?随着折的次数不断增加,剪下的图形的面积也就越接近什么图形的面积?

  板书:图形面积=等腰三角形面积n=底高2n=Cr2n

  =2rn

  圆的面积=r2

  边板书边提问:等腰三角形的底是多少?(C)等腰三角形的高相当于圆的什么?(半径r)

  5.在上面推导的基础上,让学生分4人小组动手把准备的圆分成相等的16个小扇形,再拼成其他图形,推导出圆面积公式。教师巡视,取学生拼成的各式各样的图形,贴在黑板上,选其中两个进行分析。

  三.巩固

  试一试。

  四.总结

  五.作业

  学生口答

  师生共同操作

  师生共同操作

  教学反思

  已经是第2次教毕业班了记得第1次教的时候,还是幼儿园的院长一早每天都要过去一下,课前准备就不够充分,上课就照本宣科。而现在教这个知识的时候,不仅教具演示而且学生实际操作,所以教学效果就好多了,可以说连中下生都能灵活应用这个知识。

圆数学教案15

  学习目标:

  【知识与技能】

  理解圆的定义及弧、弦、半圆、直径等相关概念。

  【过程与方法】

  经历动手实践、观察思考、分析概括的学习过程,养成自主探究、合作交流的良好习惯。

  【情感、态度与价值观】

  利用我国悠久的数学研究历史,对学生进行爱国主义熏陶;通过圆的完美性,让学生进行美的体验。

  【重点】

  与圆有关的概念

  【难点】

  圆的概念的理解

  学习过程:

  一、自主学习

  (一)复习巩固

  1、举出生活中的圆的例子

  2、圆既是 对称图形,

  又是 对称图形。

  3、圆的周长公式C= 圆的面积公式S=

  (二)自主探究

  1、圆的定义○1:在一个平面内,线段OA绕它固定的一个端点O旋转 ,另一个端点所形成的图形叫做 .固定的'端点O叫做 ,线段OA叫做 .以点O为圆心的圆,记作 ,读作

  决定圆的位置, 决定圆的大小。

  圆的定义○2:到 的距离等于 的点的集合。

  2、弦:连接圆上任意两点的 叫做弦

  直径:经过圆心的 叫做直径

  3、弧: 任意两点间的部分叫做圆弧,简称弧

  半圆:圆的任意一条 的两个端点把圆分成两条弧,每一条 都叫做半圆

  优弧: 半圆的弧叫做优弧。用 个点表示,如图中 叫做优弧

  劣弧: 半圆的弧叫做劣弧。用 个点表示,如图中 叫做劣弧

  等圆:能够 的两个圆叫做等圆

  等弧:能够 的弧叫做等弧

【圆数学教案】相关文章:

《圆的周长》数学教案06-15

圆的初步认识数学教案03-26

《圆的面积》数学教案(精选15篇)04-19

圆的初步认识数学教案5篇03-26

圆的认识五年级数学教案04-08

六年级数学教案圆的面积04-08

六年级数学教案:圆的认识04-09

圆的认识六年级数学教案04-08

六年级数学教案《圆的认识》04-03