圆的认识教案
作为一名教职工,编写教案是必不可少的,教案有利于教学水平的提高,有助于教研活动的开展。那么教案应该怎么写才合适呢?下面是小编精心整理的圆的认识教案,欢迎阅读,希望大家能够喜欢。
圆的认识教案1
教学目标:
1.知识与技能目标:使学生认识圆,知道圆各部分的名称;掌握圆的特征,理解直径和半径的相互关系。初步学会用圆规画圆。
2.过程与方法目标:通过分组学习,动手操作,主动探索等活动,初步培养学生的合作意识和创新意识,以及抽象、概括等能力,进一步发展学生的空间观念。
3.情感与价值观目标:通过学习,提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用
教学重点:圆的各部分的名称,圆的基本特征,学会用圆规画圆
教学流程
一、联系生活,引入新课
1、师:同学们在生活中见过圆吗?学生举例。
2、师:其实圆在我们生活中随处可见。(P97)
二、动手实践,加强认识
1、师:你们想不想动手画一个圆呢?老师给你一支粉笔,你能画一个圆吗?
预设:学生说不能。单凭一支粉笔是不成的,还要借助一定的工具。
2、课前同学们也也准备了一些工具,你会用它们画一个圆吗?
学生画圆。汇报时教师有意识地先请用其他方法的同学介绍,最后请用圆规画的同学介绍。
师:你是怎样画的?
板书:两脚叉开固定针尖旋转成圆
3、师:用什么工具画圆最方便,最标准呢?(圆规)
下面我们大家就用圆规在纸上画一个圆。
4、师:把你们作品放在一起,比一比,然后说一句评价的话,师根据学生的回答,适时引导。
(1)同学们画出的圆为什么有大有小呢?
(2)同学们画出的圆为什么位置不同呢?
(3)师:我也发现有几个同学画得不够圆,你觉得问题出在哪儿了?
拿圆规方法不对;针尖没有固定好;两脚之间的距离变化了。
5、根据学生的回答,小结画圆的注意点。
6、你想不想用正确的方法再画一个圆,并且使我们班每个人画的圆都一样大吗?
引导说出:用尺量出两脚之间的距离,使之相等。
怎样定?教师示范。
师:好,现在我们就把圆规两脚之间的距离统一定为4厘米。
学生画圆。画好后剪下来。
7、师:你会介绍这个圆?
我们把课本翻到94页,例2下面的一段话会告诉你答案。
8、学生汇报。
(1)什么是圆的圆心呢?针尖固定的一点是圆心。
学生说,师在黑板上标出。圆心通常用大写字母O表示。
(2)什么是半径呢?连接圆心和圆上任意一点的线段是半径。
什么是圆上任意一点呢?你能找一找吗?请一生到黑板上找。请学生在黑板上画出一条半径,半径通常用字母r表示。其余学生下面画,并用r表示。
(3)什么是直径呢?通过圆心两端都在圆上的线段。
你会画吗?让学生画。直径通过用字母d表示。请学生标出。
9、完成P94的第一题。
三、合作交流,进一步探索特征
1、我们已以认识了圆的圆心,半径,直径。大家想不想再深入地研究一下圆呢?
2、师:我们大家可以用手头的材料,用圆片、直尺、圆规等作为研究工具。研究方法可以是画一画、比一比、折一折等等。如果不知道研究什么问题?可以阅读94的例3的讨论题。请大家你的发现写下来。
3、汇报。
(1)圆有无数条半径和直径。师:你有这个发现吗?你怎么知道的?
(2)在同一个圆里,半径的长度都相等。所有的直径都相等。
师:你是怎样发现的?能说一说吗?“半径的长度都相等,直径的'长度都相等。”你觉得这句话,有问题吗?有没有要补充的?
学生如果说不出来,让学生把手中圆的半径,直径与老师黑板上的比较一下。让学生明白在同一个圆里,或一样大的圆里。
(3)同一个圆里直径是半径的2倍。师:你是怎样知道的?
你会用含有字母的式子表示它们的关系吗?d=2rr=d÷2
如果我告诉你圆的半径,你能说出它的直径吗?
师出示一个圆,半径5厘米。如果半径6厘米呢?如果直径是6厘米,半径呢?
老师这里还有?出示练习十七第1题。
半径(r)
20厘米
7厘米
3.9米
直径(d)
6米
0.24米
(4)圆是轴称圆形,有无数条对称轴。
师:还有同学发现圆是轴对称图形。你是怎样知道的?
(5)还有其它发现吗?
4、小结:刚才大家通过自己的努力又发现了圆的这么多的特征,看来只要善于观察,善于探索,善于研究,就会有意想不到的收获。
四、巩固练习,深化认识
师:大家这节课学得怎样?下面我们就来检验一下。
完成练习十七第1、2题。
圆的认识教案2
教案设计
设计说明
本课时主要是让学生认识到圆的轴对称性,创设一个“找圆心”的活动,引导学生借助折纸活动,找出这个圆的圆心,进一步理解同一个圆的半径都相等的特征。
1、动手实践是重要的学习方式。
考虑到小学生的认知水平,教材中并没有给出对圆的对称特征的描述。所以在教学中我采用动手操作的学习方式,引导学生观察与思考,通过“折一折、剪一剪”等活动,逐步感知和体会圆是轴对称图形且有无数条对称轴。
2、增强学生对圆的感性认识。
初步感受圆的特征以及圆与以前学过的平面图形的不同,学生在折纸及小组交流合作中发现圆是轴对称图形,让学生在独立思考的基础上表达自己的观点和思考的策略。
课前准备
教师准备
PPT课件直尺
学生准备
圆规剪刀白纸圆形纸片
教学过程
复习导入
回忆以前学过的轴对称图形。
1、举例说出轴对称的物体。
如:蝴蝶、飞机、门窗、圆形的'钟面、月饼等。想一想这些图形有什么特点。
小结:如果一个图形沿着一条直线对折,直线两侧的部分能够完全重合,这个图形是轴对称图形。折痕所在的这条直线叫作对称轴。
2、引入:今天,我们一起来探究圆的奥秘
圆的认识教案3
一、教材说明;
九年义务教育六年制小学数学[人教版]第十一册《圆的认识》
二、教学目标;
1、使学生认识圆,掌握圆的特征;了解圆的各部分名称。
2、会用字母表示圆心、半径、直径;理解并掌握在同圆(或等圆)中直径与半径的关系。
3、能正确熟练地掌握用圆规画圆的操作步骤。
4、培养学生动手操作、主动探究、自主发现、交流合作的能力。
三、教学流程;
1、导入新课
(1)学生活动(边玩边观察)。
①球、球相碰玩具表演。②线系小球旋转玩具表演。
[教师要求学生将观察到的形状告诉大家,学生异口同声回答:圆形。这里,教师采用学生感兴趣的玩具表演活动,既直观形象,又易于发现,进而抽象出“圆”。学生从“玩”入手,不知不觉进入学习状态。学习兴趣浓厚,乐于参与,利于学习。]
(2)师生对话(学生可相互讨论后回答)。
教师:日常生活中或周围的物体上哪里有圆?
学生:在钟面、圆桌、人民币硬币上……都有圆。
教师:请同学们用手摸一摸,体会一下有什么感觉?
学生用眼看一看、用手摸一摸,感觉:……闭封的、弯曲的。
教师(多媒体演示:圆形物体→圆):这(指圆)和我们以前学过的平面图形,有什么不同呢?
学生:以前我们学过的平面图形如长方形、正方形、三角形、平行四边形和梯形的共同特征,都是由线段围成的直线图形。而我们现在看到的(指圆)这种图形是由曲线围成的图形。
教师(鼓励表扬学生):对,这个图形就是圆,你能说说什么是圆吗?
学生讨论后回答:圆是平面上的一种曲线图形。(这时,教师请同学们把眼睛闭上,在脑子里想圆的形状,睁开眼睛再看一看,再闭上眼睛想一想,能否记住它。)
教师在此基础上揭示课题,并请学生回答:你还想认识圆的什么?学生说:还想认识圆的'圆心、直径、半径……
[这里通过生生交流、师生互动,形象感知、抽象概括,帮助学生正确建立“圆”的概念。]
2、探索新知。
(1)探究——圆心
① 徒手画圆。
教师请两个学生一同在黑板上徒手画圆,然后请同学们评一评(3个人)谁画的圆好呢?……师生认为用工具画圆才能画得好。[师生共同表演、平等相待、大家评说、其乐融融。]
②用工具画圆。
教师请同学们用自己喜欢的工具画圆。学生画圆:a.用圆规画圆;b.用圆形物体画圆。[画圆方法任学生自选,既体现因人而宜、因材施教,又体现尊重学生(个性)、教学民主。]
③找圆心。
学生动手剪一剪、折一折,再议一议、找一找……自我探索发现圆的“圆心”。[教师放手让学生在动手操作中探索,在探索中发现新知,培养探究能力。]
教师引导学生归纳小结:圆中心的一点叫做圆心,圆心用字母“O”表示。(学生在圆形纸片上点出圆心,标出字母。)
④游戏趣味题。
在操场上,体育老师在地上画了一个大圆,给同学们做游戏。老师说,不管你站在什么位置,都会派上用场。你喜欢站在什么位置呢?请你点出来。
[教师请学生边点边说明这点与圆的位置关系,同时给予评说。如学生点到“圆心”,师评说:“你很有雄心,喜欢别人围着你转,将来必成大器。”如学生点到“圆内”,师评说:“你比较守规矩,喜欢在一定的范围内活动,将来不容易犯错误。”如学生点到“圆上”,师评说:“你做事很有规律,能够遵循原则,同时与‘上司’相处喜欢保持一定距离。”如学生点到“圆外”,师评说:“你很了不起,思维活跃,思路开阔,做事不愿受条条框框的束缚,喜欢创新,有开拓精神,将来定会大有作为。”……这样教学,生动有趣,其乐无穷,激励性强,学生乐学,学得轻松愉快、积极主动。学生对圆、圆心、圆内、圆上、圆外等基本概念能够有深刻的理解。]
(2)探究——圆的直径、半径及其关系。
教师:你还想知道什么?
学生:还想知道圆的直径、半径,直径与半径之间有什么关系?……
圆的认识教案4
一、教材说明
九年义务教育六年制小学数学[苏教版]第十一册《圆的认识》
二、教学目标
1、使学生认识圆,掌握圆的特征;了解圆的各部分名称。
2、会用字母表示圆心、半径、直径;理解并掌握在同圆(或等圆)中直径与半径的关系。
3、能正确熟练地掌握用圆规画圆。
4、培养学生动手操作、主动探究、自主发现、交流合作的能力。
三、教学流程
(一)、导入新课
1、教具演示
(1)教师演示,学生观察,找出圆并感知圆,得出其是平面图形。
(2)比较与其它平面图形的区别,知道圆是曲线围成的图形。
2、师生对话
学生寻找生活中的圆,教师课件演示,并注意与球的区别,设置车轮是圆形的悬念。
(二)、探索新知。
1、各部分名称介绍
(1)师画圆,生注意观察
(2)讲解圆心的定义,并让学生知道圆心决定圆的位置。
(3)知道什么是半径、直径,明确半径决定圆的大小。
(4)新授中的巩固:在圆内找半径和直径。(根据课堂变化出示课件巩固圆的`知识)
2、画任意圆和固定圆
(1)生画一个任意的圆。
(2)继续画一个固定的圆,并剪下来。
3、操作与发现
(1)明确要求,分小组进行操作。
(2)学生通过画、量、折等方法,探索同圆内半径,直径的特征及二者间的关系。
(3)学生操作后交流,并将交流结果记录在发现纸上。
(4)学生反馈交流信息,师生共同评价。
(三)、新知巩固
1、基本练习,巩固本节课圆的知识。
2、发散性练习,提高学生对圆的认识。
(四)、运用实际
用本节课知识解决实际问题,即课始留下的车轮问题。
(五)、根据课堂实际灵活进行总结或延伸。
四、课后反思
新课程倡导学生主动参与、乐于探究、勤于动手的学习方式,培养学生收集和处理信息的能力、获取新知识的能力、分析和解决问题的能力,以及交流与合作的能力。本节课教师通过创设宽松、愉悦、民主、和谐的课堂教学氛围,引导学生积极主动参与学习活动。如导入中通过游戏活动,让学生在玩中学习。如自我习作、操作表演、大家共赏,享受成功的愉悦,可激发学生探知的欲望。如让学生剪、折、画、量、议、找多种感官参与活动,可培养学生的动手、实践能力,学会探索的方法。如通过学生评价教师、学生,师生平等相待,可解放学生的脑、手、眼,让学生大胆地想、放开去说、随心地做,有利于培养学生的创新精神和探究能力。教学中师生互动、生生互动、民主平等、开放自由、心心相映、情感交融课堂充满了生命活力,这样教学有力地促进了学生学习方式的改变。置身于这样的学习情境之中,真正达到了让学生享受学习的意境。
圆的认识教案5
教学目标
1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径和直径的关系
2、进一步理解轴对称图形的特征,体会圆的对称性。
3、在折纸找圆心验证圆是轴对称图形等活动,发展空间观念。
教材分析
重点
理解同一个圆的半径都相等,同一个圆里半径和直径的关系,并体会圆的对称性。
难点
在折纸的过程中体会圆的特征
教具
教学圆规
电化教具
课件
一、 创设情境:
亮亮借助光盘画了一个圆,剪出了一个圆纸片,这个圆的圆心在哪里呢?他很快找出来了。你有办法找出来吗?
二、探索活动:
1、引导学生开展折纸活动,找到圆心。
(1)自己动手找到圆心。
(2)汇报交流找圆心的过程,并说出这样做的想法。
2、通过折纸你发现了什么?理解圆的对称性。
(1)欣赏美丽的轴对称图形。
(2)再折纸,体会圆的轴对称性,画出圆的对称轴。
(3)圆有无数条对称轴。对称轴是直径所在的直线。
3、通过折纸你还发现了什么?理解同一个圆里直径和半径的关系。
(1)边折纸边观察思考同一个圆里的'半径有什么特点?
(2)边折纸边观察思考,同一圆里的直径与半径有什么关系?
(3)引导学生用字母表示一个圆的直径与半径的关系。
三、课堂练习。
1、让学生独立完成试一试做完后交流汇报。
2、完成练一练进一步巩固圆的半径与直径的关系。
3、完成填一填
让学生独立观察思考并试着填一填,有困难的向老师或同桌请教。
汇报交流,说答题根据。
4、完成书后第3题。
四、课堂小结。
引导学生小结本节内容。
学生利用经验很容易找到圆心,如果让学生说一说为什么对折再对折就可以找到圆心学生很难说清楚。教学中通过折纸观察思考,找到答案。交流汇报,从中进一步理解圆的轴对称,一个圆的半径都相等。
欣赏美丽的对称图形引导学生对以学过的轴对称图形进行整理,进一步理解轴对称图形的特征,在对比中发现这些轴对称图形的不同特点,从而突出圆具有很好的轴对称性。
多次折纸的过程中探索,发现,验证。操作中体会交流,体会圆的特征,发展空间观念。
个别学生做试一试的题目会有困难,注意个别指导。
板书设计
圆的认识(二)
我们的发现
同一个圆里所有的半径都相等
同一个圆里d=2r或r=1/2d
圆有无数条对称轴,对称轴是直径所在的直线
学生利用经验很容易找到圆心,如果让学生说一说为什么对折再对折就可以找到圆心学生很难说清楚。教学中通过折纸观察思考,找到答案。交流汇报,从中进一步理解圆的轴对称,一个圆的半径都相等。
圆的认识教案6
圆的复习课教案
—、学习内容
有关点、直线、圆和圆的位置关系的复习。
二、学习目标
1、了解点和圆、直线和圆、圆和圆的几种位置关系。
2、进一步理解各种位置关系中,d与R、r数量关系。
3、训练探究能力、识图能力、推理判断能力。
4、丰富对现实空间及图形的认识,发展形象思维,并能解决简单问题。
三、学习重点切线的判定,两圆外切、内切与两圆圆心距d、半径R、r和的数量关系的联系。四、学习难点各知识点之间的联系及灵活应用。
五、学习活动概要问题情景引入――基础知识重温――综合知识应用
六、学习过程
(一)、图片引入,生活中的圆。
(二)、点与圆的位置关系
1、问题引入:点和圆的位置关系有哪几种?怎样判定。复习点和圆的位置关系,点到圆心的距离d与半径r的数量关系与三种位置关系的联系。
2、练习反馈如图,已知矩形ABCD的边AB=3厘米,AD=4厘米。
(1)以点A为圆心、4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?
(2)若以A点为圆心作圆A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,则圆A的半径r的取值范围是什么?
(3)、直线和圆的位置关系1、知识回顾:直线和圆的三种位置关系及交点,三种位置关系与圆心到直线的距离d与半径r的数量关系间的联系。
3、分组活动:全班分为三组,各代表相交、相切、相离。
当出示的问题是圆与直线的位置关系是哪组代表的,那组的同学起立,看那组同学反应最快。已知⊙O的半径是5,根据下列条件,判断⊙O与直线L的位置关系。
(1)圆心O到直线L的距离是4
(2)圆心O到直线L的垂线段的长度是5
(3)圆心O到直线L的距离是6
(4)圆心O到直线L上的一点A的距离是4
(5)(圆心O到直线L上的一点B的距离是5
(6)圆心O到直线L上的一点C的距离是6
4、要点知识重温:圆的切线出示图形,同学们重温切线的有关性质及判定。
5、知识应用
1、已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,求证:DC是⊙O的切线。
(1)、在以点O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E,求证:CD是圆的线。
(2)圆与圆的位置关系1、生活中处处有数学。
列举反应圆和圆的位置关系的实例,以投篮为例。
2、知识回顾:1圆和圆的五种位置关系2)两圆外切、内切时,圆心距d与半径R、r的位置关系。
3、抢答1)两圆圆心距为4㎝,两圆半径分别是1㎝、3㎝,则两圆位置关系是———— 2)两圆外切,半径分别是1㎝、3㎝,则圆心距为―― 3)两圆半径分别是1㎝、3㎝,圆心距是2㎝,则两圆位置关系是―― 4)两圆相切,半径分别是3㎝、1㎝,则圆心距是―― 5)两圆内切,圆心距为4㎝,一圆半径是5㎝,则另一圆的半径是―― 4、活动与探究已知图中各圆两两相切,⊙O的半径为2R,⊙O1、⊙O2的半径都是R,求⊙O3的半径。 。
3。求圆的认识教案一篇
《圆的认识》教案设计教学目的.:
1、掌握圆各部分名称以及圆的特征;会用圆规画圆。
2、借助动手操作活动,培养学生运用所学知识解决实际问题的能力。
3、渗透知识来源于实践、学习的目的在于应用的思想。
教学重、难点:掌握圆各部分的名称及圆的特征。圆的画法的掌握。
教具准备:多媒体课件、圆规、直尺等学具准备:各种不同的圆形实物、剪刀、彩笔、直尺、圆规、圆形、纸片等教学主要过程一结合实际、谈话引入新课。
谈话引入:今天非常高兴能和六(五)班同学一起来学习、研究一个数学问题。
我们以前已经初步认识了圆,你能找出生活中哪些物品的形状是圆的吗?(生举例师强调——指物品的表面)师:看来大家平时非常留心观察。
课前请同学们画两个大小不同的圆,并把它们剪下来,你们准备好了吗?师:把它们举起来,大家互相看一看。
回想自己画圆、剪圆的过程,你能说说圆是什么样子的吗?(师一手拿一个圆)(圆是没有棱角的,边是弯的;圆的边是一条曲线。)师:同学们观察得真仔细。
圆的边是弯曲的,跟以前学的长方形、正方形的边是不同的。今天我们就来研究这种平面上的曲线图形。
(板书课题)二、引导探究新知识
1、导:圆里究竟藏有什么秘密呢?下面我们来做一个小实验。把你的圆对折,再对折,多折几次,把折痕画出来,看看你有什么发现,并把你的发现在小组里汇报。
最后看看谁的收获多。(1分钟)
2、学生动手操作,讨论交流。
几分钟后分别从圆心、半径、直径各方面纷纷展示汇报。(5分钟)师:你们组观察得真仔细!大家的发现可真不少,现在我们就把刚才的发现整理一下。
3、展示探究结果。结合多媒体课件辅助,完整认识圆的特征(8分钟)谁来告诉老师,你有哪些新发现?那是什么原因呢?你怎样发现的?结合学生交流、汇报探究结果,及时引导梳理。
主要从圆的圆心、半径、直径、等方面来认识。这里特别要注意通过板书帮助学生进行新知的有目的的整理。
预设板书:圆的认识——平面曲线图形圆心(o)圆中心一点确定圆的位置半径(r):线段连接圆心到圆上任意一点确定圆的大小长度都相等〈在同一个圆里〉直径(d)线段通过圆心两端都在圆上长度都相等〈在同一个圆里〉半径和直径的关系d=2r r=d/2 4、学习画圆(5分钟)你是如何画圆的?课件展示如何画圆。然后学生动手练习,并强调画圆时应该注意些什么。
——揭示圆大小位置的确定学校要修建一个直径是20米的花坛,你能帮学校画出这个圆吗?生演示操作三应用拓展1、基本练习(4分钟)〈1〉投影出示找出下列圆的半径直径〈2〉半径直径的相关计算〈3〉概念的判断和识别2、应用练习。(10分钟)〈1〉车轮为什么做成圆形的,车轴应安装在哪?如果车轮制成方形的、三角形的,我们坐上去会是什么感觉呢?结合课件演示〈2〉你能用今天学习的圆的知识去解释一些生活现象吗(举行篝火晚会时,人们总是不知不觉会围成一个圆形,为什么?平静的湖面扔一小石子,会有什么变化?为什么?月饼为一般都做成圆形的,为什么?)看来生活中的很多现象,都蕴含着丰富的道理,需要我们不断地探索,来认识它,解释它、运用它。
〈3〉同学们学到现在,已经很累了,我们来轻松一下吧。老师给大家猜一个迷语。
有一个人在一片青草地上钉了一根木桩,用一根绳子拴了一只羊在那里。(利用电脑配上画面)先请同学们猜测一个字。
(很多学生都说可以猜“样”)再学生猜两个字的水果名,学生在启发下猜出草莓(草没的谐音)师:羊吃草的情况与今天学的知识有关吗?我们来看一看羊吃草的最大范围有多大好吗?(用电脑演示羊拉紧绳子旋转一周的情况,让学生直观的看到原来羊能吃到的草的最大范围是一个圆,拴羊的绳子与这个圆有什么关系吗?(是这个圆的半径)钉在那儿的木桩是这个圆的什么呢?(是这个圆的圆心)如果要让这个羊吃草的范围更大一点可以怎么办?(把绳子放长一点,也就是把半径扩大)如果要让羊到另外一个地方去吃草,可怎么办?(可以把木桩移动一个地方,也就是移动圆心的位置),这说明圆的半径与圆心与圆有什么关系呢?(圆的半径决定了圆的大小,而圆的圆心可以决定圆的位置。)四总结全课(3分钟)1、质疑(篮球是圆形吗?表示圆心、半径和直径的字母可以随意改变吗?)2、这节课你都学会了什么?不管怎么说,老师觉得同学们的学习表现是不错的,所以我提议:我们一起伸出手划上一个圆满的句号。
(句号是圆形的)延伸:1、用圆作画2、谈谈我眼中的圆。
圆的认识教案7
教学目标
1、通过活动使学生感受并认识圆,知道什么是圆心、半径和直径,能借助于工具画出指定大小的圆。
2、经历猜想、操作、验证、讨论和归纳等数学活动,发现并掌握圆的有关特征,会应用圆的有关知识解决简单的实际问题。
3、通过活动使学生进一步积累认识图形的学习经验,增强空间观念,体验图形与生活的联系,感受平面图形的学习价值。
教学重点
认识圆、掌握圆的有关特征、会用工具画圆。
教学难点
掌握圆的有关特征。
教学准备
教师:大圆规、课件、1张圆纸片学生:小圆规、剪刀、4张白纸
教学过程
教师活动
学生活动
一、感受认识
1、课件出示一枚硬币。
(1)提问:硬币的面是什么形状的?板书课题:圆
(2)出示图片问:你能从里面找到圆吗?
2、用手在空中画一个圆。
问:圆和我们以前学过的平面图形有什么不同?
生:圆形
空中画圆
二、自主画圆
1、师:如果要你画一个圆,你准备怎么画?
解释:“不以规矩,不成方圆”的本意
选择一种方式动手画圆。
2、提问:用什么工具能画一个标准的圆?
(1)第一次用圆规画圆,感受圆规画圆的技巧
(2)(视频演示)再次用圆规画圆,学会用圆规画圆的技巧
师:用圆规画圆有哪些步骤?
生:……
画圆1
生:圆规
画圆2、3
生:……(剪圆)
三、寻找特征
1、认识圆心
(1)指出:用圆规画圆时,针尖固定的'这一点叫做圆心。板书:圆心
(2)圆心的作用
师在黑板上随处点一个点问:我把圆心点在这里,你觉得这个圆会画在哪里?点在那里呢?这说明了什么道理?
标圆心
生:圆心位置决定圆的位置
2、认识直径
(1)把圆对折1次打开描出折痕,看有什么发现?
指出:通过圆心并且两端都在圆上的线段是直径。板书:直径
(2)探寻直径的特征
①师在黑板上画几条线段问是不是直径
②直径有多少条?它们的长度都相等吗?
生:折痕都通过圆心
画直径并测量
3、认识半径
(1)在圆中画出一条半径问学生:是直径吗?
指出:连接圆心和圆上任意一点的线段是半径。板书:半径
(2)探寻半径的特征
(3)画一个半径是3厘米的圆
画半径并测量
画圆4
教师活动
学生活动
4、探索半径与直径的关系
(1)出示:刚才我们研究了直径和半径的的各自特征,直径和半径之间有什么关系呢?
(2)用字母式子表示:板书:d=2r或者r=d÷2
(3)画一个直径是4厘米的圆,你准备怎么画?
(4)完成练习十七第1题。
测量探索
圆的认识教案8
教学目标:
通过练习提升学生对圆的认识。
教学过程:
一、回顾导入。
学生介绍已经知道的圆的知识,教师有选择地板书:圆心、半径、直径。
揭示课堂--圆的(再次)认识。
二、圆的再次认识。
⒈感受半径决定圆的大小。
⑴按要求画圆。
出示练习十七第2题。
自己画;媒体出示画圆的方法;仿照画法规范画圆,提醒学生们在圆中标出半径或直径。
⑵快速画圆。
出示练习十七第3题。
同桌比较圆的大小;量出两个圆的半径分别是多少,同桌交流。
⑶画最大的圆,
出示练习十七第4题。
在正方形内快速画圆;同桌比较圆的大小,合作量一量圆的半径;画一个最大的圆,交流半径是20毫米的理由;想一想,圆的大小与什么有关。(教师在“半径”两字的右侧板书:决定圆的大小)
⑷利用数据比较圆的大小(班级交流)。
出示练习十七第5题。
⒉感受圆心决定圆的位置。
⑴分步出示练习十七第6题。
指名回答问题。
⑵同桌说说填填第⑵问,班级交流移动的方法。
⑶独立完成第⑶问,指名学生在屏幕上指出圆心的'位置。
⑷问答第⑷问。教师在圆心右侧板书:决定圆的位置。
⒊感受直径是圆内最长的线段。
⑴出示练习十七第7题。
⑵同桌合作完成。
⑶班级交流你的发现:直径是圆内最长的线段;图中量直径的方法和道理。
⒋欣赏生活中的圆。
⑴自然现象中的圆。
⑵工艺品和建筑物中的圆。
⑶运动现象中的圆。
三、总结全课,布置作业。
⑴看板书,总结全课。
⑵布置作业。
在圆内画一个最大的正方形。
圆的认识教案9
教学内容:
人教版六年级上册第四单元第一课时。
教学目标:
1、知识目标:使学生认识圆,知道圆的各部分名称。掌握圆的特征,理解直径与半径的关系。初步学会用圆规画圆。
2、技能目标:让学生从生活中认识圆,借助动手操作活动,发现规律,培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念。
3、情感目标:通过操作、研讨,培养学生独立探索能力和创新、合作的意识。
教学重点:
掌握圆的基本特征,理解直径与半径的关系。
学具准备:
圆的实物、剪好的圆片、圆规、直尺
教具准备:
细线、图钉、剪好的圆片、三角板
教学过程:
一、悬念产生好奇,好奇带入新课
(一)设置悬念
师:同学们,你们知道吗?(课件展示、图文并茂)
1、车轮为什么都是圆形的?
2、篮球场的中间为什么要设计成圆形呢?
3、枪口、炮口为什么都是圆形的?
师:同学们,这些问题你们暂时还不必回答,但老师还有一个问题需要马上回答,这三个问题都与什么有关?
(当学生回答是“圆”时,教师板书课题)
师:当同学们通过这堂课的学习,对圆有一定认识后,你们再回答这三个问题,相信你们的答案会更完整、更圆满。(在黑板的一侧板书:圆满)
[设计意图]不拘泥于教材内容,从学生年龄和心理特征出发,用心扑捉圆在生活中、自然中的原型,巧妙地创设了“三个问题”情境,引发学生的好奇心,从而使他们带着一种“打破沙锅问到底”的向往与追求的意向,以的状态进入学习角色。同时,在“暂时还不回答”的关子下,把“三个问题”集中在“圆”上,旗帜鲜明地拉开了这节课的序幕,这一导课不仅意味深长,激发了学生的学习兴趣,并开始不知不觉地渗透了“圆的文化特征”意识,可谓是一举两得。
二、在猜想中探究,在探究中感悟
(一)生活中的圆
师:生活中你们见到哪些物体是圆形的?
(学生回答时,教师可要求学生将已准备的实物举起展示)
(二)运动中的圆
师:你们都是生活中的有心人。那么下面的情况可能会出现怎样的现象呢?(课件展示)
1、一粒石子抛入平静的水面时
2、电风扇的扇叶转动时
(三)探究圆的形成
一根细线,用图钉固定一端,另一端绑着一支粉笔旋转一周。
1、师:接下来做个小实验,老师用图钉固定线的一端,将细线拉直,绑有粉笔的一端旋转一周,会出现什么现象?
师:松开细线的这头,粉笔还能转圈吗?(孕伏“定点”意识),图钉按住起什么作用?
2、师:刚才老师是怎样操作画出一个圆的?
学生交流
师:图钉按住的一端(不动),带粉笔的一端我们把它看作一个点,这个点是(运动的),怎么运动的?
师:(把线拉直)这样运动时动点就与固定的这点距离(保持不变)。粉笔在这个运动轨道上旋转一周就得到了一个(圆)。
3、师:如果把细线放长,粉笔继续旋转一圈,发生了什么变化?看来这细线的长短可以确定(所画圆的大小)
(孕伏“定长”意识)
[设计意图]以上三个教学环节,以“感知—想象—发现”为线索,逐步推进,串成学生探究“圆的形成”这一过程。感知是认识世界的开始,是思维、想象等一切心理活动的基础。通过“生活中的哪些物体是圆形的”举例,既激活了学生已有的经验,同时为过度到想象提供了丰富的表象,这样想象力也就引向了更成熟的高度。最后用他们的想象力猜测、感悟“圆的形成”两大核心要素圆心和半径,从而为后面的“圆”的本质认识打下了扎实的基础。
(四)从画圆中认识圆
1、通过回想前面的游戏,让学生在感悟“圆的形成”过程中思考:你会画圆吗?
2、学生尝试画圆(教师巡视,收集学生不圆的和圆的作品。)
3、投影展示学生作品、学生互相交流
(投影展示“不圆”的作品)
师:请你评价下这幅作品?
你想提点什么建议?
师顺着学生的阐述引出“定点”、“定长”。
(让学生自己“由误到悟”,在交流、切磋中对“画圆时要注意什么”印象深刻)
(投影展示“圆”的作品)
师:请欣赏这幅作品是怎样被圆规创造出来的?
两个学生介绍如何画圆,师追问“画的圆为什么有大有小?”
随着学生反馈画圆的三个步骤,教师同时用课件演示圆规画圆。
4、板书:定点、定长、旋转一周。
定点确定圆的位置,定长确定圆的大小
5、如何在篮球场上画圆?
师:我们会在纸上画圆了,其实生活中还有很多地方需要画圆。例如:要在篮球场上画一个很大很大的圆,你准备怎样做?与小组里的同学说一说你的想法。
学生反馈、相互交流补充。
[设计意图] “画圆”的环节,不仅仅只是学生掌握画圆的技巧、学会用圆规画圆的过程,更重要的是继前三个环节后,进一步提升学生对圆的初步认识,由表象逐步向抽象转化的过程。在这里教师还十分关注学生情绪,尊重学生意愿,在学生跃跃欲试时,采用先让学生尝试画圆,并利用可能“出现的问题”,揭示圆的画法、“圆的位置”和“圆的大小”等深层次问题,这是数学课堂教学的`一种自然本色。数学来源于生活、用于生活,画圆后教师提出了一个开放性的问题:如何在篮球场上画圆?让学生从“纸上谈兵”,过渡到解决现实情境问题,与“探究圆的形成”有个呼应。
(五)解读圆的概念
师:刚才我们用圆规画圆、用绳子画圆,工具不一样,画出来的却都是圆,这是为什么?
生1:原理都一样
生2:都是按三步骤来画的
师小结:画圆时都有两个点,一个点是固定的,一个点是运动的,两个点之间的距离保持不变,,动点在这个运动轨道上旋转一周,得到的图形就是(圆)。所以,圆就是由无数个点连成的一条什么线?(曲线、封闭的曲线)
(课件演示)
(六)认识圆的各部分名称及其特征
1、师:有关圆你还了解哪些知识?
教师将“圆心o”“半径r”“直径d”写在3张卡片上,请学生一一贴在黑板上圆的有关之处。
师:谁能在黑板上的圆中将它们画出来并贴好。(3个学生依次上台)
2、直接揭示圆心的概念
3、半径
师:像这样的半径,你会画吗?
学生动手画半径
师:你是怎样画的?
(注意引导学生阐述“从哪里出发画到哪里”)
师:什么样的线段叫半径?揭示半径的概念。
(板:半径r)
师:在同一个圆里,像这样的半径还能画吗?有多少条?为什么有无数条?
生:圆上有无数个点。
师:那它们的长度都有怎样的关系呢?谁来说说你的想法?
4、直径
师:直径你会画吗?在你的圆片上画出直径。
师:你是怎样画的?那什么样的线段叫直径呢?
你们和数学家们总结差不多呢!翻到56页,全班齐读。
(板:直径d)
师:在同一个圆里,直径有多少条?
师:那它们的长度都有怎样的关系呢?谁来说说你的想法?
(板书:无数条长度都相等)
5、师:其实早在2500多年前,我国伟大的教育家、科学家就曾提出有关圆的概述(课件出示)
师:一中的“中”指的是?那“同长”的意思是?
6、判断:以下圆内哪些线段是半径,哪些线段是直径?
7、半径与直径的关系
①师:你会怎样去验证你的想法?
在小组里商量一下,再派代表反馈。
课件验证:在同一个圆里,直径长度是半径的2倍,半径是直径的1/2。 d=2r r=1/2d
②制造冲突(展示学生事先剪的一大一小的两个圆)
疑问:在这两个圆中,半径、直径二者还存在以上的关系吗?
(板书:在同一个圆里)
[设计意图]探究圆的特征是本节课的重点,又是难点。怎么有个突破,使学生能轻松地接受,本环节是采用“画”、“量”、“折”,让学生动手操作、自主探究的方法。“画”是发现,是印证;“量”是验证、确认。这一为学生搭建的自主探究学习的平台,既能使学生学得生动活泼,积极参与,而且将对所学的知识理解得更深刻,记忆得更牢固,也正好印证了“儿童的智慧出在他们手尖上”这句话。
三、运用知识,拓展思维
(一)小裁判
1、两端都在圆上的线段叫做直径。()
2、半径2厘米的圆比半径1厘米的圆大。()
3、圆的直径都相等。()
4、在同一个圆里,圆心到圆上任意一点的距离都相等。()
(二)你能帮忙找到这个圆的圆心吗?
[设计意图]由于本节课是属概念教学课,作为反馈练习,仅设计了两大题。通过这两大题训练以检查学生对概念理解的情况,并解决学生容易混淆或出错的问题。
四、解释自然中圆,欣赏人文中圆
(一)解释自然中圆
师:课的一开始,我们还留下三个问题(课件重返“三个问题”):由于时间关系,我们现在集中解决第一个问题好吗?
1、分组讨论:车轮为什么都是圆形的?
2、小组派代表汇报(教师根据学生的汇报,利用课件演示下面两个主要因素)
①平稳(因为车轴在车轮圆心上,同圆半径都相等,确定了车与地面距离不变,所以平稳)
②车速快(车轮接触地面只是一个点,摩擦力小,车速就快了。)
[设计意图]这是一道引导学生用所学知识解决实际问题的训练题,以小组合作、同学互助,共同讨论为主要解题形式,以帮助学生综合运用知识、提高技能,培养学生不断探索、不断发现的精神,增强互助合作、敢于创新为目标。同时,本练习起到了“前后呼应”之教学艺术功能,成了学生善于动脑、勇于解题的动力,使学生在成功解答后有一种满足感,以进一步激发他们的求知欲。
(二)欣赏人文中圆
1、引言:同学们,世界是美妙的、神奇的,有了圆更增添了她的梦幻般的色彩。请欣赏
2、课件演示:(配乐)
摩天轮、花丛中肆意绽放的鲜花、中国传统的圆形剪纸、陶瓷艺术、圆形建筑、2008年奥运奖牌、神秘的阴阳太极图……
还有古老的东方,中国人特别重视中秋、除夕、元宵等佳节,月下尝饼、桌上汤圆…这就意味着团圆、圆满;大陆同胞送给台湾同胞的团团、圆圆两只熊猫,不也就是盼望祖国早日统一,海峡两岸同胞早日团圆吗?
圆,在我们身上遗留下的印痕是多么深刻而广远。圆,是和谐的象征,是幸福的感受!
同学们,在这优美的旋律中,我们这堂课也接近尾声了。这节课愉快吗?你觉得这节课上得圆满吗?
[设计意图]教学本质是一种文化。我们有理由向学生传递教学本身的内涵和鲜活的文化背景,引领他们通过学习感受数学文化的博大精深,努力使数学所具有的文化特征浸润于学生心间,成为学生数学成长的不竭动力源泉,让数学课堂摆脱原有习惯思维与阴影,真正美丽起来。为此,设计“欣赏人文中的圆”这一环节,就是引发学生领略“圆”的神奇魅力及其背后所蕴含的人文的、文化的特征,拓宽学生对“圆”的认识视域。同时,让学生真切地感受中国人对“圆”的特殊情感,激发他们爱祖国、爱学习的热情,为进一步学好“圆”打下坚实的基础。
圆的认识教案10
教材分析:
《圆的认识》是义务教育课程标准实验教科书六年级上册数学第一单元第1课时的内容。它是在学生学过了直线图形的认识和面积计算,以及圆的初步认识的基础上进行教学的。这是学生研究曲线图形的开始,是学生认识发展的又一次飞跃。教材注重从学生已有的生活经验和知识背景出发,结合具体情境和操作活动激活已经存在于学生头脑中的经验,促使学生逐步归纳内化,上升到数学层面来认识圆,体会到圆的本质特征,初步认识研究曲线图形的基本方法,感受曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念方面来说,进入了一个新的领域。通过对圆的有关知识的学习,不仅加深学生对周围事物的理解,提高解决简单实际问题的.能力,也为以后学习圆柱、圆锥等知识打好基础。
学情分析:
圆是在学生呢过学过了直线图形以及圆的初步认识的基础上进行教学的。圆这一平面上的曲线图形,学生在生活中经常看到,它到底有什么特征呢?是本节课学生学习的重点,在学习圆的认识时,学生通过观察、操作,自己获取一些有关圆的特征的知识,这样会大大提高学生的学习兴趣,发挥学生的主体性,达到顺利完成本节内容的目的。
教学目标:
1、通过观察、操作等活动认识圆,理解圆心、半径、直径的意义,掌握圆的特征,理解同一个圆里(或等圆)半径与直径的关系。
2、让学生了解、掌握画圆的多种方法,初步学会用圆规画圆;转变学生学习的方式,培养学生观察、分析、概括等思维能力和初步的空间观念。
3、通过观察、操作、想象等活动,培养学生自主探究的意识,进一步发展学生的空间观念。
4、让学生体验到圆在日常生活中的应用并感受到圆的美。
教学重点和难点:
教学重点:在探索中发现圆的特征。
教学难点:理解同一个圆里(或等圆)半径与直径的关系,能利用圆的特征解决生活实际问题。
圆的认识教案11
一、复习旧知,揭示新课
1、教师用投影课件出示下面的图形:
提问:这是我们以前学过的哪些平面图形?这些图形有什么共同的特点?
教师指出:我们把这样的图形叫做平面上的直线图形。
2、课件出示圆,师:这是?(圆)
师:比较一下圆和其他图形,他们最大的区别在哪?
归纳后得出(圆外面的弯曲的)
教师说明:圆是由曲线围成的,因此圆是平面上的一种曲线图形。
二、学习新知,探究圆的特征
1、教师让学生举例说明周围哪些物体上有圆。
学生举完后师:今天我们就来一起认识一下圆。(板书课题:圆的认识)
2、认识圆的各部分名称和圆的特征。
1)画圆要用什么工具?(圆规)
2)拿出常用和教师用的圆规,简要介绍一下这两个圆规。
3)师:现在我用这个圆规来画个圆。同学们看好拉,看哪些同学看得最仔细,能够看清楚老师怎么画的。
画第一个圆,故意把圆规中的固定脚移动,画圆失败。让学生说说原因,得出圆规的一个脚要固定。
在画第二个圆,故意把圆规中把两脚之间的距离变化,师:看来画圆并不那么简单,不是随随便便就能画好一个圆的,这次为什么又失败拉?
(失败原因就在于两脚之间的距离变拉。)
第三次画圆,成功。
师:看来这个固定的点,和这不变的距离对于圆来说非常的重要,下面请大家每人任意画一个圆。(在准备的纸张上画圆,上面还画有一个标准的圆)
4)展示学生画的圆,无论好坏略加评价。那么下面请大家打开书本,自学书本,找到与这个固定的点,以及这个固定的距离相关的知识。再看看书本中还告诉我们哪些关于圆的知识。
4)反馈学生自学到的知识,总结出圆心,圆的半径的`概念,字母表示方法,以及在画圆时在圆规上怎么来找到半径和圆,这时,有部分学生提出书本中另外关于圆的知识,通过学生的讨论来区分其中的概念和特点。(在这里学生也会提出直径的概念)
启发学生说出:在同一个园里有无数条半径和直径,所有半径的长度都相等,所有直径的长度都相等。在同一个圆中直径是半径的两倍。(板书)课本134~136页的内容中勾画出重点。
5)让学生同桌之间合作,想办法找出一个圆纸片中的圆心,直径和半径。
这里可以简单提一下圆是对称图形。
④小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。那么,在同一个圆里,直径的长度与半径的长度又有什么关系呢?(组织学生讨论)
3.反馈练习。
(1)用彩色笔标出下面各圆的半径和直径
并说一说为什么说他们是半径或者是直径,也让学生说说其他几条为什么不是半径或者直径。
(2)填表。
r(米)
0.24
1.42
2.6
d(米)
0.86
1.04
说一说怎么得出这些数据的?
4.圆的画法。
1)师:这节课刚开始,我画了几个圆,其中画成功了一个,可谈论的如果用圆规画圆要注意这样几个问题,下面我想请同学们来画画圆,要求:画两个大小不同的圆。
2)学生画,教师巡视。
3)展示,并提问:怎么来画大小不同的圆?从而你发现圆的大小取决于什么?
黑板上有了一个圆现在我想在他的上面再画一个圆怎么办?
从而得出圆的位置由圆心决定。
4)要求学生画一个半径是2厘米的圆。
四人小组合作,先让一个会画的同学,一边画,一边介绍画的步骤,一个同学记录步骤,然后四人小组每人画一个。
5)总结
教师归纳板书:1.定半径;2.定圆心;3.旋转一周。
教师再次强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。
6、思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办?
三、总结全课,谈谈收获
这节课我们学习了什么?通过这节课的学习你有什么收获?
四、课堂练习,及时反馈
判断
(l)画圆时,圆规两脚间的距离是半径的长度。( )
(2)两端都在圆上的线段,叫做直径。( )
(3)圆心到圆上任意一点的距离都相等。( )
(4)半径>2厘米的圆比直径>3厘米的圆大。( )
(5)所有圆的半径都相等。( )
(6)在同一个圆里,半径是直径的一半。( )
(7)在同一个圆里,所有直径的长度都相等。( )
(8)两条半径可以组成一条直径。( )
判断并说一说理由
圆的认识教案12
课题一:圆的认识(a)
教学内容
教科书第85~87页,练习二十二的第1~5题。
教学目的
1.使学生认识圆,知道圆的各部分名称。
2.使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系。
3.会用圆规画圆。
4.通过操作和观察,培养学生抽象概括的能力。
教具、学具准备
圆形纸片、硬币、钟、圆形铁桶、剪刀、直尺、圆规、投影片。
教学过程
一、导入新课
1.教师用投影片出示下面的图形,让学生说一说各是什么图形。
教师:这些图形都是由什么围成的?
2.教师出示圆形纸片,提问:这是什么图形?
教师:我们以前学过的三角形、四边形都是平面上的直线图形,它们都是由线段围成的。这节课我们来研究平面上的一种曲线图形──圆。
二、新课
1.认识圆的各部分名称。
教师让学生举例说明周围哪些物体上有圆,并出示硬币、钟、铁桶等物体,让学生指出哪里有圆。
(1)让学生每人用一个物体上的圆形在纸上画一个圆,剪下后按教科书上的要求折叠。展开后让学生观察,教师提问:圆上是不是有很多折痕?这些折痕有什么特点?你发现了什么?
教师指出:这些折痕相交于圆中心的一点,我们把圆中心的这一点叫做圆心。并说明圆心一般用字母“o”表示。然后教师把用纸剪的圆贴在黑板上,标出圆心o(如右图).
然后教师指导学生用直尺量一量圆心到圆上任意一点的距离,量完后让学生讨论,看能发现什么。要告诉学生测量时细小的误差可以忽略不计。
教师:通过操作和大家的讨论,你发现了什么?
鼓励学生踊跃发言,最后教师归纳出:圆心到圆上任意一点的距离都相等。
(2)教师指着黑板上的圆说明:连接圆心和圆上任意一点的线段叫做半径。并告诉学生半径一般用字母“r”表示。接着教师在圆上画出一条半径,如下左图。
然后让学生在剪成的圆里画出一条半径,注意检查学生画的是否正确。
教师:请同学们想一想,在同一个圆里,有多少条半径?所有半径的长度都相等吗?让学生拿出直尺,量一量同一个圆的几条半径的长度是否相等。最后教师和学生一起归纳出同一个圆的所有半径的长度都相等。
(3)教师:我们刚才把圆对折时,每条折痕是不是都通过圆心?接着指出:通过圆心并且两端都在圆上的线段叫做直径;直径一般用字母“d”表示。然后教师在圆上画出一条直径,如上右图。
让学生在剪成的圆里画一条直径,顺便让学生思考在折痕上能不能画出直径。
教师:请大家想一想,在同一个圆里,有多少条直径?所有直径的长度都相等吗?让学生用直尺量一量,同一个圆里的几条直径的长度是否都相等。最后归纳出同一个圆的所有直径的长度都相等。
(4)教师引导学生根据刚才测量的结果观察圆上的直径和半径,思考直径和半径的长度有什么关系,使学生理解同一个圆的半径的长度是直径的一半,用字母表示为:d=2r,r=d.
2.让学生做教科书第3页上面的“做一做”。
订正时,可以让学生说一说自己是怎样想的。还可以再出示下面的图形让学生找一找直径和半径。
3.圆的画法。
教师和学生每人拿出圆规和直尺,教师边演示边说明画圆的步骤和方法,学生跟着教师在纸上画圆。画完后教师向学生说明:圆的大小是由圆的半径决定的,圆的位置是由圆心决定的;画圆时应先确定圆心,再按照指定的长度为半径画圆。
教师:画圆时要注意什么?
使学生明确:画圆时圆心要固定,不能移动;圆规的两只脚间的距离(半径)确定后,它的长度也不能改变。
4.让学生做教科书第3页下面的“做一做”。
提示学生可以看着书上的'步骤画。教师巡视,检查学生画的半径的长度是否符合要求,画圆时圆心有没有移动,半径的长度有没有改变,是否用字母标出了圆的圆心、半径和直径。
订正时,让画得不够准确的学生说一说自己错在什么地方,再让画得比较好的学生说一说自己是怎样画的,使所有学生都能够正确地画圆。
三、巩固练习
做练习二十二的第1~5题。
1.第1题,学生说完后,还可以让他们再说出一些物体的哪一部分是圆的。
2.第2题,这道题可以让学生展开讨论。只要学生能说出是利用圆心到圆上任意一点的距离都相等的特性做成的就可以了;车轴放在圆心的位置,这样车轮滚动时车轴保持平稳状态,使行进的车辆也保持平稳状态。
3.第3题,让学生自己填表,订正时引导学生说一说直径和半径之间的对应关系。
4.第4题,让学生自己动手画,找三名学生在黑板上做,提醒学生要标上圆心o.教师巡视,注意纠正学生在画圆时出现的问题,订正时提问:第(3)小题给出的数据是什么?画圆时应注意什么?使学生明确给出的是直径的长度,要求出半径的长度后才能画圆。
5.第5题,第(1)小题,做题之前,教师先提示学生想一想什么是直径。订正时指名说一说自己是怎么找的。使学生明确线段的两端在圆上,而且要通过圆心,这样的线段才是直径。第(2)小题,让学生拿出直尺,量一量这几条线段的长度,使学生通过操作发现直径是最长的一条线段。第(3)小题,教师可以先演示一遍,再让学生试着测量。教师行间巡视,进行辅导。
如果还有时间,可以让学有余力的学生做第6x题。左边一题,要提示学生观察大圆与小圆半径的关系;右边一题,可提示学生联系左边的图案,把左边大圆里的小圆各分成一半会怎么样,使学生想出只要在大圆的相互垂直的两条直径上各取两个圆心,以大圆半径的一半为半径,各画一个半圆,就能画出这个图案。
圆的认识教案13
教学目标
1. 在操作、交流的过程中认识圆,感悟圆的特征,解释圆的应用,建构对圆的结构性的认识,会用圆规画圆,发展空间观念。
2. 培养积极参与学习活动的心理倾向。
课堂实录:
一、 引入
师:同学们好!我想先了解一下,大家有哪些玩具?
学生发言非常踊跃。
师:老师小时候曾玩过一种玩具,大家想看么?
视频展示:一个自制的陀螺,并将之旋转起来。
师:这可是老师自制的玩具,大家想做吗?瞧,一根火柴棒,一张纸片,剪成——圆形(板书:圆)。
二、 展开
师:今天我们就在做玩具的过程中进一步认识圆。
师:做陀螺首先要剪一个圆。剪之前,我们先要——画一个圆。你准备怎样画呢?
生:用圆规。
师:对,用圆规画。请大家用圆规在作业本上画圆。
学生操作画圆。
师:画好了吗?你觉得用圆规画圆时应注意什么?
生:圆规的尖不能移动。
生:另一只脚与针尖之间的距离不能变。
师:还有没有补充?你画圆时,是用一只手还是用两只手?(有学生说用一只手,有学生说用两只手。)
师:(边演示,边讲解)画圆时,要用手捏住圆规顶端的手柄,稍用力将针尖的一脚按下,使针尖固定,再旋转圆规的另一只脚。现在请大家再画一到两个圆,你觉得满意了就坐正。
学生再次操作画圆。
师:短短的时间,我们就能画一个很漂亮的圆。大家能画一个和我这个圆一样大的圆吗?
生:要先把圆规两脚拉好。
师:对,先要确定圆规两脚之间的距离。估一估,画这个圆,圆规两脚之间的距离是多少?
生:3厘米。
师:估测得真准!请大家把圆规两脚间的距离定为3厘米。
在学生动手拉开圆规两脚时,教师指导:在直尺上,有针尖的一只脚对准直尺的0刻度线,另一只脚拉开到刻度线3。
师:请大家在白卡纸上画一个圆,再剪下来。
学生操作,教师巡视。
师:剪圆时,有什么感觉?和剪其他的图形感觉一样吗?
生:不一样。剪圆,要剪得圆滑,要边剪边转。
师:对!长方形、正方形都是由线段围成的。圆呢?
生:圆是由曲线围成的。
师:谁知道,火柴棒要从圆形纸片的什么地方穿过去?
生:中心。
师:对,圆的中心,也就是圆心。(板书:圆心)
师:大家能找到这个圆的圆心吗?用水彩笔点出圆心。哦,也就是刚才画圆时圆规的针尖固定的那一点。圆心一般用字母O表示(板书:O)。请大家把圆心标注上字母“O”。
师:我们已经找到了圆心。如果问你:这是一个多大的圆,你知道吗?
生:量它的直径就知道了。
师:他刚才说了一个词,是——
生:直径(板书:直径)。
师:那什么叫直径呢?
生:从一个点向中心引一条直线。
生:把圆对折形成的一条线。
师:看来,现在让我们用语言来表述什么是直径,不容易说清楚。如果用笔画,大家能画出来吗?
学生试画直径。
师:谁愿意到前面来展示一下你画的直径?
生:(边演示边介绍)从圆的一端到另一端,而且通过圆心。
师:直径是一条——
生:直线……线段!
师:为什么不说是直线呢?
生:直线是无限长的,而线段的长度是有限的。
师:直径的两个端点在哪儿?一个端点在——圆上,另一个端点——也在圆上,而且——通过圆心。
师:你知道这条直径长多少吗?
生:6厘米。
师:对吗?请用尺量一量。
学生操作。
师:这是一个直径为——6厘米的圆。这个圆多大呀?还可以怎么说呢?
生:这是一个半径为3厘米的圆。
师:他又说到一个词——半径。大家能画一条半径吗?
学生操作画半径,并展示、介绍所画的半径。
师:半径是一条——线段,它的一端在——圆心,另一端在圆上。这条半径长多少?你是怎么知道的?
生:6除以2等于3,半径的长是直径的一半。
师:你说得真好,谈到了半径与直径长度之间的关系。
生:我是用尺量的,半径是3厘米。
师:谢谢你的操作,验证了刚才那位同学发言中谈到的半径与直径长度之间的关系。接下来,我们搞一个小比赛。请大家拿好铅笔、直尺,同桌中左边的同学画半径,右边的同学画直径,在相同的时间内,比一比,看谁画得多!准备好了吗?开始!
学生画直径、半径。大约40秒钟后师叫“停”。学生汇报:画半径的最多画了11条;画直径的,最多画了7条。
师:谁快呀?
生:半径。
生:两条半径才能等于一条直径,就是说,他最多画了7条直径,把它化为半径的话,应该是14条半径了。那画半径的只画了11条,差了3条。
师:你的意思我明白了。就是他画了7条直径,一条直径可以看作2条半径,那如果算半径的话,就画了14条。是画直径的赢了,是吗?
生:对!
师:这样的想法有道理,很有意思。谁赢谁输不太重要,大家有没有回头反思一下,如果没有时间限制,你能画多少条半径?直径呢?
生:圆的半径和直径都有无数条。
师:它们的长度呢?
生:分别相等。
练习:用彩色笔标出下面各圆的半径和直径。
让学生用两种颜色的彩笔分别描画半径、直径。
组织反馈,并说说没有描画的线段为什么不是直径或半径。
教师指图2中间两条半径:这是不是直径?
生:不是,因为它不是一条线段。
师:数一数,画了多少条直径?
学生回答后,指着图1和图2中的两条直径问:这两条直径相等吗?直径不是都相等吗?(结合学生的回答,板书:在同一个圆里)
师:数数画了多少条半径?
生:3条。
其他学生沉默……稍过一会儿,有学生脱口而出:7条。并作讲述:一条直径,又可以看成两条半径,在同一个圆里,直径的长度是半径的2倍。
教师在3个圆上添加数据:图1:(半径)2厘米;图2:(半径)2.5厘米;图3:(直径)64毫米。
师:看图,你知道什么?
学生说出各圆的半径、直径长度后,教师指图2:画这个圆时,圆规两脚之间的距离是多少?学生作答后教师再指图3:它呢?
师:不知不觉,我们认识了圆的不少特征。请打开课本,阅读第93~94页,圈画出你认为重要的内容,你觉得黑板上还应该板书哪些内容呢?
结合学生的回答,板书:圆心(O)、半径(r)等。
师:现在,让我们把陀螺做完,大家再转一转,玩一玩。
学生操作。
三、 应用
播放“昆仑润滑油”广告片。
师:刚才看这则广告时,有没有留意过,这则广告中——
生:有很多圆。
师:是的,生活中有很多圆。只要我们用数学的眼睛去观察生活,就会发现很多数学问题。一位数学家曾经说过:在一切平面图形中,最美的是圆。我们再来欣赏几幅由圆组成的图案。
屏幕出示:
师:这五幅图,你会画吗?教师指图1:这里,大圆的半径是3厘米,小圆有多大?
生:小圆的直径是3厘米,因为小圆的直径等于大圆的半径。
生:小圆的半径是1.5厘米。
师:这五幅图中,哪几幅的画法差不多?
学生回答图1、2、3的画法差不多时,屏幕上这三幅图中闪烁显示如左图的形状。
师:(指图4)它像——(三片叶子),怎么画呢?大家可以在课后去试一试。
师:(指图5)它像我们生活中的哪一样物体?
生:奔驰汽车标志。
生:汽车方向盘。
师:在日常生活中,哪些物体上有圆?
学生的回答有蛋糕、纽扣、火腿肠、中国银行标志、天坛、溜溜球等,其中还有一位学生说到足球。
出示:篮球、足球、排球。
师:它们是圆吗?
生:球是圆的。
课件出示西瓜,并把西瓜切开,所切的面是——圆。
生:圆是平面图形,球是立体的。
师:你的发言非常准确!圆,在生活中随处可见。
屏幕出示:自行车车轮、茶杯盖、手表表面、十字路口的转盘。
师:它们是圆的吗?(是)请大家联系实际想一想,它们有多大?(出示连线题:把上述物体的名称和相应的直径连起来。题略。)
学生连线后,师:这些物体一定是圆的吗?(不一定),哪些一定是圆的`呢?
生:手表表面不一定是圆的。
师:对!手表面可以不做成圆形,生活中常见的许多钟表面的形状就不是圆形。但时针、分针转动一圈,我们可以感觉到在钟表面上形成——圆。
生:茶杯盖要做成圆形,如果不是圆形,就容易掉进杯里。
生:转盘要做成圆形,便于汽车转弯。
生:车轮一定是圆的。
师:车轮为什么要做成圆形的?
让学生用陀螺代替车轮,改变纸片的形状、改变车轴的位置,滚动车轮感受车轮必须做成圆形的道理。
四、 延伸
师:在《十万个为什么》数学第一分册上就有一篇文章介绍“车轮为什么是圆的”,但是在《十万个为什么》数学第二分册上又有一篇文章介绍“轮子一定是圆的吗?”(随着教师的介绍,屏幕上先后出示少年儿童出版社出版的《十万个为什么》数学第一分册和第二分册的封面)这是怎么回事呢?有兴趣的同学课后可以找这方面的资料读一读。
[评析]
对学生而言,这是一节感受真实、经历充实、感悟扎实,充满情趣和智慧的教学,也是一节充满创意的教学。听罢本课,掩卷深思,不能不为课内的亮点和精彩而拍案赞叹。
1. 了解学生,关爱学生。教者构思本课,凭借的是对学生的接触与了解。开课的交谈一下子就触动学生的兴奋点,课中的引导丝丝入扣,一触即发。师生的对话看似散漫,实为严谨,紧紧地围绕教学内容展开。可见,要教好数学,必须深入了解学生,关爱学生,做到知其所好,知其所能。
2. 灵性对话,动手操作。圆的画法、圆的特征的探究都是学生在画、剪、量、描、转、滚等动手实践中,通过自我观察、比较、感悟、反思获得的。教师的教学语言,多在引导、评价,或是借助对学生表达后的“接话”复述,进一步阐述学生的思想。活动性的教学引发了学生表达的需要,对话式的教学引领学生逐步深入地展开数学思考。
3. 潜心钻研,精心蓄积。教师虽多次教学本课内容,却能根据学生的学习需求,不断变换课堂架构,变换生活素材,变换引导策略,不断使教学更有新意。不但儿时的玩具陀螺、生活中的茶杯、车轮、钟表面和道路上的转盘进入视野,而且广告动画、西瓜、足球、阴阳鱼图、三叶片图、银行标志、汽车品牌图标等均收眼底。可见,教师在生活中是有心的,备课是潜心的,准备素材是精心的。成功的课堂教学其实总是有心人的潜心钻研与精心蓄积的产物,是教师用专业的眼光,搜寻生活中一切可以与数学学习相联系的现象与素材,并加以精心挑选、搭配、驾驭的结果。
4. 感受真切,兴趣盎然。本节课自始至终,学生都是兴趣盎然的。他们谈生活、做玩具,活动自然,交流真切,无生涩艰难之感,有行云流水之畅,生活现象与数学知识相呼应,课内话题与课外阅读相交织。教学手法朴实无华,双基教学和训练十分扎实。这是自然的教学,也是充满智慧的高层次的教学。
圆的认识教案14
教学重点:
直径与半径的关系
教学难点:
圆是轴对称图形
1、使学生进一步掌握圆的特征.
2、使学生理解直径与半径的关系,理解并掌握在同一个圆里,直径等于半径的2倍,半径等于直径的二分之一。
导练法、迁移法、例证法
小黑板、投影
导学流程设计:导入、探究新知、巩固练习、总结
教师预设
学生活动
一、用不同的方法找圆心,(课前让学生先在家里实践一下)
二、圆是轴对称图形
1、引导学生回忆,前面我们已学过哪些轴对称图形?(什么是对称图形)它们的对称轴各有几条?
2、圆是轴对称图形
(1)让学生按直径对折看是否重合?(大小图形多折几个)得出了结论。
(2)直径是圆的对称轴,有无数条。
三、半径与直径的关系
(1)让学生各自量一量自已所画的圆中的半径与直径各是多少?它们之间有什么关系?
(2)小结:在同一圆中,所有的半径相等。在同一圆中所有的直径相等。
同一圆中,直径是半径的2倍,半径等于直径的.二分之一。
四、练习
1、老师出题学生口答
2、填表
3、画圆的对称轴
五、总结
六、作业
学生操作
六年级
学生练习
学生写作业
教后记:有了前面的扎实叫教学,后面这节课学生学得很轻松。知识掌握的较扎实。
圆的认识教案15
教学目标:
1、通过观察、想象、归纳,经历圆的概念的得出过程,并掌握圆的概念。
2、经历圆心、半径与直径等概念的发生过程,掌握圆心、半径与直径等概念。
3、能够独立探索与发现半径与直径的属性以及它们的关系。会用圆规画圆。
4、通过操作、想象培养空间观念,积累从特殊到一般的归纳,概括的经验。
教学重点:使学生掌握圆的定义及圆的各部分名称及特征,进一步探究半径与直径的关系及用圆规画圆。
教学难点:归纳并理解圆的定义。
教学准备:课件、作业单、圆片、圆规。
教学过程:
创设情境,激趣导入
师过渡:同学们看过《奔跑吧兄弟》这个节目吗?其实节目中不仅仅有游戏,还有一些数学知识呢!黄队接受到了一个寻宝任务,宝物埋在距离小旗三米的位置。
提问:宝物可能在什么位置?(学生先汇报再白板演示)
探究圆的定义
师:1、如果用3厘米代表3米的距离,(用直尺示范三厘米)
2、请你在作业单上将你认为宝物可能在的位置像这样都点出来。
3、展示汇报。(一生到展台前展示)
请同学们抬头,看这位同学画的点。
提问:有比他画的点多的吗?如果继续画,还能不能点出可能的位置呢?
师:请同学们想象一下,如果把同学们画的点都汇集在这一张纸上面会是什么样子?(学生可能说到是个圆)
4、揭示课题
我们来认识一个新的.平面图形:圆(板书:圆)这节课的主要任务就是认识圆(板书:认识)
师问:圆是由什么组成的图形?
生:无数个点
师:是什么样的点?
生:到一个点的距离都相等的点。
5、师小结:我们知道了到一个点的距离等于3厘米的所有点组成一个圆。
提问:那么到一个点的距离等于4厘米的所有点组成一个什么图形?(完整的说)
到一个点的距离等于1分米会组成一个什么图形?(学生回答)
6、你还能像老师这样描述一个圆吗?
师提问:谁能对照板书来说一说什么样的图形是圆?(同桌互相说一说)
出示圆的定义:我们一起来说下什么是圆(学生齐读一遍)
其实圆就是由无数个点组成,也可以说这些点就说在圆上。
请同学在白板上点出圆上的点。
认识圆的各部分名称
(一)、认识圆心:
请你快速把刚才画的点连成圆。
比较学生连成的圆引出圆心。
(1)看看这位同学连出来的图形是不是圆?(展示手画的圆)
追问:这是不是圆?为什么?(距离不等于3cm)选择一个点进行验证。
(2)接着看(出示圆规画的圆)
提问:你是用什么画的?(圆规)
师:圆规是我们画圆的专用工具,谁和他一样也是用圆规画的?请你来说说怎样用圆规画圆。
3、指各学生介绍用圆规画圆的方法:
(尖尖的地方按住)哪个尖尖?(针尖)按在哪里?(按在点上)
师:针尖所在的点,叫做圆心,用字母o表示。
4、在白板的圆上标出圆心,请同学们也标出你们的圆心。没有用圆规画圆的同学请先用圆规画圆,再标出圆心。
提问:除了确定圆心,还需要确定什么?
①角度,谁懂他的意思,其实是指什么?
②长度,谁懂他的意思(两个同学说)也就是指圆规两个脚之间的距离不变。
(指着针尖)这个脚在哪里?(圆心)另一个脚在哪里(圆上)
师:两脚之间的距离其实就是圆心到圆上点的距离。
(二)、认识半径:
1、请同学们把圆心和圆上一点连成线段。(学生动手连半径)
2、师介绍:这条线段就是半径(板书:半径)字母r表示。(在白板的圆上用字母表示半径)
3、观察半径,提问:谁来说说什么是半径?(学生概括半径的意义)
4、学生进行汇报。连接圆心和圆上任意点的线段叫半径。
5、学生通过读加深对半径概念的理解。(学生边读老师边圈出关键词)
师提问:你还能不能再画几条半径呢?
6、学生在自己画的圆内画半径。
提问:你画出了几条?你画出了几条?你呢?还能再画出半径吗?(还能)你发现了什么?(半径有无数条)
7、观察半径,它还有什么特点?(相等)
师:如果我现在想要画一个半径为二十厘米的圆应该怎么办?
生反馈,师黑板演示画圆。
请在作业单上画一个半径为2厘米的圆,对比你们画的圆和老师画的圆一样大吗?(不一样)也就是说这里半径相等指的是同一个圆内。
(三)、认识直径:
师:请同学们拿出老师事先给你的圆,将圆只对折一次,再打开,观察一下,它和之前有什么不同?(折痕)
1、请你借助直尺将这条折痕描出来。
2、我们发现这条折痕描出的是一条线段。
2、这条线段有什么特征?
3、学生汇报:
师适时板书:通过圆心两端在圆上
4、师小结:其实像这样通过圆心、两端都在圆上的线段叫直径,用字母d表示。
5、一起说说什么叫直径?
6、学生总结:通过圆心并且两端都在圆上的线段叫直径。(学生齐读)
7、请同学们在圆上画出直径,并且用字母表示出来。
提问:将圆换个方向对折,打开,换个方向再对折再打开。如果像这样折下去,你发现了什么?(可以画无数条)请根据直径的定义在圆上再画几条直径,并且量一量,看看直径还有什么特点?
(四)、研究半径和直径的关系
师小结:在同一个圆内,半径有无数条,并且相等,直径也有无数条,也相等,那么半径和直径有没有关系呢?
1、在作业单的圆内,先画出一条半径,再画一条直径,量一量,看看半径和直径之间到底有什么关系。并将结果填写在作业单上。
半径(cm)
直径(cm)
半径和直径的关系
3、学生进行同桌合作学习,探究半径与直径的关系。
4、学汇报交流。板书:d=2r r=d/2
5、练习:对口令
如果一个圆半径是4厘米,直径是多少?
如果一个圆直径是5分米,半径是多少?
(五)、研究圆心和半径的作用:
1、生活中形形色色的物体中都有圆,我们一起来看看,(课件出示圆形物体)
2、梳理圆心与半径的作用:
师:这些圆有大有小,是什么决定了圆的大小?(半径)是什么决定了圆的位置?(圆心)
【圆的认识教案】相关文章:
认识圆教案06-28
《圆的认识》教案09-01
圆的认识教案03-02
圆认识教案08-04
【实用】圆的认识教案10-21
人教版圆的认识教案11-28
圆的认识教案(15篇)02-22
圆的认识教案15篇02-07
圆认识教案15篇03-17
《圆的认识》教案(15篇)02-22