当前位置:育文网>教学文档>教案> 初中数学设计教案

初中数学设计教案

时间:2024-06-24 09:36:37 教案 我要投稿
  • 相关推荐

初中数学设计教案

  作为一名老师,时常需要编写教案,编写教案助于积累教学经验,不断提高教学质量。我们应该怎么写教案呢?以下是小编精心整理的初中数学设计教案,仅供参考,大家一起来看看吧。

初中数学设计教案

初中数学设计教案1

  学习目标 1、了解负数是从实际需要中产生 的;

  2、能判断一个数是正数还是负数,理解数0表示的量的意义;

  3、会用正负数表示实际问题中具有相反意义的量.

  重点

  难点 重点:正、负数的概念,具有相反意义的量

  难点:理解负数的概念和数0表示的量的意义

  教学流程 师生活动 时间 复备标注

  一、导入新课

  我先向同学们做个自我介绍,我姓 ,大家可 以叫我 老师,身高 米,体重 千克,今年 岁,教 龄是年龄的 ,我将和同学们一起度过三年的.初中学习生活.

  老师刚才的介绍中出现了一些数,它们是些什么数呢?

  [投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……等整数;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数. 所以,数产生于人们实际生产和生活的 需要.

  在生活中,仅有整数和分数够用了吗?

  二、新授

  1、自学章前图、第2 页,回答下列问题

  数-3,3,2,-2,0,1.8%, -2.7%,这些数中 ,哪 些数与以前学习的数不同?

  什么是正数,什么是负数?

  归纳小结:像3、2、2.7%这样大于零的数叫做正数,像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数.根据需要,有时在正数前面也加上“+”(正)号,例如,+2、+0.5、+ 1/3,…,就是2、0.5、1/3,….

  这样,一个数就由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值.

  如数-3.2的符号是“一”号,绝对值是3.2,数5的符号是“+”号,绝对值是5.

  2、自学第2—3页,回答下列问题

  大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么 0是什么数呢?

  0有什么意义?

  归纳小结:数0既不是正数,也不是负数,它是正数和负数的分界.

  0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量.

  3、用正负数表示具有相反意义的量:自学课本3—4页

  有哪些相反意义的量?

  请举出你所知道的相反意义的量?

  “相反意义的量”有什么特征?

  归纳小结:一是意义相反,二是有数量,而且是同类量.

  完成3页练习

  4、例题

  自学例题,完成 归纳。寻找问题。

  完成4页练习

  三、课堂达标练习

  课本第5页练习1、2、3、4、7、8.

  四、课堂小结

  1、到目前为止,我们学习的数有哪几种?

  2、什么是正数、负数?零仅仅表示“没有”吗?

  3、正数和负数起源于表示两种相反意义的量,后来正数和负数在许多方面被广泛地应用. 明确目标

初中数学设计教案2

  教学目标

  (一)知识认知要求

  1。回顾收集数据的方式。

  2。回顾收集数据时,如何保证样本的代表性。

  3。回顾频率、频数的概念及计算方法。

  4。回顾刻画数据波动的统计量:极差、方差、标准差的概念及计算公式。

  5。能利用计算器或计算机求一组数据的算术平均数。

  (二)能力训练要求

  1。熟练掌握本章的知识网络结构。

  2。经历数据的收集与处理的过程,发展初步的统计意识和数据处理能力。

  3。经历调查、统计等活动,在活动中发 展学生解决问题的能力。

  (三)情感与价值观要求

  1。通过对本章内容的回顾与思考,发展学 生用数学的意识。

  2。在活动中培养学生团队精神。

  教学重点

  1。建立本章的知识框架图。

  2。体会收集数据的方式,保证样本的代表性,频率、频数及刻画数据离散程度的统 计量在实际情境中的意义和应用。

  教学难点

  收集数据的方式、抽样时保证样本的代表性、频率、频数、刻画数据离散程度的统计量在不同情境中的应用。

  教学过程

  一、导入新课

  本章的内容已全部学完。现在如何让你调查一个情况。并且根据你获得数据,分析整理,然后写出调查报告,我想大家现在心里应该有数。

  例如,我们要调查一下“上网吧的人的年龄”这一情况,我们应如何操作?

  先选择调查方式,当然这个调查应采用抽样调查的方式,因为我们不可能调查到所有上网吧的人,何况也没有必要。

  同学们感兴趣的话,下去以后可以以小组为单位,选择自己感兴趣的事情做调查,然后再作统计分析,然后把调查结果汇报上来,我们可以比一比,哪一个组表现最好?

  二、讲授新课

  1。举例说明收集数据的方式主要有哪几种类型。

  2。抽样调查时,如何保证样本的代表性?举例说明。

  3。举出与频数、频率有关的几个生活实例?

  4。刻画数据波动的统计量有 哪些?它们有什么作用?举例说明。

  针对上面的几个问题,同学们先独 立思考,然后可在小组内交流你的`想法,然后我们每组选出代表来回答。

  (教师可参与到学生的讨论中,发现同学们前面知识掌握不好的地方,及时补上)。

  收集数据的方式有两种类型:普查和抽样调查。

  例如:调查我校八年级同学每天做家庭作业的时间,我们就可以用普查的形式。

  在这次调查中,总体:我校八年级全体学生每天做家庭作业的时间;个体:我校八年级每个学生每天做家庭作业的时间。

  用普查的方式可以直接获得总体情况。但有时总体中个体数目太多,普查的工作量较大;有时受客观条件的限制,无法对所有个体进行普查;有时调查具有破坏性,不允许普查,此时可用抽样调查。

  例如把上面问题改成“调查全国八年级同学每天做家庭作业的时间”,由于个体数目太多,普查的工作量也较大,此时就采取抽样调查,从总体中抽取一个样本,通过样本的特征数字来估计总体,例如平均数、中位数、众数 、极差、方差等。

  上面我们回顾了为了了解某种情况而采取的调查方式:普查和抽样调查,但抽样调查必须保证数据具有代表性,因为只 有这样,你抽取的样本才能体现出总体的情况,不然,就会失去可靠性和准确性。

  例如对我们班里某门学科的成绩情况,有时不仅知道平均成绩,还要知道90分以上占多少,80到90分之间占多少,……,不及格的占多少等,这时,我们只要看一下每个学生的成绩落在哪一个分数段,落在这个分数段的分数有几个,表明数据落在这个小组的频数就是多少,数据落在这个小组的频率就是频数与数据总个数的商。

  刻画数据波动的统计量有极差、方差、标准差。它们是用来描述一组数据的稳定性的。一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

  例如:某农科所在8个试验点,对甲、乙两种玉米进行对比试验,这两种玉米在各试验点的亩产量如下(单位:千克)

  甲:450 460 450 430 450 460 440 460

  乙:440 470 460 440 430 450 470 4 40

  在这个试验点甲、乙两种玉米哪一种产量比较稳定?

  我们可以算极差。甲种玉米极差为460-430=30千克;乙种玉米极差为470-430=40千克。所以甲种玉米较稳定。

  还可以用方差来比较哪一种玉米稳定。

  s甲2=100,s乙2=200。

  s甲2<s乙2,所以甲种玉米的产量较稳定。

  三。建立知识框架图

  通 过刚才的几个问题回顾思考了我们这一章的重点内容,下面构建本章的知识结构图。

  四、随堂练习

  例1一家电脑生产厂家在某城市三个经销本厂产品的大商场调查,产品的销量占这三个 大商场同类产品销量的40%。由此在广告中宣传,他们的产品在国内同类产品的销售量占40%。请你根据所学的统计知识,判断该宣传中的数据是否可靠:________,理由是________。

  分析:这是一道判断说理型题,它要求借助于统计知识,作出科学的判断, 同时运 用统计原理给予准确的解释。因此,该电脑生产厂家凭借挑选某城市经销本产品情况,断然说他们的产品在国内同类产品的销量占40%,宣传中的数据是不可靠的,其理由有二:第一,所取样本容量太小;第二,样本抽取缺乏代表性和广泛性。

  例2在举国上下众志成城抗击“非典” 的斗争中,疫情变化牵动着全国人民的心 。请根据下面的疫情统计图表回答问题:

  (1)图10是5月11日至5月29日全国疫情每天新增数据统计走势图,观察后回答:

  ①每天新增确诊病例与新增疑似病例人数之和超过100人的天数共有__________天;

  ②在本题的统计中,新增确诊病例的人数的中位数是___________;

  ③本题在对新增确诊病例的统计中,样本是__________,样本容量是__________。

  (2)下表是我国一段时间内全国确诊病例每天新增的人数与天数的频率统计表。(按人数分组)

  ①100人以下的分组组距是________;

  ②填写本统计表中未完成的空格;

  ③在统计的这段时期中,每天新增确诊

  病例人数在80人以下的天数共有_________天。

  解:(1)①7 ②26 ③5月11日至29日每天新增确诊病例人数 19

  (2)①10人 ②11 40 0。125 0。325 ③25

  五.课时小结

  这节课我们通过回顾与思考这一章的重点内容,共同建立的知识框架图,并进一步用统计的思想和知识解决问题,作出决策。

  六.课后作业:

  七.活动与探究

  从鱼塘捕得同时放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1。5,1。6,1。4,1。6,1。3,1。4,1。2,1。7,1。8(单位:千克)。依此估计这240尾鱼的总质量大约是

  A。300克 B。360千克C。36千克 D。30千克

初中数学设计教案3

  一、教学案例的特点

  1、案例与论文的区别

  从文体和表述方式上看,论文是以说理为目的,以议论为主;案例则以记录为目的,以记叙为主,兼有议论和说明。也就是说,案例是讲一个故事,是通过故事说明道理。

  从写作的思路和思维方式来看,论文写作一般是一种演绎思维,思维的方式是从抽象到具体;案例写作是一种归纳思维,思维的方式是从具体到抽象。

  2、案例与教案、教学设计的区别

  教案和教学设计都是事先设想的教学思路,是对准备实施的教学措施的简要说明;教学案例则是对已经发生的教学过程的反映。一个写在教之前,一个写在教之后;一个是预期达到什么目标,一个是结果达到什么水平。教学设计不宜于交流,教学案例适宜于交流。

  3、案例与教学实录的区别

  案例与教学实录的体例比较接近,它们都是对教学情景的描述,但教学实录是有闻必录,而案例则是有所选择的,教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断或理性思考)。

  4、教学案例的特点是

  ——真实性:案例必须是在课堂教学中真实发生的事件;

  ——典型性:必须是包括特殊情境和典型案例问题的故事;

  ——浓缩性:必须多角度地呈现问题,提供足够的信息;

  ——启发性:必须是经过研究,能够引起讨论,提供分析和反思。

  二、数学案例的.结构要素

  从文章结构上看,数学案例一般包含以下几个基本的元素。

  (1)背景。案例需要向读者交代故事发生的有关情况:时间、地点、人物、事情的起因等。如介绍一堂课,就有必要说明这堂课是在什么背景情况下上的,是一所重点学校还是普通学校,是一个重点班级还是普通班级,是有经验的优秀教师还是年青的新教师执教,是经过准备的“公开课”还是平时的“家常课”,等等。背景介绍并不需要面面俱到,重要的是说明故事的发生是否有什么特别的原因或条件。

  (2)主题。案例要有一个主题:写案例首先要考虑我这个案例想反映什么问题,例如是想说明怎样转变学困生,还是强调怎样启发思维,或者是介绍如何组织小组讨论,或是观察学生的独立学习情况,等等。或者是一个什么样的数学任务解决过程和方法,在课程标准中数学任务认知水平的要求怎么样,在课堂教学中数学任务认知水平的发展怎么样等等。动笔前都要有一个比较明确的想法。比如学校开展研究性学习活动,不同的研究课题、研究小组、研究阶段,会面临不同的问题、情境、经历,都有自己的独特性。写作时应该从最有收获、最有启发的角度切入,选择并确立主题。

  (3)情节。有了主题,写作时就不会有闻必录,而要是对原始材料进行筛选。首先需要教师对课堂教学中师生双方(外显的和内隐的)活动的清晰感知,然后是有针对性地向读者交代特定的内容,把关键性的细节写清楚。比如介绍教师如何指导学生掌握学习数学的方法,就要把学生怎么从“不会”到“会”的转折过程,要把学习发生发展过程的细节写清楚,要把教师观察到的学生学习行为,学习行为反映的学生思想、情感、态度写清楚,或者把小组合作学习的突出情况写清楚,或者把个别学生独立学习的典型行为写清楚。不能把“任务”布置了一番,把“方法”介绍了一番,说到“任务”的完成过程,说到“掌握”的程度就一笔带过了。

  (4)结果。一般来说,教案和教学设计只有设想的措施而没有实施的结果,教学实录通常也只记录教学的过程而不介绍教学的效果;而案例则不仅要说明教学的思路、描述教学的过程,还要交代学生学习的结果,即这种教学措施的即时效果,包括学生的反映和教师的感受等。读者知道了结果,将有助于加深对整个过程的内涵的了解。

  (5)反思。对于案例所反映的主题和内容,包括教育教学指导思想、过程、结果,对其利弊得失,作者要有一定的看法和分析。反思是在记叙基础上的议论,可以进一步揭示事件的意义和价值。比如同样是一个学困生转化的事例,我们可以从社会学、教育学、心理学、学习理论等不同的理论角度切入,揭示成功的原因和科学的规律。反思不一定是理论阐述,也可以是就事论事、有感而发,引起人的共鸣,给人以启发。

  三、初中数学教学案例主题的选择

  新课程理念下的初中数学教学案例,可从以下六方面选择主题:

  (1)体现让学生动手实践、自主探究、合作交流的教学方式;

  (2)体现教师帮助学生在自主探究、合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验;

  (3)体现让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,采用“问题情境——建立模型——解释、应用与拓展”的模式教学的成功经验;

  (4)体现数学与信息技术整合的教学方法;

  (5)体现教师在教学过程中的组织者、引导者与合作者的作用;

  (6)体现教学中对学生情感、态度的关注和评价,以及怎样帮助不同的人在数学上获得不同的发展,等等。

初中数学设计教案4

  课题:12.3等腰三角形(第一课时)

  教学内容:新人教版八年级上册十二章第三节等腰三角形的第一课时

  任课教师:东湾中学李晓伟

  设计理念:

  教学的实质是以教材中提供的素材或实际生活中的一些问题为载体,通过一系列探究互动过程,渗透分类讨论、数形结合和方程的思想方法,达到学生知识的构建、能力的培养、情感的陶冶、意识的创新。

  ㈠教材的地位和作用分析

  等腰三角形是新人教版八年级上册十二章第三节等腰三角形的第一课时的内容。本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。

  另外,本堂课通过“活动探究”、“观察—猜想—证明”等途径,进一步培养学生的动手能力、观察能力、分析能力和逻辑推理能力,因此,本堂课无论在知识上,还是在对学生能力的培养及情感教育等方面都有着十分重要的作用。

  ㈡教学内容的分析

  本堂课是等腰三角形的第一堂课,在认识等腰三角形的基础上着重介绍“等腰三角形的性质”。在教学设计的过程中,通过展示我国今年举办的精彩绝伦的盛会—上海世博会图片中的等腰三角形,结合云南丰富的文化资源,让学生感知生活中处处有数学,感受图形的和谐美、对称美;通过学生感兴趣的数学情景引入等腰三角形定义,提高学生的学习乐趣;让学生通过动手剪等腰三角形、对折等腰三角形等活动,探究发现等腰三角形的性质,经历知识的“再发现”过程。在探究活动的过程中发展创新思维能力,改变学生的学习方式。在发现等腰三角形的性质的基础上,再经过推理证明等腰三角形的性质,使得推理证明成为学生观察、实验、探究得出结论的自然延伸,有机地将等腰三角形的认识与等腰三角形的性质的证明结合起来,从中发展学生推理能力。

  在例题的选取上,注重联系实际,激发学生学习兴趣,让学生主动用数学知识解决实际问题,同时渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。

  二、目标及其解析

  ㈠教学目标:

  知识技能:

  1.了解等腰三角形的概念,认识等腰三角形是轴对称图形;2.经历探究等腰三角形性质的过程,理解等腰三角形的性质的证明;

  3.掌握等腰三角形的性质,能运用等腰三角形的性质解决生活中简单的实际问题。

  数学思考:

  1.经历“观察?实验?猜想?论证”的过程,发展学生几何直观;

  2.经历证明等腰三角形的性质的过程,体会证明的必要性,发展合情推理能力和初步的演绎推理能力.

  解决问题:

  1.能运用等腰三角形的性质解决生活中的实际问题,发展数学的应用能力,获得解决问题的经验;

  2.在小组活动和探究过程中,学会与人合作,体会与他人合作的重要性.

  情感态度:

  1.经历“观察?实验?猜想?论证”的过程,体验数学活动充满着探究性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性,并有克服困难和运用知识解决问题的成功体验,建立学好数学的自信心;

  2.经历运用等腰三角形解决实际问题的过程,认识数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用;

  3.在独立思考的基础上,通过小组合作,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,在交流中获益.

  ㈡教学重点:

  等腰三角形的性质及应用。

  ㈢教学难点:

  等腰三角形性质的证明。

  ㈣解析

  本堂课是等腰三角形的第一堂课,所以对于本堂课的知识目标的定位,主要考虑如下:1.了解等腰三角形的概念,认识等腰三角形是轴对称图形,在本堂课中要达到如下要求:⑴理解等腰三角形的定义,知道等腰三角形的顶角、底角、腰和底边;⑵知道等腰三角形是轴对称图形,它有一条对称轴,即:顶角角平分线(底边上的高或底边上的中线)所在直线;

  2.经历探究等腰三角形性质的过程,掌握等腰三角形的性质的证明,在课堂中让学生参与等腰三角形性质的探索,鼓励学生用规范的数学言语表述证明过程,发展学生的数学语言能力和演绎推理能力,引导学生完成对等腰三角形的性质的证明;

  3.会利用等腰三角形的性质解决简单的实际问题,本堂课要达到以下要求:掌握等腰三角形的'性质,会利用等腰三角形的性质解决简单的实际问题。

  三、问题诊断分析

  1.在这堂课中,学生可能遇到的第一个困难是等腰三角形性质的发现,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质,解决这一问题教师主要借助等腰三角形对称性的研究,并引导学生理解“重合”这个词的涵义。

  2.这堂课学生可能遇到的第二个问题是证明等腰三角形的性质,这一问题主要有三个原因:第一学生刚接触几何证明不久,对数学语言表达方式还不熟悉;这一困难,并不是一堂课就能解决的,而要在以后学习中帮助学生增强数学语言运用的能力,能有条理地、清晰地阐述自己的观点。在这堂课中我通过等腰三角形性质的证明,鼓励学生运用规范的数学语言来表述,使学生数学语言能力和演绎推理能力得到提升;第二是添加辅助线的问题,这也是学生在证明中的一个难点。要解决这一问题,我借助等腰三角形是轴对称图形,通过研究等腰三角形的对称轴,让学生理解三种添加辅助线的方法,即作顶角角平分线、底边上的高或底边上的中线;第三是证明等腰三角形顶角角平分线、底边上的中线、底边上的高互相重合这一性质,要突破这一难点,我采用先证明等腰三角形两底角相等这一性质,为学生搭一个台阶,更好地解决这个难点。

  3.这堂课中学生可能遇到的第三个问题是对等腰三角形的性质的应用,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质的应用;所以我在设计

  课堂练习时,注重数学知识与生活实际的联系,提高学生数学学习的兴趣,让学生主动运用数学知识解决实际问题,并通过练习渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。

  四、教法、学法:

  教法:

  常言道:“教必有法,教无定法”。所以我针对八年级学生的心理特点和认知能力水平,大胆应用生活中的素材,并作了精心的安排,充分体现数学是源于实践又运用于生活。因此,本堂课的教学中,我以学生为主体,让学生积极思维,勇于探索,主动地获取知识。同时,采用了现代化教学技术,激发学生的学习兴趣,使整个课堂“活”起来,提高课堂效率。本堂课以生活中的一些例子为中心,让学生亲自尝试,接受问题的挑战,充分展示自己的观点和见解,给学生创设一个宽松愉快的学习氛围,让学生体验成功的快乐,为终身学习和发展打打下坚实的基础。

  本堂课的设计是以课程标准和教材为依据,采用发现式教学。遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生大胆猜想,小心求证的科学研究的思想。

  学法:

  学生都渴望与他人交流,合作探究可使学生感受到合作的重要和团队的精神力量,增强集体意识,所以本课采用小组合作的学习方式,让学生遵循“情景问题?实践探究?证明结论?解决实际问题”的主线进行学习。让学生从活动中去观察、探索、归纳知识,沿着知识发生,发展的脉络,学生经过自己亲身的实践活动,形成自己的经验,产生对结论的感知,实现对知识意义的主动构建。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会自主学习,学会探索问题的方法。

  五、教学支持条件分析

  在本堂课中,准备利用长方形纸片、剪刀、圆规和直尺等工具,剪出等腰三角形,利用等腰三角形,通过对折、多媒体动画演示等方法发现等腰三角形的性质,并且借助多媒体信息技术与实际动手操作加强对所学知识的理解和运用。

  六、教学基本流程

  七、教学过程设计

初中数学设计教案5

  一、 教学目标

  1、 知识与技能目标

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

  2、 能力与过程目标

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

  3、 情感与态度目标

  通过学生自己探索出法则,让学生获得成功的喜悦。

  二、 教学重点、难点

  重点:运用有理数乘法法则正确进行计算。

  难点:有理数乘法法则的`探索过程,符号法则及对法则的理解。

  三、 教学过程

  1、 创设问题情景,激发学生的求知欲望,导入新课。

  教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

  学生:26米。

  教师:能写出算式吗?学生:……

  教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题

  2、 小组探索、归纳法则

  (1)教师出示以下问题,学生以组为单位探索。

  以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

  ① 2 ×3

  2看作向东运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  2 ×3=

  ② -2 ×3

  -2看作向西运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  -2 ×3=

  ③ 2 ×(-3)

  2看作向东运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  2 ×(-3)=

  ④ (-2) ×(-3)

  -2看作向西运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  (-2) ×(-3)=

  (2)学生归纳法则

  ①符号:在上述4个式子中,我们只看符号,有什么规律?

  (+)×(+)=( ) 同号得

  (-)×(+)=( ) 异号得

  (+)×(-)=( ) 异号得

  (-)×(-)=( ) 同号得

  ②积的绝对值等于 。

  ③任何数与零相乘,积仍为 。

  (3)师生共同用文字叙述有理数乘法法则。

  3、 运用法则计算,巩固法则。

  (1)教师按课本P75 例1板书,要求学生述说每一步理由。

  (2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。

  (3)学生做练习,教师评析。

  (4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。

初中数学设计教案6

  教学目标

  1.理解二元一次方程及二元一次方程的解的概念;

  2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;

  3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;

  4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。

  教学重点、难点

  重点:二元一次方程的意义及二元一次方程的解的概念.

  难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程.

  教学过程

  1.情景导入:

  新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902880.2.

  2.新课教学:

  引导学生观察方程80a+150b=902880与一元一次方程有异同?

  得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程.

  3.合作学习:

  给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的'同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?

  4.课堂练习:

  1)已知:5xm-2yn=4是二元一次方程,则m+n=;

  2)二元一次方程2x-y=3中,方程可变形为y=当x=2时,y=_

  5.课堂总结:

  (1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);

  (2)二元一次方程解的不定性和相关性;

  (3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.

  作业布置

  本章的课后的方程式巩固提高练习。

初中数学设计教案7

  教学目标:

  教学目标:

  1、 会画已知点关于已知直线 的对称点,会画已知线段的对称线段,会画已知三角形的对称三角形。

  2、 经历探索轴对称的性质的活动过程,积累数学活动经验,进一步发展空间观念和有条理地思考和表达能力。

  三、教学重点与难点

  教学重点:作已知图形的轴对称图形的一般步骤。

  教学难点:怎样确定已知图形的关键点并根据这些点作出对称图形。

  学习过程:

  一.学前准备

  1、完成课本第10页的操作,即图1—6,并将你完成的操作带到课堂上来。

  2、思考:

  下列图形中,哪些是轴对称图形,请把它们找出来,画出它们所有的对称轴。

  3、请你在下图的`方格内,设计一个轴对称图形。

  二.自学、合作探究

  (一)自学、相信自己(书本)

  实践、操作:

  1、思考:如图1-9, 3点都在方格纸的格点位置上。请你再找一个格点 ,使图中的4点组成一个轴对称图形。

  2、如果直线 外有一点 ,那么怎样画出点 关于直线 的对称点 ?

  问题一:画点关于直线 的对称点 的方法,并说明道理。

  问题二:怎样画已知线段的对称线段?怎样画已知三角形的对称三角形?说说你的想法和依据。

  (二)思索、交流(书本例题练习难)

  3、分别画出图1-10(1)、(2)、(3)中线段 关于直线 对称的线段 。

  4、 分别在图图1-10(1)、(2)、(3)的直线 上取一点 ,并画 关于直线 对称的 .

  (三)应用、探究(难度大综合纵横思考)

  例题讲解

  例题1、如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶,牛奶站应建在什么地方,才能使A、B到它的距离之和最短?

  例题1

  例题2

  三.学习体会(空)

  四.自我测试(书本练习)

  1.练习1 下列数字图象都是由镜中看到的,请分别写出它们所对应的实际数字,并说明数字图象与镜面的位置关系。

  1、如图1,线段AB与A’B’关于直线l对称,

  ⑴连接AA’交直线l于点O,再连接OB、OB’。

  ⑵把纸沿直线l对折,重合的线段有: 。

  ⑶因为△OAB和△OA’B’关于直线l , 所以△OAB -△OA’B’,直线l垂直平分线段 ,∠ABO=∠ , ∠AO’B=∠ 。

  图 1 图 2 图3

  2、如图2,三角形Ⅰ的两个顶点分别在直线l1和l2,且l1⊥l2,

  ⑴画三角形Ⅱ与三角形Ⅰ关于l1对称;

  ⑵画三角形Ⅲ与三角形Ⅱ关于l2对称;

  ⑶画三角形Ⅳ与三角形Ⅲ关于l1对称;

  ⑷所画的三角形Ⅳ与三角形Ⅰ成轴对称吗?

  3、如图3,四边形ABCD是长方形弹子球台面,有黑白两球分别位于E、F两点位置上,试问怎样撞击黑球E,才能使黑球先碰撞台边AB反弹后再击中白球F?

初中数学设计教案8

  教学目标:

  1、知识与技能:

  ⑴、在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质。

  ⑵、了解方位角,能确定具体物体的方位。

  2、过程与方法:

  进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。

  3、情感态度与价值观:

  体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。

  重、难点及关键:

  1、重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点。

  2、难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是难点。

  3、关键:了解推理的意义和推理过程是掌握性质的关键。

  教学过程:

  一、引入新课:

  让学生观察意大利著名建筑比萨斜塔。

  比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工。设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜。

  二、新课讲解:

  1、探究互为余角的`定义:

  如果两个角的和是90(直角),那么这两个角叫做互为余角,其中一个角是另一个角的余角。即:1是2的余角或2是1的余角。

  2、练习⑴:

  图中给出的各角,那些互为余角?

  3、探究互为补角的定义:

  如果两个角的和是180(平角),那么这两个角叫做互为补角,其中一个角是另一个角的补角。即:3是4的补角或4是3的补角。

  4、练习⑵:

  (1)图中给出的各角,那些互为补角?

  (2)填下列表:

  a的余角 a的补角

  5

  32

  45

  77

  6223

  x

  结论:同一个锐角的补角比它的余角大90。

  (3)填空:

  ①70的余角是 ,补角是 。

  ②a(90)的它的余角是 ,它的补角是 。

  重要提醒:ⅰ(如何表示一个角的余角和补角)

  锐角a的余角是(90a )

  a的补角是(180a )

  ⅱ互余和互补是两个角的数量关系,与它们的位置无关。

  5、讲解例题:

  例1:若一个角的补角等于它的余角4倍,求这个角的度数。

  解: 设这个角是x ,则它的补角是( 180-x),余角是(90-x) 。

  根据题意得:

  (180-x)= 4 (90-x)

  解之得: x =60

  答:这个角的度数是60 。

  6、练习⑶:

  一个角的补角是它的3倍,这个角是多少度?

  7、探究补角的性质:

  如图1 与2互补,3 与4互补 ,如果1=3,那么2与4相等吗?为什么?

  教师活动:操作多媒体演示。

  学生活动:观察图形的运动,得出结果:4

  补角性质:同角或等角的补角相等

  教师活动:向学生说明,以上从观察图形得到的结论,还可以从理论上说明其理由。

  ∵ 1 +2=180, 3 +4=180

  2=180-1 , 4=180- 3

  ∵ 1 =3

  180-1 =180- 3

  即:2 =4

  8、探究余角的性质:

  如图1 与2互余,3 与4互余 ,如果1=3,那么2与4相等吗?为什么?

  教师活动:操作多媒体演示。

  学生活动:观察图形的运动,得出结果:4

  余角性质:同角或等角的余角相等

  教师活动:向学生说明,以上从观察图形得到的结论,还可以从理论上说明其理由。

  ∵ 1 +2=90, 3 +4=90

  2=90-1 , 4=90- 3

  ∵ 1 =3

  90-1 =90- 3

  即:2 =4

  9、讲解例题:

  例2:如图,AOB=90COD=EOD=90,C,O,E在一条直线上,且4,请说出1与3之间的关系?并试着说明理由?

  解:3

  ∵ 2= COD=90

  3+2= AOB=90

  3 (等角的余角相等)

  10、练习⑷:

  如图AOB = 90 COD = 90 则1与2是什么关系?

  11、讲解方位角:

  (1)认识方位:

  正东、正南、正西、正北、东南、

  西南、西北、东北。

  (2)找方位角:

  ⅰ乙地对甲地的方位角 ⅱ甲地对乙地的方位角

  12、讲解例题:

  例3:选择题:

  (1)A看B的方向是北偏东21,那么B看A的方向( )

  A:南偏东69 B:南偏西69 C:南偏东21 D:南偏西21

  (2)如图,下列说法中错误的是( )

  A: OC的方向是北偏东60

  B: OC的方向是南偏东60

  C: OB的方向是西南方向

  D: OA的方向是北偏西22

  (3)在点O 北偏西60的某处有一点A,在点O南偏西20的某处有一点B,则AOB的度数是( )

  A:100 B:70 C:180 D:140

  例4:如图.货轮O在航行过程中,发现灯塔A在它南偏东60的方向上,同时,在它北偏东40,南偏西10,西北(即北偏西45)方向上又分别发现了客轮B,货轮C和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线.

  三、课堂小结:

  1、本节课学习了余角和补角,并通过简单的推理,得到出了余角和补角的性质。

  2、了解方位角,学会了确定物体运动的方向。

  四、课外作业:

  1、课本第114页:9、11、12题。

  2、学习指要第78-79页:训练二和训练三。

  课后反思:

初中数学设计教案9

  教材分析

  1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。

  2.书中的'定义是以未知数的个数和次数为标准,用文字的形式给出的。一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。

  3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的能力;另一方面是为由一些具体的方程归纳出一元二次方程的概念。

  学情分析

  1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。

  2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的难度,解决这问题要以多练为主。

  3、学生认知障碍点:一元二次方程与不等式和整式的综合运用能力有待提高。

  教学目标

  1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的意识。

  2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

  3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。

  教学重点和难点

  1、重点:概念的形成及一般形式。

  2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。

初中数学设计教案10

  一 、教学目标

  (一)基础知识目标:

  1。理解方程的概念,掌握如何判断方程。

  2。理解用字母表示数的好处。

  (二)能力目标

  体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。

  (三)情感目标

  增强用数学的意识,激发学习数学的热情。

  二、教学重点

  知道什么是方程、一元一次方程,找相等关系列方程。

  三、教学难点

  如何找相等关系列方程

  四、教学过程

  (一)创设情景,引入新课

  由学生已有的知识出发,结合章前图提出的问题,激发学生进一步探究的欲望。

  在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

  为了回答上述这几个问题,我们来看下面这个例题。

  (二)提出问题

  章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米,王家庄到翠湖的路程有多远?

  你会用算术方法解决这个实际问题么?不妨试一下。

  如果设王家庄到翠湖的路程为x千米,你能列出方程吗?

  根据题意画出示意图。

  由图可以用含x的式子表示关于路程的数量,

  王家庄距青山 千米,王家庄距秀水 千米,

  由时间表可以得出关于路程的数量,

  从王家庄到青山行车 小时,王家庄到秀水 小时,

  汽车匀速行驶,各路段车速相等,于是列出方程:

  = (1)

  各表示的.意义是什么?

  以后我们将学习如何解出x,从而得到结果。

  例1 某数的3倍减2等于某数与4的和,求某数。

  例2 环行跑道一周长400米,沿跑道跑多少周,可以跑3000米?

  五、课堂小结

  用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只能用到已知数,而方程是根据问题中的等量关系列出的等式,其中有已知数,又有未知数,有了方程后人们解决很多问题就方便了,通过今后的学习,你会逐步认识,从算式到方程是数学的进步。

  六、作业布置

  习题3。1 第1,2两题

初中数学设计教案11

  教学目标:

  1.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力

  2.通过矩形判定的教学渗 透矛盾可以互相转化的唯物辩证法思想

  教法设计:观察、启发、总结、提高,类比探讨,讨 论分析,启 发式.

  教学重点:矩形的判定.

  教学难点:矩形的 判定及性质的综合应用.

  教具学具准备:教具(一个活动的平行四边形)

  教学步骤:

  一.复习提问:

  1.什么叫做平行四边形?什么叫做矩形?

  2.矩形有哪些性质?

  3.矩形与平行四边形有什么共同之处?有什么不同之处?

  二.引入新课

  设问:1.矩形的判定.

  2.矩形是有一个角是直角的平行四 边形,在判定一个四边形是不是矩 形 ,首先看这个四边形是不是平行四边 形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这 体现了定义作用的双重性、性质和判定).除此之外,还有其它 几种判定矩形的`方法,下面就来研究这 些方法.

  方法1:有三个角是直角的四边形是矩形.(并让学生写出推理过程。)

  矩形判定方法2:对角钱相等的平行四边形是矩形.(分析判定方法2和学生 一道写出证明过程。)

  归纳矩形判定方法(由学生小 结):

  (1)一个角是直角的平行四边形.(2)对角线相等的平行四边形.

  (3)有三个角是直角的四边形.

  2 .矩形判定方法的实际应用

  除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.

  3.矩形知识的综合应用。(让学生思考,然后师生共同完成)

  例:已知 的对角线 , 相交于

  ,△ 是等边三角形, ,求这个平行

  四边形的面积(图2).

  分析解题思路:(1)先判定 为矩形.(2)求 出 △ 的直角边 的长.(3)计算 .

  三.小结:(1)矩形的判定方法l、2都是有两个条件:①是平行四边形,②有一个角是直角或对角线 相等.判定方法3的两个条件是:①是四边形,②有三个直 角.

  矩形的判定方法有哪些?

  一个角是直角的平行四边形

  对角线相等的平行四边形-是矩形。

  有三个角是直角的四边形

  (2)要注意不要不加考虑地把性质定理的逆命题作为矩形的判定定理.

  补充例题

  例1:已知:O是矩形A BCD对角线的交点,E、F、G、H分别是OA、OB、OC、OD 上的点,AE=BF=CG=DH,

  求证:四边形EFGH为矩形

  分析:利用对角线互相平分且相等的四边形是矩形可以证明

  证明:∵ABCD为矩形

  AC=BD

  AC、BD互相平分于O

  AO=BO=CO=DO

  ∵AE=BF=CG=DH

  EO=FO=GO=HO

  又HF=EG

  EFGH为矩形

  例2:判断

  (1)两条对 角线相等四边形是矩形()

  (2)两条对角线相等且互相平分的四边形是矩形()

  (3)有一个角是 直角的四边形是矩形( )

  (4)在矩形内部没有和四个顶点距离相等的点()

  分析及解答:

  (1)如图(1)四边形ABC D中,AC=BD,但ABCD不为矩形,

  (2)对角线互相平分的四边形即平行四边形,对角线相等的平行四边形为矩形

  (3)如图(2),四边形ABCD中,B=90,但ABCD不为矩形

  (4)矩形 对角线的交点O到四个顶点距离相等,如图(3),

初中数学设计教案12

  一、教材的地位与作用

  《二元一次方程》是九年义务教育人教版教材七年级下册第四章《二元一次方程组》的第一节。在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。

  二、教学目标

  (一)知识与技能:

  1.了解二元一次方程概念;

  2.了解二元一次方程的解的概念和解的不唯一性;

  3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

  (二)数学思考:

  体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。

  (三)问题解决:

  初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。获得求二元一次方程解的思路方法。

  (四)情感态度:

  培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。

  三、教学重点与难点

  教学重点:二元一次方程及其解的概念。

  教学难点:二元一次方程的概念里“含未知数的项的次数”的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

  四、教法与学法分析

  教法:情境教学法、比较教学法、阅读教学法。

  学法:阅读、比较、探究的学习方式。

  五、教学过程

  1.创设情境,引入新课

  从学生熟悉的姚明受伤事件引入。

  师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。

  (1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了12分,其中罚球得了2分,你知道姚明投中了几个两分球?(本场比赛姚明没投中三分球)师:能用方程解决吗?列出来的方程是什么方程?

  (2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛姚明没投中三分球)师:这个问题能用一元一次方程解决吗?,你能列出方程吗?

  设姚明投进了x个两分球,罚进了y个球,可列出方程。

  (3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。你知道他分别投进几个两分球、几个三分球吗?

  设易建联投进了x个两分球,y个三分球,可列出方程。

  师:对于所列出来的三个方程,后面两个你觉的是一元一次方程吗?那这两个方程有什么相同点吗?你能给它们命一个名称吗?

  从而揭示课题。

  (设计意图:第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。另外,数学来源于生活,又应用于生活,通过创设轻松的问题情境,点燃学习新知识的“导火索”,引起学生的学习兴趣,以“我要学”的主人翁姿态投入学习,而且“会学”“乐学”。)

  2.探索交流,汲取新知

  概念思辨,归纳二元一次方程的特征

  师:那到底什么叫二元一次方程?(学生思考后回答)

  师:翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?(同学们思考后回答)

  师:根据概念,你觉得二元一次方程应具备哪几个特征?

  活动:你自己构造一个二元一次方程。

  快速判断:下列式子中哪些是二元一次方程?

  ①x2+y=0②y=2x+

  4③2x+1=2x ④ab+b=4

  (设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数”的思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把“项的次数”形象化。)

  二元一次方程解的概念

  师:前面列的两个方程2x+y=36,2x+3y=16真的是二元一次方程吗?通过方程2x+3y=16,你知道易建联可能投中几个两分球,几个三分球吗?

  师:你是怎么考虑的?(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的)利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。(学生看书本上的记法)

  使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。(设计意图:通过引导学生自主取值,猜x和y的值,从而更深刻的体会二元一次方程解的本质:使方程左右两边相等的一对未知数的取值。引导学生看书本,目的是让学生在记法上体会“一对未知数的取值”的真正含义。)

  二元一次方程解的不唯一性

  对于2x+3y=16,你觉得这个方程还有其它的解吗?你能试着写几个吗?师:这些解你们是如何算出来的?

  (设计意图:设计此环节,目的有三个:首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;其次是让学生体会到二元一次方程的解的不唯一性;最后让学生感受如何得到一个正确的解:只要取定一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。)如何去求二元一次方程的.解

  例:已知方程3x+2y=10,

  (1)当x=2时,求所对应的y的值;

  (2)取一个你自己喜欢的数作为x的值,求所对应的y的值;

  (3)用含x的代数式表示y;

  (4)用含y的代数式表示x;

  (5)当x=负2,0时,所对应的y的值是多少?

  (6)写出方程3x+2y=10的三个解.

  (设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。以此突破本节课的难点。)

  大显身手:

  课内练习第2题

  梳理知识,课堂升华

  本节课你有收获吗?能和大家说说你的感想吗?3.作业布置

  必做题:书本作业题1、2、3、4。

  选做题:书本作业题5、6。

  设计说明

  本节授课内容属于概念课教学。数学学科的内容有其固有的组成规律和逻辑结构,它总是由一些最基本的数学概念作为核心和逻辑起点,形成系统的数学知识,所以数学概念是数学课程的核心。只有真正理解数学概念,才能理解数学。二元一次方程作为初中阶段接触的第二类方程,形成概念并不难,关键如何理解它的概念,因此本节课采用先让同学自己试着下定义,然后与教材中的完整定义相互比较,发现不同点,进而理解“含有未知数的项的次数都是一次”这句话的内涵。在二元一次方程的解的教学过程中,采用的是让学生体会“一个解、不止一个解、无数个解”的渐进过程,感受到用一个二元一次方程并不能求出一对确定的未知数的取值,从而让学生产生有后续学习的愿望。

  在讲授用含一个未知数的代数式表示另一个未知数的时候,采用“特殊、一般、特殊”的教学流程,以期突破难点。首先抛出问题“这几个解你是如何求的”,

  此时注意的聚焦点是二元一次方程;其次学生归纳先定一个未知数的取值,代入原方程求另一个未知数的值,此时注意的聚焦点是一元一次方程;然后教师引导回到二元一次方程,假如x是一个常数,那么这个方程可以看成是一个关于谁的一元一次方程,此时注意的聚焦点是原来的二元一次方程;最后代入求值,此时注意的聚焦点是等号右边的那个算式,体会“用含一个未知数的代数式表示另一个未知数”在求值过程中的简洁性,强化这种代数形式。另外,在引导学生推导“用含一个未知数的代数式表示另一个未知数”的过程中,渗透数学的主元思想和转化思想。

初中数学设计教案13

  教学目标:

  知识与技能:

  1. 能说出列一元一次方程解应用题的一般步骤;

  2. 会列一元一次方程解决水费和出租车计费问题;

  3. 进一步培养学生分析问题和解决实际问题的能力;

  过程与方法:

  1. 一题多解,学会从多角度分析问题的能力;

  2. 初 步体会数学建模的基本方法;

  情感态度价值观:

  1. 增强节约用水的意识;

  2. 体会数学来源于生活、来源于实践、又服务于实践,认识到学习数学的用处,增强学习的目的性和数学意识。

  教学重点:构建“数学模型”,并列出一元一次方程解应用题

  教学难点:挖掘题目中的等量关系

  教学 方法:探究式

  教学过程:

  一、创设情境,导入新课

  问题情境:

  据《北京日报》报道:北京市人均水资源占有量只有300立方米,仅是全国人均占有量的 ,是世界人均占有量的 .

  (1)问全国人均水资源占有量是多少立方米?世界人均水资源占有量是多少立方米?

  (2)北京市一年漏掉的水相当于新建一个自来水厂全年的产量。据不完全统计,全市至少有6×105个水龙头和 2×105个抽水马桶漏水,如果一个关不紧的水龙头,一个月能漏 掉a立方米的水;一个漏水马桶,一个月漏掉b立方米水,那么一个月造成的水流失量至少多少立方米(用含a、b的代数式表示);

  水资源透支令人担忧,节约用水迫在眉睫。你家每月用水水多少呢?连续观察并记录一个星期的自来水表示数,估算本月你家共用多少立方米水?按3.7元/立方米计算应交纳多少水费?

  小红家上月5日自来水表的.读数为344米3,本月5日自来水表各指针的位置如图所示,这时水表的示数 是_______ 米3,所以一个月来她家用去_______米3水(读数到米3即可), 应缴纳水费 元.

  水费是由哪几个量决定的?(答:单价、用量)

  三者之间的关系:单价×用量=水费.

  二、呈现问题,自主探究

  (一) 水费问题

  问题:实行新的阶梯水价后你会计算自家的水费吗?

  资料表明:“按照《北京市水价调整及阶梯式水价初步方案》,对于生活用水阶梯式水价价格级差拟采用1:3,即第一级水量价格为居民基本生活水价,第二级水量价格为居民基本生活水价的3倍,阶梯式水价的计量方法将按四口家庭核定水量基数,每人月均用水量3立方米,为了方便居民用水淡旺季自行调剂,实行阶梯式水价以后,每半年查一次水表.”

  若居民基本生活用水费用为每立方米3.7元。某户 共4口人,上下半年各缴纳水费543.9元和259元,问上下半年各用水多少立方米?

  分析:阶梯式水价水费的计算,需要分别按不同的单价进行计算。单价分别为3.7元和11.1元.

  解: (元)

  设上半年用水为x立方米,根据题意列方程,得

  解这个方程,得

  下半年用水为: (立方米)

  答:上半年用水97立方米,下半年 用水70立方米.

  说明:本题也可采用计算的方法直接得到结果.

  例1:某市收水费按以下规定:若每月每户用量不超过20立方米,则按每立方米1.2元收费,若超过20立方米,则超过部分每立方米按2元收费.如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么他家这个月共用了多少立方米的水?

  分析:

  单价 数量(立方米) 水费(元)

  未超部分 1.2 20 1.2×20

  超过部分 2 (x-20) 2(x-20)

  平均 1.5 x 1.2×20+2(x- 20)

  水费应按两部分计算, 即单价分别为1.2元和2元.

  解:设他家这个月共用x立方米的水.

  1.5x=1.2×20+2(x-20)

  x=32

  答:他家这个月共用32立方米的水.

  (二)出租车计费问题

  例2:

  乘某市的一种出租汽车起价10元(即行驶在4km以内都需付10元的车费),达到 或超过4km后,每增加1km加价1.2元(不足1km的部分按1km计算).超过15千米,加收50%的空驶费.现在小红乘这种出租汽车从甲地到乙地,支付车费34元.求甲、乙两地的路程大约是多少?

  分析:收空驶费了吗?即超过15千米吗?如何判断?

  15千米收费:10+1.2×11=23.2(元)

  34 > 23.2

  所以,超过了15千米.

  总费用应分三段计费:(1)10元:4千米 ;(2)1.2×(15-4)=13. 2元:11千米 ;(3)超过15千米部分的费用,单价1.8元.

  解:设甲、乙的路程大约是x千米,由题意得,

  10+1.2×(15-4)+1.2×(1+50%)(x-15)=34

  解这个方程得:x=25

  答:甲、乙两地的路程大约是25千米.

  巩固练习:书P119/2

  三、提高拓展,发展创新:

  围绕出租车计费的多 种情况,学生分组进行编题并解答。

  由学生利用投影进行展示,其他学生给与评价.

  四、师生共同小结:

  1. 本节课我们共同研究的问题是什么?共同点是:由于单价的变化,必须要分段计算.

  2. 列一元一次方程解应用题的一般步骤是什么?

  3. 你的收获是什么?

  五、作业:

  整理分组编题 及解答的笔记.

初中数学设计教案14

  教学目标

  1.经历实践、探索的过程,了解平行投影的含义,能够确定物体在太阳光下的影子。

  2.会用观察、想像,了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的。

  3. 了解平行投影与物体三种视图之间的关系。

  教学重点 探讨物体在太阳光下所形成的影子的大小、形状、 方向等。

  教学难点 平行投影与物体三种 视图之间的关系的理解。

  教学方法 观察实践法

  教学后记

  教学内容及过程备注

  一、创设情境、实例导入

  引言:影子是我们司空见惯的,但你知道其中的奥 妙吗?

  概念:物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象。

  二、操作感知、建立表象

  实践:取若干长短 不等的小棒及三角形、矩形纸片,观察它们在太阳光下的影子。

  提问:如果改变小棒或纸片 的.位置和方向,它们的影子发生了什么变化?

  概念:太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。

  议一议

  提出问题:1.在三个不同时刻,同一棵树的影子长度不同,请将它们按拍摄的先后顺序进行排列,并说明你的理由 。

  2.在同一时刻,大树和小树的影子与它们的高度之间有什么关系 ?与同伴交流。

  学生观察、交流。

  做一做

  某校墙边有甲、乙两根木杆。

  (1)某一时刻甲木杆在阳光下的影子如图4-12所示,你能画出此时乙木杆的影子吗?(用线段表示影子)

  在图4-12中,当乙木杆移动到什么位置时,其影子刚好不落在墙上?

  (3)在你所画的图形中有相似三角形吗?为什么?

  学生画图、实验、观察、探索。

  议一议

  小亮认为,物 体的主视图实际上就是说物体在某一平行光线下的投影(如图4-13),左视图和俯视图也是如此, 你同意这种看 法吗?先想一想,再 与同伴交流。

  学生观察、理解、交流。

  三、随堂练习

  课本随堂练习

  学生观察、画图、合作交流。。

  四、课堂总结

  本节课通过各种实践活动,促进大家对内容的理解,本课内容,要体会物体在太阳光下形成的不同影子,在操作中观察不同时刻影子的 方 向和大小变化特征。

  五、布置作业

  课本习题4.3 1、2、3 试一试

初中数学设计教案15

  教学目的:

  1、使学生学会将正多边形的边长、半径、边心距和中心角 、周长、面积等有关 的计算问题转化为解直角三角形的问题.

  2、通过定理的证明过程培养学生观察能力、推理能力、概括能力;

  3、通过一定量的计算,培养学生正确迅速的运算能力;

  教学重点:

  化正多边形的有关计算为解直角三角形问题定理;正多边形计算图及其应用.

  教学难点:

  正确地将正多边形的有关计算问题转化为解直角三角形的问题解决、综合运用几何知识准确计算.

  教学过程:

  一、新课引入:

  前几课我们学习了正多边形的定义、概念、性质,今天我们来学习正多边形的有关计算.

  大家知道正多边形在生产和生活中有广泛的应用性,伴随而来的有关正多边形计算问题必然摆在大家的面前,如何解决正多边形的计算问题,正是本堂课研究的课题.

  二、新课讲解:

  哪位同学回答,什么叫正多边形.(安排中下生回答:各边相等,各角相等的多边形.)

  什么是正多形的边心距、半径?(安排中下生回答:正多边形内切圆的半径叫做边心距.正多边形外接圆的半 径叫做正多边形的半径.)

  正多边形的边有什么性质、角有什么性质?(安 排中下生回答:边都相等,角都相等.)

  什么叫正多边形的中心角?(安排中下生回答:正多边形的一边所对正多边形外接圆的圆心角.)

  正n边形的中心角度数如何计算?(安排中下生回答:中心角的度数

  正n边形的一个外角度数如何计算?(安排中下生回答:

  一个外角度

  哪位同学有所发现?(安排举手学生:正n边形的中心角度数=正n边形的一个外角度数.)

  哪位同学记得n边形的内角和公式?(请回忆起来的学生回答).

  哪位同学能根据n边形内角和定理和正n边形的性质给出求正n边形一个内角度数的公式?(安排中下生回答:正n边形每个内角度数

  正n边形的每个内角与它有共同顶点的外角有何数量关 系?(安排中下生回答:互补).

  根据正n边形的每个内角与它有共同顶点的外角的互补关系和正n边形每个外角度数公式,正n边形每个内角度数又可怎样计算?(安排中

  (幻灯展示练习题,学生思考,回答)

  1.正五边形的中心角度数是____ __;每个内角的度数是______;

  2.一个正n边形的一个外角度数是360,则它的边数n=______,每个内角度数 是__ ____;

  3.一个正n边形的一个内角的度数是140,则它的边数n=______,中心角度数是______.

  对于前2题安排中下生回答,对于第3题不仅要回答题目的答案而且要求回答思路.

  解此方程n=9.

  幻灯展示正三角形、正方形、正五边形、正 六边形.如下图,让学生边观察、边回答老师依次提出的问题、边思考.

  1.观察每个图形的半径,分别将它们分割成多少个什么样子的三角形?(安排中下生回答:等腰三角形)

  2.观察每个图形中所得的三角形具有什么关系?为什么?(安排中等生回答:全等,依据( S.S.S)或(S.A.S))

  3.将上述四个图形的观察与思考推而广之,你得出了什么结论?哪位同学说说自己的想法(安排中上生回答:正n边形的n条半径分正n边形为n个全等的等腰三角形.)

  套上幻灯片的复合片:作出各等腰三角形底边上的高,如下图,安排学生观察、思考并回答以下问题:

  1.这些等腰三角形的每一条高都将每个等腰三角形分割为两个直角三角形,这两个直角三角形全等吗?为什么?(安排中下生回答)

  2.这些等腰三角形的高在正多边形中的名称是什么?(安排中下生回答: 边心距)

  3.正n边形的 n条半径、n条边心距将正n边形分割成全等直角三角形的个数是多少?(安排中等生回答:2n个)

  给出定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.

  再套幻灯片的复合片,如图7-140,安排学生观察每个 直角三角形都由正多边形的哪些元素组成 .

  安排中下生回答:直角三角形的斜边是正多边形的半径R、一条直角边是正多边形的边心距.另一直角边是正多边形边长的一半(在此安排中等生回答:为什么?)半径与边心距的. 夹角是正多边形一个中心角的一半.(安排中等生回答“为什么?”)

  讲解:由于这个直角三角形融合了正多 边形诸多元素,所以就可将正多边形有关半径、边心距、边长、中心角的计算问题归结为解直角三角形的问题来解决.

  幻灯给出正多边形抽象的计算图,教师讲解:

  由于正多边形的有关计算都归结为解直角三角形的问题来解决,所以我们只要画出这个 直角三角形就可以了,其余就不画或略画.图中R表示半径,rn表示正n边形的边心距,an表示正n边形的边长,an表示正n边形的中心角.

  提问:对于给定具 体边数的正n边形,你首先可以求出直角三角形

  (教师讲解):直角三角形中一锐角已知,所以只要再给直角三角形的R、rn、an其中一项赋值就可求出其它元素.例如:(幻灯展示题目)

  例1 已知:如下图,正△ABC的边心距r3=2.

  求:R、a3.

  问:要解此题,首先要做什么?(找中等生回答:画出基本计算图)

  最后要做什么工作:(找中上生回答:选择三角函 数)

  解:

  ∵n=3

  又

  完成下列各题:(幻灯展示题目)

  1.已知,正方形ABCD的边长a4=2.

  求:R,r4.

  2.已知:正六边形ABCDEF的半径 R=2,

  求:r6,a6.

  (对于计算正确且较快的学生,让他们自拟试题进行计算,教师重点辅导需要帮助的学生)

  再回到例1,问:你会求这个正三角形的周长P3吗?怎么求?为什么这样求?(安排中等生回答 :边长3,因为正三角形 三边相等).

  再问:你会求这个正三角形的面积S3吗?怎么求?为什么这样求?(安排中 等生回答:直角△AOC的面积6,由定理可知这样的直角三角形的个数是边数的2倍.或者,等腰△ AOB的面积3,由定理可知选择的等腰三角形的个数与边数相同.)

  请同学们分别计算上述二题的周长和面积(计算快而准的学生让其自拟题目再练习)[

  (幻灯给出例2):已知正六边形ABCDEF的半径为R,求这个正六边形的边长a6、周长P6和面积S6.

  (提问):1.首先要作什么?(安排中下生回答:画基本计算图)

  2.然 么?(安排中下生回答:选择三角函数)

  P6=9 R.

  通过上面计算,你得出正六边形的半径与边长有什么数量关系?(安排中下生回答:相等)希望大家记住这个结论:a6=R,因为它不仅有利于计算而且是尺规画正六边形的依据.

  三、课堂小结:

  哪位同学能说一下,这堂课我们都学习了什么知识?(安排中等生归纳)

  1.化正多边形的有关计算为解直角三角形问题定理,2.运用正多

  角计算.

  四、布置作业

【初中数学设计教案】相关文章:

数学初中教案11-18

初中数学函数教案02-23

初中数学平行教案12-28

初中数学教案08-12

初中数学活动教案06-04

初中数学教案05-28

初中数学优秀教案09-29

【精】初中数学教案02-24

初中趣味数学教案11-22

人教版初中数学教案12-29