《运算律》教案【实用15篇】
作为一位无私奉献的人民教师,通常需要用到教案来辅助教学,编写教案助于积累教学经验,不断提高教学质量。那么什么样的教案才是好的呢?以下是小编精心整理的《运算律》教案,希望对大家有所帮助。
《运算律》教案1
完成本节课《有理数加法》的课堂教学后,回首反思,金沙并存,现将我对本节课的反思情况概述如下:
亮点有四:
1、课题的引入。这一环节,我采取提问的方式,由学生小学阶段所学过的自然数的加法开始,提问学生:当初中阶段引入负数以后,如果你是教材的编写者,你会安排哪几种形式的加法?这样学生很快会想到“正+正、正+负、负+正、负+负、0+正、0+负”几种形式,而后自然地提出:“同号相加、异号相加、0加任何数”这三种类型,进一步提升了学生的分类思想;
2、尝试探究的设置。这一环节,我才用借助数轴导学案自主尝试的形式,点在数轴上的移动学生已经学过,设计问题时涉及到向左、向右移动问题学生自然会联系到数轴,这样根据题意列出式子,借助数轴很快的就能得出运算结果。既充分发挥了学生的主动性、提高了学生的参与度,同时又让学生认识到数学知识的内在联系,知识迁移和划归借鉴也是学习数学的一种很好的方法。
3、有理数加法法则的得出。这一环节,我先将学生尝试探究中的几个式子以及结果全部罗列出来,让学生观察形式特征,猜想结果与形式之间的关系,大胆提出想法,然后举例用数轴加以验证,整个环节中,我只负责帮学生把想说的话板书出来,这极大地提升了学生数学学习兴趣,又让学生感受到了数学当中好多法则规律,都是经过观察、猜想、验证、归纳而得出的,同时又提升了学生数学学习的自信心,也得到了学习数学的一个一般方法。
四是,在对本节课的小结处理,小结由学生自己总结,在学生总结后加以强调,为确保运算结果的正确性,运算中应先确定符号,再计算结果。这样就把围绕初中学生的一个大难题“符号问题”加以弱化,已给学生指出了一个简单检验的方法。
金无足赤,课亦不可能绝对完美,换句话说根本就没有完美的课。闪过亮点之后,需要改进的'有四,如:
1、考虑上课时限问题,没有深入展开,致使有部分学生思维以及理解没有跟上,从课后的练习反映出有几个学生运算中还是存在问题。
2、口算展示的时候,没有进行象开火车的形式让更多的学生都出来展示,而是让几个人代劳了。
3、个人上课有些仪态上有些随性,这样会让学生觉得不严谨,可能会滋生学生不良的行为习惯。
4、板书上有些凌乱,缺乏合理规划。
记得有位导演在问到哪部作品拍得最好时,他说道:“下一部”。任何事物都是“玉”与“瑕”共存的,只有经过了,再回首,才会发现“瑕“于何处,我们要做的不是掩“瑕”,而是要借“瑕”去“瑕”,避免同样的“瑕”再次出现,只有这样,才能取得进步和提升。“艺海无涯,术无止境”只有不断的总结反思才能有更大的提升!
《运算律》教案2
教学目标:
1、知识目标:使学生进一步理解和掌握运算律的意义,能应用运算律进行简便计算。
2、通过同桌合作整理知识框架,提高学习的系统性,培养学生归纳、总结等自我复习能力及合作精神。
3、培养学生的数学应用意识,激发学生成功学习数学的自信心和创新意识。
教学重点:
理清知识间的联系,建构起知识网络。
教学难点:
加强学生对于乘法分配律的理解与运用,通过比较进一步帮助学生理解乘法分配律和乘法结合律的区别。
教学准备:
多媒体课件。
教学过程:
一、谈话揭题,导入新课。
1、今天复习什么内容?(运算律)什么是运算律?(进行简便运算的`一些规律)
2、出示习题帮助学生回顾各运算律。
口答:在□里填上合适的数,在○里填上运算符号。并说一说运用了什么运算律?
45+26=26+□,运用了(加法交换律)。
23×56=56○□,运用了(乘法交换律)。
122+(78+45)=(□+□)+45,运用了(加法结合律)。
7×25×4=7×(□×□),运用了(乘法结合律)。
45×67+45×33=(□+□)○45,运用了(乘法分配律)。
3、回忆各运算律内容及字母表达式。
提问:我们在四年级一共学习了这五个运算律。你学哪个运算律时觉得最轻松,你能向同学们介绍一下这个运算律吗?
根据学生的回答板书运算律的字母表示式。
加法交换律:a+b = b+a
加法结合律:a+b+c = a+(b+c )
乘法交换律:a×b = b×a
乘法结合律:a×b× c = a×(b×c )
乘法分配律:a ×(b+c)= a×b+a × c
减法性质:a-b-c = a-(b+c )
除法性质:a ÷ b ÷ c = a ÷(b × c )
二、查漏补缺,强化知识点。
1、你觉得哪个运算律的知识学习起来最难?为什么?
2、举例比较,启发思考。
(1)出示题组:125×(80×8)125×(80+8)
(2)老师在教这部分内容的时候,发现很多学生在做时容易出错。
(3)这两题你会做吗?请在作业本上独立完成。
3、基本训练。
当个小法官:判断下面的话是否正确。
① 65+35÷7×6的第一步算65+35,这样很简便。()
② 101×46-46=100×46。()
③ 134×8=125+9×8。()
④ 25×(40×4)=25×40+25×4。()
⑤ 350÷50×7=350÷(50×7)。()
⑥ 125×7+3×125=125×(7+3)。()
三、知识整理过程,构建知识联系。
1、如果将这五个运算律的知识来理一理,分分类?你会怎么处理呢?(先在四人小组交流一下,再汇报)
在“乘法分配律”时,设问:乘法分配的表达式中即有乘法也有加法,你觉得分在哪一类合适呢?有不同的意见吗?
2、刚才从运算方法上分成了两类,你能横向再看看、再理理吗?引导学生再从规律特点上继续思考。(交换律、结合律、分配律)
观察数、符号、式子的特点,理解相关运算律的特点。
3、通过刚才的整理,你有什么新的收获吗?(你还会将乘法结合律和乘法分配律搞混淆吗)
四、综合训练。
1、关于乘法分配律的专项练习。
(1)自主设计乘法分配律的各种题型。
77×37+23×37156×37-56×3725×(40+4)25×(40-4)99×37+37101×37-37102×3598×35
(2)汇报展示,学生口答。
(3)通过训练,你有什么新收获吗?(关注两个方面:一是乘法分配律的拓展,二是相关的解题经验。)
2、星星水果店运进32箱苹果和48箱梨,每箱都重15千克。运来的苹果比梨少多少千克?
3、用简便方法计算。
367-89-1125×32×125728×72÷3676×25+8×75
《运算律》教案3
教学内容
义务教育课程标准实验教科书(西南师大版)四年级(下)第22~24页例4,课堂活动第1~2题和练习五第1题。
教学目标
1.历在解决数学问题的情境中探索发现乘法分配律的过程。
2.理解并掌握乘法分配律,并能运用乘法运算律进行简便计算。
3.在解决数学问题中培养学生一题多解的发散思维能力,通过发现运算律培养探索、概括能力。
教学重、难点
探索发现乘法分配律,理解并能运用乘法运算律进行简便计算;对乘法分配律进行正向和逆向的理解。
教学过程
一、 创设情景,探索新知
出示例4。
(1)出示问题情景,解决问题。
你从情景图中获取了哪些数学信息?要解决"养鸡场共有多少只鸡?"该怎样列式计算?(学生口答信息,然后独立列式计算)
全班汇报解题思路和方法。
教师板书:
(50+30)×75 50×75+30×75
=80×75 =3750+2250
=6000(只) =6000(只)
(2)比较两种解法,发现两种解法的相同点和不同点,并举出生活中的.类似例子。
(小组讨论,全班交流)
教师板书: (50+30)×75=50×75+30×75
(3)在计算中比较并发现乘法分配律。
算一算,比一比。
(3+2)×35=3×35+2×35= 3×(4+6)=3×4+3×6=
(13+12)×4=13×4+12×4=
比较每排的两个算式有什么关系?每排的两个算式的计算结果相等吗?
学生独立计算验证自己的猜想。
(小组讨论,全班交流)
板书:
(3+2)×35=3×35+2×35 3×(4+6)=3×4+3×6
(13+12)×4=13×4+12×4
教师:谁还能举出符合这个规律的例子?(学生举例)
教师:谁能用自己的话来表达这几组算式所反映的规律?(学生回答)
教师小结:两个数的和与一个数相乘,可以把这两个数分别与这个数相乘,再将两个积相加,这叫乘法分配律。
(4)如果用a,b,c表示3个数,可以用怎样的式子表示乘法分配律呢?
(学生独立写出,然后全班交流)
教师整理并板书:(a+b)×c=a×c+b×c 或a×c+b×c=(a+b)×c
二、课堂活动
1?课堂活动第1题:先让学生独立算一算,对有困难的也可先在小组中议一议。
最后让学生说一说自己是怎么算的?能说明乘法分配律吗?
2?课堂活动第2题:先让学生讨论,找出错误的原因,再汇报,最后让学生改正。
4?练习五中第1题:学生独立做在书上,订正时让学生说说运用的是什么运算律?
先做,再议一议,最后与全班同学交流。
三、课堂小结
这节课我们学习了什么?你都有些什么收获?你还有什么问题?
《运算律》教案4
教学目标
1. 在对已学知识的整理和复习中,进一步理解加法、乘法的交换律和结合律,能合理、灵活、正确地应用运算律进行简便计算。
2. 能联系生活实际运用加法、乘法的交换律和结合律,解决简单的实际问题。
3. 在自主探究、合作交流中获得成功的体验,激发学习数学的积极性。
教学过程
一、 创设情境,激趣引入
1. 引导观察。
谈话:下面是某新华书店销售的三种图书的价格。
出示:
书 名
每本书的价钱(元)
《数学故事》
12
《成语故事》
15
《科幻故事》
18
提问:观察表格,你能从中获得哪些信息?能提出哪些数学问题?(如:买一本《数学故事》和一本《成语故事》要用多少元?买三本书一共要用多少元?三年级有5个班,每个班买3本《数学故事》,一共要用多少元?等等)
随着学生的回答,投影出示学生所提出的问题,并对提出的问题进行整理。
2. 解决问题。
提问:同学们很会动脑筋,提出了这么多数学问题,你想解答哪些问题?选择一些自己感兴趣的问题进行解答,并想一想才能怎样比较快地算出结果。
学生独立解决自己所选择的问题,教师巡视。
反馈:你解决了哪些问题?是怎样计算的?(着重交流是怎样运用加法或乘法的运算律使计算简便的)
板书:12 + 15 + 18 12 3 5
12 + 18 + 15 12 5 3
比较:观察上面的两组算式,你想到了什么?
3. 揭示课题。
谈话:看来,我们在解决问题时,经常要运用加法、乘法的运算律,使计算简便。今天这节课我们就一起来复习加法和乘法的运算律。(板书课题:运算律复习)
提问:我们已经学过哪些加法和乘法的运算律?你想怎样复习?通过复习达到什么要求?
[说明:从现实情境引入,可以激发学生的学习热情,激活学生学习的兴奋点。注意对复习方法进行指导,把学生放在学习的主体地位,增强了学生的主人翁意识。]
二、 合作交流,知识梳理
谈话:下面就请同学们回忆一下本学期学过的运算律,用自己喜欢的方法整理出来,并在小组内交流你整理的结果。
学生独立完成整理,教师巡视。
学生中可能出现的整理方法有:举例,文字描述,字母表示等。
小组活动:同学们都用自己的方法整理了已经学过的运算律,请把你整理的结果和小组里的同学一起分享,并讨论一下,能把你们小组同学的各种方法整理在一张表格里吗?试一试。
组织交流,由小组选派代表,交流整理的方法和完成的'表格。
根据学生的整理结果,完成下面的表格:
举 例
文字描 述
字母表示
加
法
交换律
结合律
乘
法
交换律
结合律
[说明:让学生自己整理已经学过的运算律,便于学生加深对加法和乘法运算律的理解,同时,形成合理的认知结构。学生在这一过程中,也能体会到合作学习的作用,进一步增强与同伴合作学习的意识。]
三、 巩固练习,加深理解
1. 填一填。
出示题目:
下面的计算分别应用了什么运算律?在括号里填一填。
86 + 35 = 35 + 86( )
72 + 57 + 43 = 72 + (57 + 43)( )
76 40 25 = 76 (40 25)( )
125 67 8 = 125 8 67( )
学生独立完成,全班交流。
2. 辨一辨。
出示题目:
先在括号填上适当的数,再连一连。
81 + ( ) = 0 + 81 乘法交换律
16 4 25 = 16 ( )加法交换律
184 + 168 + 32 = 184 + ( )乘法结合律
a 56 b = ( ) 56 加法结合律
学生独立完成后,组织交流。
3. 比一比。
下面每组题的计算结果相同吗?为什么?
(1) 88 + (24 + 12) (2) 28 15
(88 + 12) + 24 7 (4 15)
(3) 856 - (656 + 120) (4) 540 45
856 - 656 - 120 540 9 5
要求:比较每组的两道题,它们的计算结果相同吗?各是应用了什么运算律或运算性质?
4. 算一算。
出示题目:
你能分别算出三角形、正方形中几个数的和,圆中几个数的积吗?
学生独立完成后,全班交流算法,并说一说怎样算比较快。
[说明:通过一组有层次的练习,引导学生在填一填、辨一辨、比一比、算一算等数学活动中,由具体到抽象地加深对运算律的理解,为灵活应用运算律解决实际问题打下基础。]
四、 灵活应用,解决问题
1. 下面是某校学生生活区今年上半年用电情况,根据相关信息,解决下列问题。
以小组为单位进行比赛,求出一共用电多少千瓦时,看哪一组算得又对又快。
分组汇报怎样算比较快。
提问:解决了上面的问题,你有什么想对大家说的吗?
2. 下面是四(2)班马小平同学阅读三本课外书的情况统计。
提问:根据表中数据,你能提出数学问题吗?
提问:怎样分别求出每本课外书一共有多少页呢?怎样算比较快?自己先想一想,再独立解决。
学生独立列式计算后,指名介绍自己的算法。
师生共同评价各种算法,并总结应用运算律使计算简便的方法。
[说明:本环节为学生提供了两个具有现实意义的数学问题,问题中没有要求学生应用运算律进行简便计算,但学生通过分析题中的数据,会发现这些题具备应用运算律进行简便计算的特征,通过计算、交流、反思等学习活动,进一步感受运算律在解决实际问题过程中的价值。]
五、 全课总结,质疑问难
提问:今天的这节课,我们复习了哪些内容?你有哪些收获?还有哪些不理解的问题吗?
学生交流,并评价自己与同伴的表现。
[说明:让学生适时反思自己在本课学习中的所得,及时评价自己与同伴的学习行为、态度,大胆地说出遇到的困惑或困难,提出自己的观点,有利于学生形成积极的学习态度,提高学习效率。]
六、 课后延伸,挑战自我
用简便方法计算下面各题。
995 + 996 + 997 + 998 + 999 125 (17 8) 4
1 + 2 + 3 + 4 + 5 + 95 + 96 + 97 + 98 + 99
25 32 125
[说明:课后安排富有挑战性的练习,不仅可以进一步深化本课学习内容,更为那些学有余力的学生提供挑战自我、超越自我的机会。]
《运算律》教案5
【教学内容】教材第61~62页
【教学目标】
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律
2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识
3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验
【教学重点】
理解并掌握乘法交换律和结合律
【教学难点】
懂得乘法交换律和结合律的算理,会用字母表示
【教学过程】
一、学习新课:
1、学习乘法交换律:
演示例题图,谁能用数学语言说说图意?(一组5人踢毽子,3组一共有多少人?)
把算式写在自己的本子上,全班交流:(1)3×5=15(人) (2)5×3=15(人)
观察这两个算式,有什么相同和不同的地方?
(乘数相同,位置不同,积相等)
因为积相等,我们就可以把这两个算式合写成一个等式,谁能把它写出来?
(3×5=5×3)
读一读,这个等式,问:类似的等式你还能说几个吗?
……
说得完吗?那你有什么好办法?
板书:a×b=b×a
指出:这是乘法运算中的一个规律,知道叫什么吗?(板书:乘法交换律)
2、学习乘法结合律:
演示例题:华风小学6个年级的同学参加跳绳比赛,每个年级有5个班,每班有23人参加。一共有多少人参加比赛?
请学生独立列式解答。全班交流,可能有的结果:
(1)6×5×23 (2)5×23×6
=30×23 =115×6
=690(人) =690(人)
(3)6×(5×23) (4)6×23×5
=6×115 =138×5
=690(人) =690(人)
评讲这几种方法:
方法一先算的是多少个班级,再算全部
方法二先算的是一个年级参加的人数,再算全部
方法三也是先算多少个班级,再算全部
方法四先算6×23意义不好说,所以不提倡
比较方法一和方法二,这两个算式之间有什么联系呢?(交换了6和23的位置,……用到了刚学的乘法交换律)
比较方法一和方法三,它们有什么联系呢?(三个乘数没变,位置没变,但乘的顺序变了,积没变。)
想一想,这又是乘法中的什么规律呢?
随学生回答板书:乘法结合律
谁能用字母来表示这一规律?a×b×c=a×(b×c)
3、学习试一试
你能用简便方法计算吗?
(1)23×15×2 (2)5×37×2
学生先独立计算,指名板演。
讲评时注意书写的规范,并要学生能说出各是用了什么运算律?
二、完成想想做做的部分练习
1、先填空,再想想应用了什么运算律(题略)
注意最后一题:13跑到了前面,那肯定是用到了乘法交换律,本来是没有括号的,那就是先前面的`,后面的算式在后面多了个括号,那就变成了先算后面的,这就用到了乘法结合律
2、比较上下两题,你更愿意算哪题?算一算
3、你能很快说出每束气球上三个数连乘的积吗?
先是同桌互说,再是指名说。其中最后一束,要让学生比较多种方法都比较简便的时候,选择最简便的方法
三、布置作业:
第62页第4、6题
《运算律》教案6
教材分析
这节课主要教学乘法交换律和结合律进行相关的简便运算,由于学生已有应用加法运算律进行简便计算的基础,所以本课时的主要目标是对“两个数相乘”进行简便计算的教学,以及对简便运算方法的提升。
学情分析
在学习本节课乘法交换律、结合律之前,学生已经学习了加法交换律和结合律,逐步学会了不完全归纳法和用字母表示数学规律,并运用规律进行简便计算。本节课在此基础上,重点让学生经历探索乘法交换律、结合律的过程,并会运用乘法交换律、结合律进行简便计算的方法。在学生日常的自学活动中,重视让学生依据已有的知识和经验自主探索,重视小组的合作与交流,所以学生的理解能力、自学能力和合作能力正逐渐提高,良好的自主学习习惯正在逐渐养成。
教学目标
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。
3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。
教学重点和难点
1、引导学生概括乘法交换律、结合律。2、乘法交换律和结合律进行简便。
教学过程
一、创设情境,发现问题
师:同学们喜欢搭积木吗?
生:喜欢
师:我们的淘气也很喜欢搭积木,而且聪明的他还从其中发现了一些数学的奥秘呢,你们想知道是什么吗?
生:想
师:那好,就让我们一起去探索与发现。
二、探索乘法交换律
播放课件1,出示情境图。(用小正方体搭成的一个长方体的一面)
师:你知道图中有多少个小正方体吗?说说自己是怎样想的。
生:我是横着数一行有5个小正方体,一共有4行,5×4=20个。
生:竖着数一排有4个小正方体,一共有5排,4×5=20个。
师(板书5×4=4×5)可以这样写吗?为什么?
生:可以因为积相等,(求的就是一个整体)
师:认真观察这个等式,你能发现什么奥妙吗?
生思考,汇报(数字相同,交换了位置,积不变)
师:你们的发现淘气也找到了,不过喜欢思考的他还想到了一个问题,是不是所有的两个数相乘交换乘数的位置积都不变呢?
生:……
师:请你帮淘气举一些这样的例子来验证一下行吗?
生举例验证
师:大家找到了这么多例子,也就是说两个数相乘交换乘数的位置,积不变是普遍存在的一种规律,如果用a、b表示两个数,你能写出发现的规律吗?
生说师板书:
a×b﹦b×a叫做乘法交换律
师:a.b指的是什么?
[设计意图:乘法的结合律探索中往往包含着交换律,因此先经历交换律的探索过程既把分散的情景整合为一个整体,又为乘法结合律的学习作了铺垫。]
三、探索乘法结合律
1、课件2出示情景图(书54页)
师:请大家认真观察,估一估搭这个长方体用了多少个小正方体?
学生独立观察、思考后集体交流。(说说估计的方法)
师:谁估计的准确呢?请同学们在本子上算一算。
(学生独立思考,计算,教师巡视)
师:谁愿意把你的想法介绍给大家?
生举手汇报,师追问:怎样想的?
师引导从上面、正面观察
上面:(3×5)×4
师:这个算式可以写成(5×3)×4 吗?
生:可以,都是求同一个物体,
生:可以,虽然3和5的位置交换了,但根据乘法的交换律它们的积不变。
师:出示4×(5×3) 可以这样写吗?
生交流,师引导可以把(5×3)看成一个数,这里也运用了乘法的交换律。
正面:(4×5)×3
师:你还可以怎样写?根据是什么?
生:(5×4)×3 3×(5×4)
[设计意图:通过对算式的变换,巩固乘法交换律]
师:细心的'淘气在这些算式中发现了两组特别的算式,(师擦掉其它算式,留下(3×5)×4 3×(5×4)请同学们比较这两个算式你发现了什么?把你的发现告诉大家。
生;乘数相同,三个数的位置不相同,运算顺序不同,积相同。
师:可以写成(3×5)×4 = 3×(5×4)吗?
生思考回答。
[设计意图:通过对算式异同的比较,让学生自己发现规律。]
2、提出假设,举例验证
师:你们的发言很精彩,那么象这样的三个乘数的位置不变,改变运算顺序,积不变是不是在其他算式中也存在呢?你还能举出例子来吗?可以是两位数或三位数相乘的,为了节省大家计算的时间,在运算时可以使用计算器
(学生在小组内举例交流讨论,教师巡视指导。)
师:谁愿意介绍一下你们举例的情况。
生:……
3、概括规律
师:从刚才大家所举的例子来看,每一组的结果都是相同的。这样的例子多不多?(生:多)能不能举完呢?(生:不能)那么从中你又能发现乘法运算中的什么规律吗?
生思考概括
师:你们概括得真好,你能用三个不同的字母分别表示乘法算式中的任意三个数字,写出我们发现的规律吗?
生说师板书:
(a×b)×c﹦a×(b×c)叫做乘法结合律
四、运用模型,完成练习
1、学生独立完成“练一练”1题。最后运用课件集体订正。
2、运用乘法结合律很快算出38×25×4 42×125×8
生独立完成,小组交流后汇报
3、完成“练一练”。先要求学生独立计算,教师巡视,发现有错的让该生上去视屏展示,集体交流,并说明运用了什么规律。
[设计意图:通过练习让学生能够独立运用乘法结合律进行简便运算.对所学的知识通过练习加以巩固运用。]
五、小结:
1、这节课你学到了什么?
2、我们是怎样认识这个好朋友的?
板书设计
运算律:乘法交换律、结合律
a×b﹦b×a (a×b)×c﹦a×(b×c)
《运算律》教案7
【教学内容】教材第59~60页
【教学目标】
使学生初步理解和学会应用加法交换律和结合律进行简便计算
【教学重点】
理解加法的运算率
【教学难点】
运用加法运算律进行简便计算
【教学准备】
光盘
【教学过程】
一、复习:
上节课我们学习了加法中的两个运算律,谁能来说一说?
(可以先随学生回答写出字母表示的等式,再说说其意思。)
用加法交换律,我们可以进行验算。用好这两个运算律,我们可以使计算简便。这节课我们就来学习这部分知识。
二、学习例题:
1、出示例题图,看后指名说一说表格中的信息
要求三个年级一共有多少人参加跳绳比赛,你是怎么算的?写在自备本上。
交流各自的算法。可能的情况:
(1)29+46+54
=75+54
=129(人)
(2)29+46+54
=29+(46+54)
=29+100
=129(人)
比较这两种做法,说说你更喜欢哪一种?为什么?
2、试一试:
你能用简便方法计算吗?学生独立写在书上,再指名板演在讲评的时候,注意书写的规范,要把简便的过程写清楚还要让学生说清楚是应用了什么运算律
三、完成想想做做
1、你能很快说出每组气球上三个数的.和吗?
先可以请同桌两个互相说一说,再交流。
比如第一组和第三组可以做一个对比。第一组32可以分别和18或是38凑成整十数,所以两种方法都是可以的。而第三组21虽然都可以和59、79凑成整十数,但相比,和79能凑成的正好是100,计算就更简便了。所以当方法多种的时候,最好能选择最简便的方法。
2、这样简便就怎样算
举例:175+201
指名说清楚过程。其他学生再和同桌一起边说,边完成书上剩下的练习。
3、分别算出下面三户人家今年四、五、六月用电的合计数,填在表里。
填写的时候,要提醒学生观察一下,能否有简便的算法,再计算。
全班交流
4、填写下表(p.60第6题)
填完后着重让学生说说自己的发现。可能有的情况:
(1)加数都是200,加的数越大,和越大;被减数都是200,减的数越大,差越小
(2)把两个得数加起来,结果都是400,把两个结果相减,结果分别是20、40、60……
对于后面这种想法,老师可结合字母算式来算一算:
(a+b)+(a-b)=a+b+a-b=2a,所以结果都是400
(a+b)-(a-b)=a+b-a+b=2b,所以结果都是2个b
四、布置作业:
第60页第2、5题
《运算律》教案8
教学内容:
复习、梳理第二单元内容。
教学目标:
1、知识与能力:进一步梳理单元知识,从而提高学生应用知识的能力。
2、过程与方法:通过学生回忆、梳理的方法,小组交流展示。
3、情感、态度与价值观:培养学生热爱数学的`情感,感受数学的魅力。
重点难点:
乘法分配律的灵活应用。
教学准备:
练习题、教学课件。
教学过程:
一、谈话导入
师:同学们,我们前面复习了加法的运算律,本节课我们一起复习一下乘法的运算律。
二、回顾乘法运算律
请同学们闭上眼睛想一想,乘法有哪些运算律?
小组交流,并写出乘法的运算律。(并说说其内涵)
小结(课件出示):乘法的结合律:(a×b)×c=a×(b×c)
乘法的交换律:a×b=b×a 乘法的分配律:(a+b)×c=a×c+b×c a÷b÷c=a÷(b×c)
三、知识的应用。
课件出示:
火眼金睛辨对错。并指出错误之处,再改正。
1、13×(4+8)=13×4+13×8 ()
2、(a+b)·c=a+(b·c)()
3、12×4×4×13=4×(12+13)()
4、78×101=78×100+78 ()
5、120÷5÷4=120÷(5×4)()
6、59×80=59×8×10 ()
四、学生做强化练习。练习纸,实物投影展示。
125×7×823×25×432×25380÷5÷2 420÷(5×7)270÷45 12×105135×6+65×685×199+8599×15164×9-64×980-8×25 125×48+125×53-125201×46-46
五、课堂总结。
《运算律》教案9
【教学内容】
教材第63页
【教学要求】
使学生进一步理解和学会应用乘法交换律和结合律进行简便计算,培养学生分析推理的能力。
【教学重点】
应用定律简便计算
【教学过程】
一、复习
⒈什么叫乘法交换律?用字母如何表示
⒉什么叫乘法结合律?用字母如何表示?
3、揭示课题
二、教学新课
⒈提问:我们学习的乘法交换律在我们学习中有什么应用?
完成想想做做第6题,指名板演。
⒉提问:我们学习的乘法交换律和乘法结合律,还可以为我们的学习带来哪些方便呢?
a) 请同学们用简便方法计算下面各题
b) 指名说说每题用了什么运算律?为什么要先将这两个数相乘
c) 小结:几个数相乘,可以应用定律,将得数为整十整百的两个数先乘。
3、完成想想做做第题
a) 出示:25*24 45* 1236*15
b) 比较两组中的两题,你发现了什么?
小结当两数相乘时,不能很快口算出结果进,我们可以将一个因数看成是另外两个因数相乘的形式,注意:把一个数分成两个数后,一定要有两个数的'积是整十或整百的数才简便
c) 练习:
在框里填上适当的数
35*18=35*() 16*15=16*( )
45*12=45*( )18*25=18*()
125*32=125*( ) 25*24= 24 * ()
用简便方法计算
45*18 28*15 25*12
三、巩固练习
完成想想做做学生独立完成,集体评讲
《运算律》教案10
教学目标:
1、鼓励学生运用猜测、举例、验证等数学方法学习乘法分配律。
2、在学习的过程中,树立用规律简算,增强用规律验算得意识。
设计理念:
1、体现了“生活中处处有数学”。
2、课堂上灵活处理教材,选择适当的教法。
3、提高了小组的合作学习有效性。
4、促进了学生的主动性、个性化的学习。
课前准备:
教学挂图
教学过程:
一、创设情境,引出课题。
出示数学挂图:通过看图,把图意说一说。
二、提出问题,解答质疑。
弄清题以后,你能提出什么数学问题吗? (小组讨论)
生答师板书:济青高速公路全长约多少千米? 怎样解答呢?
(1)要求全长多少千米,可以先求每辆车分别行驶的路程,再求全长的路程。
110 × 2 + 90 × 2 = 220 + 180 = 400 (千米) 还可以先求两辆车1小时行驶的路程,再求全长的路程。
(110+90)× 2 = 200 × 2 = 400(千米)
仔细观察,你能发现什么规律? (小组合作探讨)
生交流:发现两个算式的结果相等。 110×2 + 90×2 =(110+90)× 2 这是个什么规律呢?让我们来验证一下吧。
(小组合作学习) 生自己举例来验证
生答师小结:两个数的和乘一个数,可以把它们分别乘这个数,再把乘得的积相加,这个规律就叫做乘法分配律。 你能用字母表示出这个规律吗?
生板书: (a + b).c = a .c + b .c 通过学习,让学生思考运用乘法分配律解决实际问题。 让学生讨论交流自己的想法:
①可以进行验算。
②可以使计算简便。 运用乘法分配律能使计算简便吗? (生小组举例探讨)
三、巩固练习
自主练习: 第一题:让学生在小组中快速连接,并说一说运用了什么运算定律。
第二题:先让生自己解答,然后再组内互相说出师运用的什么定律。
第三题:先观察,再说出对错,然后把错的.题重新做出来,集体订 正,并说出错题错在哪里。
板书设计: 乘法分配律
110×2 + 90×2 (110 + 90)×2 = 220 + 180 = 200×2 = 400(千米) = 400(千米)
两个数的和乘一个数,可以先把它们分别和这个数相乘,再把乘得的积相加,这个规律就叫做乘法的分配律。
( a + b).c = a .c + b .c
《运算律》教案11
教学目标:
1、探索和理解运算律和性质,能应用运算律进行一些简单运算。
2、能根据题目灵活运用四则运算定律和性质使计算简便。
3、能理解四则运算中的数学术语,进一步提高计算能力。
教学重点和难点:
1、重点:掌握和灵活运用四则运算定律和性质。
2、难点:选择合理、灵活的计算方法进行计算。
教具准备:
ppt课件
教学过程:
同学们:计算一直是我们学习数学的最大困扰,有没有什么方法能使计算简便一点呢?今天,让我们一起来学习《运算律》吧。
一、 我们学过了哪些有关整数的运算律? 你能用字母表示出来吗。下面让我们用多种方式来验证这些运算律的合理x##b。请同学们看课本76页第1题。小组讨论一下,你是怎样验证的?
活动一:用多种方式验证这些运算律的合理性。
你知道淘气是怎样验证“加法结合律”的吗?(举例子法)你呢?
笑笑又是怎样验证“乘法交换律”的?(实际问题法)你呢?
乐乐又是怎样验证“乘法分配律”的?(面积模型法)你呢?
还有“加法交换律”和 “乘法结合律”请同学们自己回去验证。验证的方法多样,有的利用举例法,有的利用情境法,有的利用图解等。
(教学反思:通过师生互动,学生互动,促使学生在探索中交流,在交流中反思。)
通过验证这些运算律,相信同学们心里踏实多了。下面我们来运用一下。
试一试:下面的计算分别应用了什么运算律? 86+35=35+86 ( ) 72+57+43=72+(57+43) ( ) 76×40×25=76×(40×25) ( ) 125×67×8=125×8×67 ( ) 46×37+37×54= 37×(46+54 ) ( ) 4×8×25×125=4×25×(125×8) ( ) 437-161-39 =437-(161+39) ( ) 127÷25÷4=127÷(25×4) ( ) 前面我们学的那些都是有关整数运算的运算律,其实生活中还会遇到其他数,像分数,小数……同学们请看两组算式。 二、出示课本第3题,然后让学生读,自己的发现和感受。 教师引导学生观察、思考,使学生感知;满足数的运算的需要也是数扩充的重要原因,也是产生负数和分数的重要原因,从而拓展学生对分数和负数的认识,加深对分数、负数意义的理解。教学时,教师可以将这部分内容与“数学万花筒”联系起来,先让学生查阅有关数系扩充的资料,互相交流学习,然后看教材提供的问题,真切感受数系扩充的必要。 (教学反思:从运算的角度引导学生对“数”进行再认识,这是对学生认识的提升。)
可见,满足数的运算的需要是数扩充的重要原因。那么,有关整数运算的运算律对于小数、分数的运算还会适用吗?请看下面几组式子,你有什么发现?
活动二:在○里填上“>”“= ”“<”。
1.2+1.8 ○ 1.8 +1.2
38 + 58 ○ 58 + 38
0.8×1.3 ○ 1.3×0.8
35 × 53 ○ 53 × 3 5
(0.9×0.4)×0.5 ○0.9×(0.5×0.4)
(3.2+2.8)×0.6 ○3.2×0.6+2.8×0.6
( 23 -12 )×12 ○12 ×23 -12 ×12
归纳总结:整数运算律对于小数、分数运算也同样适用。 那就让我们带着它走进“数学城堡”吧!看谁的收获最大。 三、巩固与应用
1、课件展示,运用运算律进行简便运算。
鼓励学生在运算的`过程中熟悉运算律的“结构”,同时培养简算的意识。
第一组计算:(小组评议)淘气是这样算的。
① 46+32+54
②546+785-146
③0.7+3.9+4.3+6.1
④ 25×49×4
第二组计算:(学生板演,集体评议)笑笑是这样算的。 ⑤ 8×(36×125)
⑥ 8×4×12.5×0.25
⑦ 2.7×4.8+2.7×5.2
⑧ 905×99+905
第三组计算:(学生点评)乐乐是这样算的。
⑨ 4.37 + 18 + 0.63 + 78
⑩ 10.47-5.68-1.32
(11) 4.8÷2.5÷0.4
(12) 36×( 3 4 + 49 - 56 )
2、课本77页“巩固应用”第2题,学生在解决实际问题的过程中,熟悉运算律。通过不同解题方法的比较,使学生再次体会乘法分配律。
(教学反思:结合具体情境体会运算律的正确性,有利于学生掌握算理。)
四、总结:
今天我们学会了什么?
板书设计:
五个定律:
加法交换律: a+b=b+a
加法结合律: (a+b)+c=a+(b+c)
乘法交换律: a×b=b×a
乘法结合律: (a×b)×c=a×(b×c)
乘法分配律: (a+b)×c=ac+bc (a-b)×c=ac-bc
两个性质:
减法的性质: a-b-c=a-(b+c)
除法的性质: a÷b÷c=a÷(b×c)
《运算律》教案12
教学目标:
1.结合具体事例,经历运用乘法运算定律计算并解答简单实际问题的过程。
2.能灵活运用乘法的运算定律进行简便计算,体验计算方法的多样化。
3.在选择合理的灵活的方法进行计算的过程中,体验乘法运算定律在解决实际问题中的价值,将数学与生活紧密联系起来。
教学重点:
1.体验算法的多样性,并能选择最简捷最适合的解题方法。
2.体验运用乘法运算定律解决实际问题的简便性。
教学难点:
运用乘法运算定律解决简单问题的过程。
教学过程:
一、情景导入
以一首诗开启今天的`数学课堂,《钱塘湖春行》,教师配乐朗诵。
读完此诗,你有没有感受到春的气息,春天青山绿水、鸟语花香,到处一派生机勃勃的景象,春天也是郊游的季节。这个春天,我们去了科技馆与人民公园,我们马上还要去银川研学旅行了,在去之前我们先解决一些隐藏在这次旅行中的数学问题,你有信心来解决吗?
问题一:
1.出示例题:四年级有102名师生要去研学旅行,平均每人的费用25元,那么师生这次旅行共需要多少钱?
①指明学生读题,明确已知条件和所求问题,询问怎么列式?为什么用乘法?②要求:学生独立计算之后,再与四人小组交流算法。
③师巡视收集不同算法。(关注运用乘法运算定律进行计算的情况。)
2.展示交流算法。(算法预设如下)
A:笔算
1 0 2
× 2 5
5 1 0
2 0 4
2 5 5 0
B:口算
100×25=2500(元)
2×25=50(元)
2500+50=2550(元)
C:乘法结合律
25×102
=25×(2×51)
=25×2×51
=50×51
=2550(元)
D:乘法结合律
102×25
=102×(5×5)
=102×5×5
=510×5
=2550(元)
E:乘法分配律
102×25
=(100+2)×25
=100×25+2×25
=2500+50
=2550(元)
通过刚才咱们用多种方法求解102×25我们发现,哪种方法更简便?为什么?(学生自由发言,阐明理由)
教师板书102×25
=(100+2)×25
=100×25+2×25
=2500+50
=2550(元)
答;师生这次旅行共需要2550元钱。
4.揭示课题,今天我们就来学习用乘法简便运算来解决生活中的数学问题。
5.如果我把题中条件稍加改动,你还会不会算?
师改题104人,,每人25元。学生口答,教师板书
6.总结:一个接近整百却大于整百的数乘另一个数,我们可以把它看成整百数加一个数的和乘另一个数。再利用乘法分配律来计算,从而让计算变得更加简便。
问题二:
我们继续往下研究。
1.在102人中有4位是教师,学生自由98人,这些学生应交多少钱?指名读题列式。
要求:先独立完成,再同桌交流算法。
展示交流算法。(算法预设)
98×25
=(100-2)×25
=100×25-2×25
=2500-50
=2450(元)
答;这些学生应交2450元钱。
3.如果我把题中条件稍加改动,你还会不会算?
99人是学生,每人28元,一共多少钱?学生口答,教师板书。
4.总结:一个接近整百却小于整百的数乘另一个数,我们可以把它看成整百数减一个数的差乘另一个数。再利用乘法分配律来计算,从而让计算变得更加简便。
问题三:
继续往下挑战
1.去春游的学生中有36人是四年级(2)班的学生,四年级(2)班的学生应交多少钱?
要求:学生自由读题,独立完成。
2.集体交流展示算法。(算法预设)
A:36×25
=(4×9)×25
=9×(4×25)
=9×100
=900(元)
B:36×25
=(40-4)×25
=40×25-4×25
=1000-100
=900(元)
3.通过刚才咱们用多种方法求解36×25我们发现,哪种方法更简便?为什么?(学生自由发言,阐明理由)教师板书
36×25
=(4×9)×25
=9×(4×25)
=9×100
=900(元)
答:四(1)班学生应900元钱。
4.总结:如果是特殊数25乘另一个数,可以把另一个数拆分成4乘几的形式,再利用乘法结合律来计算,从而让计算变得更加简便。
二、巩固反思
通过刚才的学习,老师想知道大家为什么能算的又快又准确,有没有什么技巧与方法,能跟老师分享一下吗?
学生自由发言
总结:①两个数相乘,如果一个因数是接近整十、整百或整千的数,可以将这个数写成整十、整百或整千的数加或减一个数的形式,再运用乘法分配律进行计算,会使计算简便。
②如果是特殊数25(或125等)乘另一个数,可以把另一个数拆分成4乘几(或8乘几)的形式,再运用乘法结合律进行计算,会使计算简便。
一次简单的出游,竟然隐含着这么多的数学问题,但都被我们的数学小能手们一一解决,大家说学好数学有没有必要?学好数学可以解决我们生活中的很多问题。
三、课堂小结
这节课你有什么收获?
四、板书设计
乘法简便运算
资源文件列表:
《运算律》教案13
课题:整理与练习第1课时总第课时
教学目标:
1.通过回顾与整理,使学生形成知识网络,加深对加法、乘法运算律的理解,能运用运算律进行一些简便计算。
2.培养学生根据实际情况选择算法的能力,能灵活地解决生活中简单实际问题。
3.培养学生的探究意识和能力,培养学生进行自我反思和自我评价的能力。
教学重点:整理知识,灵活运用运算律进行简便计算。
教学难点:在解决问题的过程中运用运算律进行简便计算,树立简便计算的意识。
教学准备:课件
教学过程:
一、知识系统整理
提问:这个单元,我们学习了哪些知识?
1.梳理知识。
(1)提问:同桌互相说一说你都学习了哪些运算律?如何用字母表示?
(2)以小组为单位,将本单元学习的运算律进行系统整理。
2.交流汇报。
(1)教师结合学生的汇报完成下面的板书:
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
(2)追问:运算律有什么价值?
归纳:运用运算律可以使一些计算简便;可以用交换律验算加法和乘法。
二、查漏补缺训练
1.完成教材第72页“练习与运用”第2题。
出示题目后,可让学生先独立填写,再交流。
交流时,让学生说一说各题分别运用了哪些运算定律进行简便计算。
2.完成教材第72页“练习与运用”第3题。
出示题目后,先组织学生观察各个算式的特点,然后让学生独立进行简便计算。
组织交流时,让学生说说各自的想法。
3.完成教材第73~74页“练习与运用”第5、9、11题。
这四道题都是在解决问题的`过程中运用运算律进行简便计算。
第5题,是用连加的方法来解决问题,在计算过程中可以运用乘法结合律先算“54+46”的和。
第9题,是“相遇问题”,“相遇问题”的两种解题方法符合乘法分配律的特点。
第11题,五年级和六年级“每班人数”相同,因此符合乘法分配律的特点,计算时也可以运用乘法分配律进行计算。
4.完成教材第72~73页“练习与运用”的其他习题。
三、综合运用提升
1.完成教材第74页“探索与实践”第12题。
这道题要求“一共可以收大白菜多少千克”,是一道连加的数学问题,在计算过程中可以运用加法交换律和加法结合律进行简便计算。
练习时,让学生独立解答,再说说哪些地方运用了简便运算。
2.完成教材第74页“探索与实践”第13题。
这是一道探索规律的练习,让学生先计算填出前三小题中间的符号,然后再观察比较,找出规律。
四、反思总结
通过本课的学习,你有哪些收获?还有哪些疑问?
五、课堂作业
《补》
《运算律》教案14
教学目标:
1、使学生理解和掌握乘法交换律和结合律,并能用字母表示,培养学生分析、推理能力。
2、使学生在合作与交流中对运算定律的认同由感性逐步发展到理性,合理地建构知识。
3、使学生在学习过程中,感受到数的运算与日常生活的密切联系,能根据解决实际问题的需要合理灵活地使用乘法运算定律,体验运算定律的价值,增强学生应用数学的意识。
4、使学生在数学活动中获得成功的体验,增强学习的.兴趣和信心,逐步形成独立思考和探究问题的意识和习惯。
教学重点:
懂得乘法交律换律和结合律的算理,会用字母表示。
教学难点:
灵活应用乘法运算定律进行简便计算。
教学准备:
课件。
教学过程:
一、复习铺垫,设境导入
1、同学们,大家好,我们知道,现在全国都在开展中小学生阳光体育运动,你们知道小学生每天在校要保证多少长的运动时间吗?(1小时)
2、据我所知,你们学校也开展了丰富多彩的体育活动,在开展活动的过程中,学校每天都要统计参加各种活动的人数,这就要用到加法和乘法等一些运算,为了使统计又快又正确,就要用到一些运算定律。在前两节课的学习中,你们认识了加法的哪些运算定律?
3、谁能说说什么是加法交换律?什么是加法结合律?如何用字母表示?
(生答后师板书:加法交换律:a+b = b+c
加法结合律:(a+b)+c = a+(b+c))
4、学生们都学得很好,今天吴老师要和大家一起来研究乘法的运算定律(板书:乘法运算定律),大家有信心学好吗?
二、自主探索、建构新知。
1、教学乘法交换律
(1)出示P61主题图。
(2)这是实验小学四(7)班第一小组体育大课间活动的图片,从图片中,你知道了哪些信息?
(3)从图片中,你知道让我们求什么问题?
(4)如何求呢?还可以如何求?
(板书:5×3 =15(人)3×5=15(人))
(5)观察这两种解法,有什么相同和不同的地方?
(6)它们的积相同,说明这两个算式可以用什么号连接起来?
(7)你还能举出一些这样的等式吗?(生答师板书)
(8)计算验证。
(9)观察这些等式,有什么相同和不同点,你发现了什么?请大家在小组里说一说。
(10)组织汇报。
(11)根据这些特征,你还能说出含有这样规律的等式吗?好,下面我们做一个游戏,老师报算式,你们说出和它相等的另一个算式。(后师生交换角色)
(12)刚才大家说得又对有快,下面老师再出两个难一点的,你们会吗?
板书:1。5×2 = 1/2 ×1/3 =
(13)像这样的等式能说完吗?你们有什么好办法来表示这样规律的等式呢?(板书:a×b = b×a)
(14)谁能用自己的语言说说这个运算定律呢?
师:两个数相乘,交换因数的位置,积不变。这叫做乘法交换律。
(15)同学们,在我们前面的学习中,已经应用过乘法交换律,你知道在什么地方用过乘法交换律?
(16)练习:列竖式计算并运用乘法交换律进行验算。17×15
2、教学乘法结合律:
(1)出示题目,引导审题。
(2)你会用不同的方法解决这个问题吗?试一试。
(3)把你的想法和同桌说一说。
(4)组织汇报,并说说先算的什么,再算的什么?
(5)观察这两个算式,有什么相同的地方和不同的地方?能用等于号连接起来吗?
(6)你还能照样子写出几个这样的等式吗?试一试。
(7)观察这些等式,你发现了什么?在小组里说一说?
(8)组织汇报,师总结:三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,积不变。这叫做乘法结合律。
(1)谁能用字母表示乘法运算定律?
(2)这里的a、b、c可以代表那些数?
3、练习
(1)出示P62想想做做1;引导审题。
(2)指名回答
4、练习
(1)出示P62想想做做;
(2)分组进行练习;
(3)组织汇报
(4)比一比,哪种算法简便一些?为什么?
5、教学试一试
(1)出示P62试一试引导审题;
(2)你会用简便方法计算吗?试一试(1、2两组做第1题,3、4两组做第2题;
(3)组织汇报;
(4)为什么说这样计算简便一些?
(5)应用了什么定律?
三、练习巩固形成技能
1、P62 3
①多媒体出示,引导审题②指名回答,并说说你是怎么算的?
2、P62 4
①独立练习;②评析;
3、请你做回小裁判
(1)14×8×5在简便计算时,应先计算14×8…………()
(2)25×17×4=(25×4)×17,这里应用了加法交换律和加法结合律。………………()
(3)35×5×2=(35+5)×2 …………()
(4)在计算15×8×6时,下面的算法都属于简便方法…()
15×8×6 15×8×6
=(15×8)×6=(15×6)×8
=120×6=90×8
=720=720
四、全课总结
1、本节课主要学习了什么?
2、你有哪些收获?
3、你对自己本节课的表现有什么评价?
《运算律》教案15
教学目标
1、知识与技能:
(1)有理数加法的运算律。
(2)有理数加法在实际中的应用。
2、过程与方法:
(1)经历探索有理数加法运算律的'过程,理解有理数的加法运算律。
(2)利用运算律进行适当的推理训练,逐步培养学生的逻辑思维能力
3、情感态度与价值观:
(1)学生通过交流、归纳、总结有理数加法的运算律,体会新旧知识的联系。
(2)通过运用有理数加法法则解决实际问题,来增强学生的应用意识。
重点有理数加法的运算律。
难点运用加法运算律简化运算
教学过程
一、创设情景我们以前学过加法交换律、结合律,在有理数的加法中它们还适用吗?计算 30+(-20),(-20)+30。
两次所得的和相同吗?换几个加数再试试。
计算:-7+2 (-10)+(-5)
二、探究新知
1、填空
(1)4+(-8)=____, (-8)+4=_____所以4+(-8)____ (-8)+4
(2)(-9)+(-6)=____,(-6)+(-9)=___所以(-9)+(-6)____(-6)+(-9)于是可得a+b=_______
2、
(1)[2+(-3)]+(-8)=_______ 2+[(-3)+(-8)]=_______
(2) (-5)+[7+(-2)]=______ [(-5)+7]+(-2)=____________于是可得(a+b)+c=________
【《运算律》教案】相关文章:
《运算律》教案02-25
《运算律》教案05-29
加法运算律教案03-20
《运算律》教案15篇03-05
《运算律》教案(15篇)03-05
《运算律》说课稿12-27
《加法运算律》教学反思02-13
运算的教案03-06
苏教版三年级下册《运算律》数学教案01-17