当前位置:育文网>教学文档>教案> 《3的倍数的特征》教案

《3的倍数的特征》教案

时间:2024-07-01 08:27:16 教案 我要投稿

《3的倍数的特征》教案

  作为一名无私奉献的老师,有必要进行细致的教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。教案要怎么写呢?下面是小编帮大家整理的《3的倍数的特征》教案,希望能够帮助到大家。

《3的倍数的特征》教案

《3的倍数的特征》教案1

  教学目标

  1、知识与技能

  理解并熟记3的倍数的特征,能正确判断一个数是不是3的倍数,培养理解力和应用知识的能力。

  2、过程与方法

  经历自主实践、合作交流探究3的倍数的特征的过程,培养的探究能力和合作意识。

  3、情感态度与价值观

  感受数学知识探究的条理性,培养严谨的学习态度,体验合作的乐趣。

  教学重难点

  【教学重点】

  3的倍数特征。

  【教学难点】

  探究3的倍数特征的过程。教学过程

  教学过程

  一、以旧引新,竞赛导入

  1、请说出2的倍数的特征、5的倍数的特征。

  2、下面各数哪些是2的倍数,哪些是5的倍数,哪些既是2的倍数又是5的倍数?

  35 158 200 87 65 164 4122

  既是2的倍数又是5的倍数的数有什么特征?

  3、你能说出几个3的倍数吗?上面这些数中,哪些是3的倍数。你能迅速判断出来吗?

  4、比一比。请学生任意报数,学生用计算器算,老师用口算,判断它是不是3的倍数。看谁的数度快!

  5、设疑导入:你们想知道其中的奥秘吗?这节课就来学习3的倍数的特征。我相信:通过这节课的探索大家也一定能准确迅速地判断出一个数是不是3的倍数。(揭示课题)

  二、猜想探索,归纳验证

  1、大胆猜想:猜一猜3的倍数有什么特征?

  (1)交流猜想。(有的说个位上是3、6、9的数是3的倍数,有的同学举出反例加以否定)

  (2)整理认识。只观察个位上的数不能确定它是不是3的倍数,那么3的倍数到底有什么特征呢?

  2、观察探索:出示第10页表格。

  (1)圈一圈。上表中哪些是3的倍数,把它们圈起来。

  (2)议一议。观察3的倍数,你有什么发现?把你的发现与同桌交流一下。(学生交流)

  (3)全班交流。横着看圈起的前10个数,个位上的数字有什么规律?十位上的数字呢?判断一个数是不是3的倍数,只看个位行吗?

  (4)问题启发:

  大家再仔细看一看,3的倍数在表中排列有什么规律?

  从上往下看,每条斜线上的'数有什么规律?(个位数字依次减1,十位数字依次加1)

  个位数字减1,十位数字加1组成的数与原来的数有什么相同的地方?(和相等)

  每条斜线的数,各位上数字之和分别是多少,它们有什么共同特征?(各位上数字之和都是3的倍数。)

  3、归纳概括:现在你能自己的话概括3的倍数有什么特征吗?

  3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  4、验证结论

  大家真了不起!自主探索发现了3的倍数的特征。但如果是三位数或更大的数,你们的发现还成立吗?请大家写几个更大的数试试看。

  (1)尝试验证。(生写数,然后判断、交流、得出结论。)

  (2)集体交流。

  教师说一个数。如342,学生先用特征判断,再用计算器检验。

  一个更大的数。4870599,学生先用特征判断,再用计算器检验。

  5、巩固提高。下面用数字卡片摆出的数中哪些是3的倍数?在每个数后增加一张卡片,使新的三位数成为3的倍数。

  三、梯度练习,内化新知

  我们已经理解了3的倍数的特征,下面请运用特征来检验我们的实践能力吧!

  1、圈出3的倍数。

  92 75 36 206 65 3051 779 99999

  111 49 165 5988 655 131 2222 7203

  2、在下面各数的□里填上一个数字,使这个数是3的倍数,各有几种填法?

  □7、4□2、□44、65□、12□1

  3、用数字1、3、5、能组成几个三位数?哪些三位数是3的倍数?你有什么发现?

  4、将下面这些数进行分类。

  548、15、2707、820、118、452、507、210、462、450

  2的倍数:()3的倍数:()

  5的倍数:()同时是2和5的倍数:()

  同时是2和3的倍数:()

  同时是2、3、5的倍数:

  5、从下面四张数字卡片中取出三张,按要求组成三位数。

  奇数_________偶数__________

  2的倍数______ 5的倍数______

  3的倍数______既是2的倍数,又是3的倍数数___

  6、现在有学生22人,每3个人分成一组,至少再来几个人才能正好分完?

  7、(1)既是2和5的倍数,又是3的倍数的最小两位数是()。

  (2)既是2的倍数,又是3的倍数的最小三位数是(),最大三位数是()。

  四、梳理归纳,回顾总结

  1、这节课你有什么收获?

  知道了3的倍数的特征,一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  2、通过什么方法获得了这些知识?

  我们运用了数学上很重要的研究方法“猜想、探索、归纳、验证”研究3的倍数的特征。

  五、知识应用,课外延伸

  生活中有很多的数是3的倍数,找一找。

  课下大家运用“猜想、探索、归纳、验证”的方法,继续研究9的倍数有什么特征?

《3的倍数的特征》教案2

  【教学设计】

  一、活动激趣,引发思考

  活动:我是小小“设计师”。

  1.用5、6、7,设计一个三位数。

  (1)使这个三位数一定是2的倍数。

  (2)使这个三位数一定是5的倍数。

  【设计意图:抓住学生刚学完2、5的倍数特征这个契机,让学生用5、6、7组数,这样既复习了前两节课所学的知识,也与后续要学习的3的倍数特征相互呼应。】

  2.设计一个三位数,使它一定是3的倍数。看谁的设计有创意?

  预设:学生除了用计算的方法外,还可能会出现以下两种情况(如果不出现,教师可以将其作为自己的设计来展示,并让学生猜猜老师是怎么想的):

  (1)利用各位上都是3的倍数来设计数。(2)利用数字和是3的倍数来设计数。首先让学生说说自己的想法,第一种方法结合竖式很容易想明白,而第二种方法需要实际验证。接着引导学生发现:3的倍数并不一定各个数位都是3的倍数。最后围绕第二种关于利用数字和来设计3的倍数的情况,开始追根溯源,使学生明理。

  【设计意图:一般教学3的倍数特征时,教师都会让学生进行猜想。如此,孩子们很容易受刚学过的2、5的倍数特征的影响进行负迁移。而这种第一印象的错误烙印,往往不会收到我们想要的“吃一堑、长一智”的效果。再者,这个猜想已经在课前调研的时候做过了,如果这里再重复出现,会让学生感觉老生常谈、枯燥乏味。第三,班里已有一半多的孩子知道了3的倍数特征,这个特征已不再是秘密了,此时也就没有什么猜想的必要了。这时,还不如选择用事实来说话,而且会应用比仅仅知道结论重要得多。】

  二、借助直观,探究明理

  1.出示百数表:观察圈出的3的倍数的分布情况,感受与2、5的倍数特征的差异。

  2.观察下面这些数,你发现了什么?变中有没有不变的?(每一斜行的数的数字和都不变,而且都是3的倍数。

  3.分组检验:出示不是3的倍数的数,观察数字和是否一定不是3的倍数。

  4. 100以内3的倍数的数字和有规律,那么100以上的3的倍数是否依然有这样的规律?引导学生发现:逐一研究太麻烦,数也举不尽,可以借用研究2、5的倍数时所用的`小方格来研究。

  5.揭示“数字和”的秘密。

  (1)选取三个数:“12、48、123”,引导学生利用小方格探究明理。

  ①出示“12”,初步明理,让学生说说想法或自己的发现。

  ②围绕“48”,深入明理,有层次地展示各种方法,引导学生对这些方法进行筛选优化、分析归纳。学生在实际操作中可能会用弃3法弃尽,也可能不弃尽,但最终都会把剩余的个数加起来除以3,也就是直至弃到不能弃为止。

  ③对于“123”,可先让学生闭眼想象各位所余,然后再实际验证。

  (2)引导学生逐步发现。

  ①在方格图上不一定要3个3个地圈,十位上可以9个一圈,百位上可以99个一圈……

  ②可以把每位剩余的方格合起来再弃3,直到不能弃为止,看最后余下几个。

  ③各位数字恰好是各位上弃9、弃99后所余下的格数(如下图),数字和也就是此时余下小方块的总和,之所以把数字和去除以3,就是要看看余下的这些小方格再3个3个地分,最终是否会有余。

  6.小结3的倍数特征。

  【设计意图:揭示3的倍数特征是看数字和并不难,难的是数字和的真正含义,本节课的重点和难点也正在于此。】

  三、实际应用,拓展提高

  1.观察刚上课时,用5、6、7所组的2的倍数:576、756,以及5的倍数:765。这几个数是3的倍数吗?引导学生发现:如果一个数是3的倍数,那么交换各位数字的顺序,所组成的数依然是3的倍数,因为数字和不变(5+6+7=18)。

  同时也让学生感知到连续的数字组成的三位数一定是3的倍数,因为5+6+7=18,即6×3=18。

  2. 369为什么一定是3的倍数,能否联系小方格来说明?

  四、全课总结

  为了检验这次教学效果,我对学生进行了后测:

  (1)圈出下列各数中3的倍数:53、69、72、95、108、264。

  (2) 417是3的倍数吗?你能说明其中的道理吗?从中可见,学生不仅能应用3的倍数特征进行判断,而且能借助小方格说明道理,真正明白了数字和的含义。

《3的倍数的特征》教案3

  设计说明

  1.让学生产生探究的兴趣。

  兴趣是学好数学的动力源泉。为了使学生产生探究的意识,激发学习兴趣,形成最佳的学习心理状态,我充分利用小学生好奇心强这一心理特点,创设了“猜一猜”的游戏情境:让学生出题,随意说一个数,老师迅速地说出该数是不是3的倍数,以此来调动学生学习的积极性。

  2.让学生发现学习的方法。

  本设计在教学3的倍数时,先让学生运用已经学过的2和5的倍数的特征的知识进行知识迁移,对3的倍数的特征进行初步的猜想。再由猜想与验证的不一致,激起学生探究新知识的兴趣。接着根据学生提出的探究3的倍数的特征的方法,让学生以小组合作的形式,探究3的倍数的特征。通过这样一个过程,培养学生的推理能力,充分体现学生的主体地位。

  课前准备

  教师准备 PPT课件 计数器 记录表

  学生准备 百数表 计数器教学过程

  教学过程

  创设情境

  师:用5,6,7组成一个没有重复数字的三位数,使这个数是2的倍数。说说什么样的数是2的倍数。

  师:能组成既是2的倍数又是5的倍数的数吗?为什么?

  师:同学们,我们已经知道要判断一个数是不是2或5的倍数,只需观察这个数的个位即可。那么你们能通过观察发现3的倍数的特征吗?今天我们就一起来探究3的倍数的特征。(板书课题:3的倍数的特征)

  设计意图:创设问题情境,既可以巩固已学知识,又可以引导学生积极主动地投入到3的倍数的特征的教学过程中来,有利于学生轻松、愉快地学习新知。

  探究新知

  1.提问:我们已经知道判断一个数是不是2或5的倍数,只要看这个数的个位即可,那么你们能猜出什么样的.数是3的倍数吗?

  (学生可能会说个位上是3,6,9的数是3的倍数)

  师:大家同意他的猜想吗?他的猜想到底对不对呢?我们一起来探究一下。

  课件出示百数表。

  师:在百数表中找出3的倍数。用自己喜欢的方法圈一圈。

  师:请同学们观察一下,3的倍数个位上是哪些数?刚才那位同学的猜想正确吗?要判断一个数是不是3的倍数,能不能只看个位?

  2.观察百数表中圈出的3的倍数,你们发现了什么?

  (1)引导学生先横着看,再竖着看,学生找不到3的倍数的特征。

  (2)引导学生斜着看,先看第一斜行的3,12,21。

  学生分组讨论这3个数有什么特征。

  汇报交流:第一斜行3的倍数各位上的数相加,和是3。

  (3)第二斜行是否也有这一特征呢?第三斜行呢?第四斜行呢?

  设计意图:先让学生从第一斜行开始思考3的倍数的特征,能使教学难点化整为零,易于逐个突破。

  3.操作验证。

  (1)在计数器上分别拨出几个3的倍数:12,42,45,75,87,看看各用了几颗珠子。

  学生以小组为单位,用计数器拨出3的倍数,并填写记录表。

  总结:一个数各位上的数的和是3的倍数,这个数就是3的倍数。 (2)思考:观察这些3的倍数,它们十位与个位上的数的和与3有着怎样的关系?学生分组讨论后得出结论。

《3的倍数的特征》教案4

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)五年级下册第10页的例2。例2是探究3的倍数特征,教材仍然采用百数表,让学生先圈数,再观察、思考。

  (二)核心能力

  在探究3的倍数特征的过程中,学会从不同角度去观察和思考,进一步积累观察、猜想、验证、归纳的思维活动经验。

  (三)学习目标

  1.借助百数表,经历探究3的倍数特征的过程,理解3的倍数的特征,能正确判断一个数是不是3的倍数,并解决生活中的实际问题。

  2.在探究3的倍数特征的过程中,学会从不同角度去观察和思考,发展合情推理的能力,积累数学思维活动经验。

  (四)学习重点

  探索3的倍数的特征。

  (五)学习难点

  归纳举证3的倍数的特征

  (六)配套资源

  百数表、计算器

  二、教学设计

  (一)课前设计

  (1)回忆我们研究过的2、5倍数的特征是什么?并能给同学们解释是怎样探究出来的。

  (2)自制一张百数表。

  (二)课堂设计

  1.复习引入

  师:谁来给大家介绍一下,2、5的倍数特征是什么?我们是怎样研究出来的?

  学生自由发言,重点引导学生回忆知识形成的过程。

  小结:我们是利用百数表,先找数,然后观察、猜想,最后进行验证和归纳,得出了2、5倍数的特征。

  师:这节课我们来研究“3的倍数的特征”。(板书课题)

  【设计意图:通过复习2、5倍数的特征及探求的`方法,唤醒学生的记忆,为探求3的倍数的特征做铺垫。】

  2.问题探究

  (1)找3的倍数

  师:研究“3的倍数的特征”,你们准备怎样研究?

  生自由发言。

  师:你们准备借助百数表,利用研究2、5倍数特征的方法来研究3的倍数的特征,现在拿出你准备的百数表。同桌合作先找出3的倍数,然后观察圈出的数,看看有什么发现?

  (2)全班交流、讨论

  ①发现问题

  学生展示圈好的百数表。

  师:说说你们的发现?

  预设:只看个位不行。

  师:为什么不行?

  横着看:个位上的数0-9都有,竖着看:个位上的数也是0-9都有。

  ②分析问题

  师:同学们发现,在百数表中(课件出示),横着、竖着观察3的倍数,只看个位上的数,没有规律可循。横着、竖着看,看不出规律,换个角度思考,我们还可以怎样看?只看个位不行,我们还可以看什么?

  学生自由发言,引导学生斜着看。

  师:大家认为除了横着、竖着看,我们还可以斜着看,现在请你斜着观察3的倍数,你又有什么新发现?

  生独立观察、发现。

  【设计意图:因为3的倍数的特征比较隐蔽,根据探究2、5倍数的特征的经验,学生发现不了规律。在学生实在没人看出规律时,教师再提示学生可以换一个角度去观察、去思考,接着重新去探索。】

  ③解决问题

  师:把你的发现和根据发现引发的猜想,在小组内交流一下,并想办法来验证你们的猜想。(可以用计算器)

  小组合作交流后全班汇报。

  (3)归纳3的倍数的特征

  师:你们的发现和猜想是什么?

  小组汇报,引导学生评价补充。

  引导小结:斜着观察发现,每一行数的个位与十位的和分别是3、6、9、12、15,它们都是3的倍数,各个数位上的和是3的倍数,这个数也是3的倍数。

  师:这个猜想对不对呢?你们是怎么验证这个猜想呢?

  生汇报验证的过程。

  师:举什么样的例子既简单又有代表性?

  举的例子包含有两位数、三位数、四位数……,多举几个

  师:有没有同学发现反例的,各个数位上的和是3的倍数,但是这个数却不是3的倍数。

  师:通过验证,你们得出的3的倍数特征是什么,谁再来说一说?

  归纳小结:一个数各个数位上的和是3的倍数,这个数就是3的倍数。

  【设计意图:经过引导,学生进行二次探索,发现、猜想、验证并归纳出3的倍数的特征,积累数学探究的活动经验。】

  3.巩固练习

  (1)课本第11页“练习二的第3题”

  圈出3的倍数。

  92 75 36 206 65 3051 779 99999

  111 49 165 5988 655 131 2222 7203

  (2)课本第10页“做一做”

  (3)小明拿了5个圆片,小军拿个6个圆片,用他们拿的圆片在数位表上摆数,谁拿的圆片摆出的数一定是3的倍数?谁拿的圆片摆出的数一定不是3的倍数?

  请说明理由。

  先独立完成,然后同桌合作操作验证。

  4.全课总结

  师:通过这节课的探究,我们获得了什么新知识?采用了什么样的研究方法?

  在探究的过程中我们遇到了什么新问题?

  小结:通过找数、观察、猜想、验证、归纳的研究方法,得出了3的倍数的特征。

  师:为什么判断一个数是不是2或5的倍数,只要看个位数?而判断一个数是不是3的倍数,要看各位上数的和呢?请大家课下阅读第13页的“你知道吗”我们下节课进行交流。

《3的倍数的特征》教案5

  学习目标:

  使学生通过观察、猜想、比较、验证等一系列数学活动,自主探索并掌握3的倍数的特征。

  2. 使学生在具体的探索活动中,培养自主探索的意识,发展初步的推理能力。

  3. 使学生在参与学习活动的过程中,体验成功的喜悦,增强学习数学的兴趣。

  4.让学生感受生活中蕴藏着丰富的数学知识。

  教学重点、难点:

  1、重点:知道3的倍数的特征,能判断一个数是不是3的倍数。

  2、难点:让学生通过操作实验自主发现3的倍数的特征。教学准备:小棒、计算器、数位表

  教学过程:

  一、知识链接前面同学们已学习了2和5的倍数的特征,下面老师就来检查一下你们能用3、4、5这三个数字来组成是2的倍数的三位数吗?(学生根据教师要求组数,教师板书出学生组数的情况:354、534。)

  师:同学们你们为什么这样组数呢?同样用这三个数字,你们能组成是5的倍数吗?(教师根据学生组数的情况板书出:345、435。)你们是怎样想的呢?(设计意图:这样采用组数的方法,既复习了2和5的倍数的数的特征,又可为下面学习新的内容打下一定的基础,同时又激发了学生学习的兴趣。)

  二、新知学习

  (一)设疑引入如果仍用这三个数字,你们能否组成是3的倍数的数吗?

  请同学们试一试。(教师根据学生组数的情况板书出:543、453。 )这两个数是3的倍数吗?(学生通过试除验证,得出这两个数都是3的倍数。)从这两个是3的倍数的数来看,你想到了什么?能被3整除的数 有什么特征?(设计意图:学生已经掌握了2的倍数和5的倍数的数的特征,在研究3的倍数的数的特征时,会很自然地想到“看个位上的数”。这里正是把学生的已有知识经验作为教学资源,巧妙地通过对比引起学生的思维冲突,促使学生自觉克服思维定势的负面影响,激发学生强烈的探究欲望。)

  (二)制造认知矛盾刚才同学们是从个位上去寻找3的倍数的“特征”的,那么个位上是3的数,它就一定是3的倍数吗?(我紧接着举出13、23、46、126、49等数让学生试除判断,从而由此引导学生推翻假设。)同学们,注意观察一下这几个数个位上的数字,个位的数字都是3的倍数,但它们的结果有的是3的倍数,但有的数却不是3的倍数,那么我们能从个位上找出是3的倍数的数的特征吗?

  (三)设问激趣我们再看看刚才的那3个数字,你们还能利用3、4、5这三个数字,组成一个三位数, 然后再看看它是不是3的倍数,好吗?(学生再通过3、4、5这三个数字任意组成一个三位数,通过试除发现:所组成的三位数都是3的倍数。)通过刚才的发现,那么3的倍数的特征有没有规律可循呢?

  下面我们就一起来学习“3的倍数的特征。”(板书课题)(设计意图:通过设置这样一个教学小“陷阱”,引导学生提出3的倍数的特征的假设,然后推翻假设,引发认知矛盾,并再次创设问题情境让学生进行探究,这样的设计不仅有效地避免了“2和5的倍数的特征”思维定势的影响,而且进一步地激发了学生的求知欲望。)

  (四)操作中发现规律下面我们来做几个小活动,要求同桌之间互相合作完成。1. 活动一:每个同学手中都有一些小棒和一张数位表,先请同学们拿出其中的3根小棒,在数位表上摆出一个两位数或三位数,然后再用计算器进行验证(例如:用3根小棒摆出两位数:个位摆1根,十位摆2根,组成21……)请把摆出的数填在下面的表中:

  小棒的根数 摆出的数 3的倍数 不是3的倍数

  学生完成操作并填写表格。问:你摆了哪些数啊?(根据学生回答,填表)这些数都是3的倍数吗?(请在表里画“√”)追问:用3根小棒能摆出一个不是3的倍数的数来吗?(通过这样的设问,充分调动学生的求知欲望)

  1.如果有学生认为能摆出一个不是3的倍的数来,就请他自己在下面摆一摆,然后一起验证,再下结论。

  2. 活动二:再请同学们拿出5根小棒,按刚才的方法在数位表上摆出几个两位数或三位数,看摆出的数是不是3的倍数。(学生合作操作并填写表格。)问:用5根小棒摆出的.数是3的倍数吗?追问:用5根小棒能摆出一个是3的倍数吗?(学生验证后回答)(设计意图:用实验操作的方法来教学3的倍数的特征,改变了以往先列举几组3的倍数和不是3的倍数的数字,然后引导学生归纳特征的教法。这样做,不但提高了数学知识本身的趣味性,而且让学生更好地经历了探究3的倍数的特征的过程。先让学生用3根小棒摆出3的倍数,学生非常投入地去摆数,结果成功了。再用5根小棒去摆,可就是摆不出3的倍数来,从而产生了很大的困惑。学生的困惑越大,继续研究的欲望就越强,从而为探索出结论打下坚实的基础。)

  3. 活动三:请同学们自己选择小棒的根数摆一摆,再按照刚才的摆法把结果填在表格里,并和小组里的同学说一说,从摆小棒的活动中,你发现了什么?(学生合作完成活动,并在小组里交流。)问:你选择的是用几根小棒摆的啊?结果怎样呢?你发现了什么?(如果小棒的根数是3的倍数,摆出的数就一定是3的倍数;如果小棒的根数不是3的倍数,摆出的数就不是3的倍数……)

  4. 活动小结:通过刚才的活动,我们发现3的倍数的一些特点,谁能归纳一下是3的倍数的数有什么特征吗?得出结论:一个数各位上数的和是3的倍数,这个数就是3的倍数(设计意图:通过学生任意选取小棒数量来进行实验和全班学生的汇报,让学生自主地操作、观察、比较、交流,进一步丰富前两次活动得出的结论,促使学生主动地发现规律,从而更好的获得相应的知识。)

  5.看书质疑(通过活动总结了结论,再让学生看书,来发现问题,从而加深了学生对新知的认识。)

  三、达标检测:

  通过实验,我们现在已经知道3的倍数的特征,你能运用这一规律来解决一些简单问题吗?

  1、完成课本第51页的做一做的第4题。(简单说说理由)

  2、说一说。(同桌间合作,一问一答,1人随便说一个数让另1人猜该数是否是3的倍数。要求所说的数尽量别超过4位,然后调换角色。)

  3、在下面每个数的□里填上一个数字,使这个数是3的倍数。 它们各有几种不同的填法?  □7 4□5 □44 65□引导学生掌握科学的填数方法:

  (1)先看已知数位上的数字的和是多少;

  (2)如果已知数位上的数字和 是3的倍数,那么未知数位的□里最小填“0”,要填的其它数字可依次加上3;如果已知数位上的数字和不是3 的倍数,那么未知数位的方格里可先填一个最小的数,使它能与已知数位上的数字的和凑成是3的倍数,要填的其它数字可在此基础上依次加上3.4、玩学号小游戏(上课前已分工好,按顺序一个号码代表一个学生,即“学号”)同学们刚才的题目完成得很精彩,最后我们再来玩一个小游戏。

  同学们都知道自己的学号是多少吧?那我们就来玩一个关于学号的游戏。请听:如果你的学号是2的倍数请你站起来;如果你的学号是5的倍数请你站起来;如果你的学号是3的倍数也请你站起来。刚才老师发现有些同学好象站起来2(3)次哦?你为什么要站起来2(3)次呢?请你用一句话说明理由。(重点突出30号、60号)学生回答后,师生共同小结,得出新的结论。(设计意图:通过各种趣味性强的练习,既让学生内化了“3的倍数的特征”,又让学生能从游戏中轻松的获得知识,而且内容一层层深入,让学生体会到知识的延伸性。另外还让学生感受到数学的奇妙和乐趣。)

  四、学习小结

  通过这节课,说一说你有什么收获啊?你印象最深的是什么?你对自己在课堂上的表现满意吗?

《3的倍数的特征》教案6

  教学目标:

  1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自身的语言总结特征。

  2、在探索活动中,感受数学的微妙;在运用规律中,体验数学的价值。

  教学重、难点:是3的倍数的数的特征。

  教学过程:

  一、提出课题,寻找3的特征。

  师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜想一下?

  生1:个位上是3、6、9的数是3的倍数。

  生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。

  生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。

  师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们一起来研究。(揭示课题)

  师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学人手一张。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的百以内的数表。)(如下图)

  二、自主探索,总结3的特征师:

  先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学利用p18的表。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的百以内的数表。)(如下图)

  师:请观察这个表格,你发现3的`倍数什么特征呢?把你的发现与同桌交流一下。

  同学同桌交流后,再组织全班交流。

  生1:我发现10以内的数只有3、6、9是3的倍数。

  生2:我发现不论横的看或竖的看,3的倍数都是隔两个数出现一次。

  生3:我全部看了一下,刚才前面这位同学的猜测是不对的,3的倍数个位上0~9这十个数字都有可能。

  师:个位上的数字没有什么规律,那么十位上的数有规律吗?

  生:也没有规律,1~9这些数字都出现了。

  师:其他同学还有什么发现吗?

  生:我发现3的倍数按一条一条斜线排列很有规律。

  师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?

  生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。

  师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?

  生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。

  师:这是一个重大发现,其他斜线呢?

  生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。

  生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。

  生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。

  师:现在谁能归纳一下3的倍数有什么特征呢?

  生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。

  师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?

  生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

  师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,假如是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。

  同学先自身写数并验证,然后小组交流,得出了同样的结论。

  全班齐读书上的结论。

  三、巩固练习:

  完成p19做一做

  四、课堂小结:

  这节课你有什么收获

《3的倍数的特征》教案7

  教学目标

  1、经历探索3的倍数特征的过程,理解其特征,能判断一个数是不是3的倍数。

  2、能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展分析、比较、猜测、验证的能力。

  3、通过归纳、类比猜测等学习数学的活动,体验数学问题的探索性和挑战性,感受数学结论的确定性。

  教学重点

  理解3的倍数的特征

  教学难点

  探索活动中,发现规律,并归纳出3的倍数的特征。

  教学过程

  一、谈话引入,提示课题

  我们已经研究了2,5的倍数的特征,那么3的倍数又会有什么特征呢?(板书课题)

  二、探索交流、获取新知

  1、出示1~100数字表格

  2、找出3的倍数,并做出记号

  3、观察3的倍数,你发现了什么?(生认为没有什么规律,师再引导观察)

  ⑴任意选择几个3的倍数。如42、87、93。

  ⑵板书在黑板上

  ⑶交换个位和十位上的数字,得到24、78、39。

  ⑷判断这三个数是不是3的'倍数

  ⑸想一想:交换数位前后的两个数中什么不变?(给足充分的讨论时间)生得到:交换前后两个数字的和不变。

  ⑹引导提问:3的倍数的特征跟一个数各个数位上数字的和有关系,到底有什么关系呢?

  ⑺分析、猜测。生从这几个数字的和,可以看出它们又刚好是3的倍数(6、15、12)

  ⑻验证、归纳

  ① 让生随意再找几个3的倍数,利用同样方法,将每个数的各个数字加起来进行验证。

  ② 发现规律,进行归纳

  ⑼尝试检验:①出示84、92、102、315。②利用规律进行检验。③小结:这个规律对三位数一样成立。

  三、巩固练习

  第7页的试一试和练一练

  四、板书设计:

  3的倍数的特征

  3的倍数的特征:把一个数各个数位上的数字加起来的和正好是3的倍数。

  五、课后反思:

  略

《3的倍数的特征》教案8

  教学内容:

  苏教版义务教育教科书《数学》五年级下册第33~34页例5、“练一练”和“你知道吗”,第36页练习五第8~10题。

  教学目标:

  1.使学生认识和掌握3的倍数的特点,能判断或写出3的倍数,并能说明判断理由。

  2.使学生经历探索和发现3的倍数的特征的过程,培养观察、比较和分析、概括等思维能力,积累数学活动的经验,提高归纳推理的能力,进一步发展数感。

  3.使学生主动参与探索、发现规律的活动,获得探索数学结论的成功感受;体验数学充满规律,体会数学的奇妙,增强学习数学的积极情感。

  教学重点:

  认识3的倍数的特征。

  教学难点:

  研究并发现3的倍数的特征。

  教学准备:

  准备计数器教具和学具。

  教学过程:

  一、激活经验

  1.复习回顾。

  提问:2和5的倍数有哪些特征?

  回顾一下,我们是怎样发现2和5的倍数的特征的.?(板书:找出倍数——观察比较——发现特征)

  2.引入课题。

  谈话:我们上节课通过找2和5的倍数,对找出的倍数进行观察、比较,分别发现了2和5的倍数的特征。今天,我们就按照这样的过程,探索、寻找3的倍数的特征。(板书课题)

  二、学习新知

  1.提出猜想,引导质疑。

  引导:我们知道2的倍数,个位上是0.2.4.6.8;5的倍数,个位上是5或O.那你能猜想一下3的倍数会有什么特征吗?为什么这样想?说说你的想法。(按思维惯性,可能许多学生会猜测个位上是3的倍数)

  许多同学认为,3的倍数可能是个位上是3.6.9的数。(板书:3的倍数,个位上是3、6、9)

  质疑:利用以前的经验学习新内容,是不错的学习方法。今天大家联系2和5的倍数的特征这样猜想,想法是很好的,数学学习经常可以这样类推。那这一次的猜想还对不对呢?大家来看几个数:13是3的倍数吗?26和49呢?(根据回答擦去板书内容后半部分)

  2.利用经验,组织探究。

  (1)找3的倍数。

  (2)探索特征。

  3.学生归纳,强化认识。

  追问:现在你能告诉大家,经过找出倍数、观察比较,我们发现3的倍数有什么特征吗?

  让学生读一读板书的结论。

  强调:同学们通过自己的思考、探索,发现了一个数各个数位上数字的和是3的倍数,这个数就是3的倍数;反之,一个数各个数位上数字的和不是3的倍数,这个数就一定不是3的倍数。

  4.阅读“你知道吗”。

  启发:当你发现3的倍数的特征时,你对数学有什么感觉?

  谈话:是的,数学很神奇、神秘,3的倍数居然和它各个数位上数字的和有这样密切的关系!数学有许多神奇、有趣的规律,只要我们具有一定基础,认真探究,这一条条神奇的秘密和规律就会被发现和应用。下面请大家阅读课本第34页的“你知道吗”,看看会有什么神奇的规律告诉你。

  交流:你知道了什么?什么样的数叫完全数?举例说一说。(结合举例6和28,先板书因数,再板书表示完全数的等式) 现在发现的完全数都有什么特征?

  三、练习巩固

  1.做“练一练”第1题。

  2.做“练一练”第2题。

  3.做练习五第8题。

  4.做练习五第9题。

  5.做练习五第10题。

  四、课堂总结

  提问:今天的学习你又有什么收获和体会?

  判断3的倍数的方法,和判断2、5的倍数不同在哪里?

《3的倍数的特征》教案9

  教学内容:九年义务教育六年制小学数学第八册P76-77。

  教学目标:

  1、让学生通过观察、操作、猜想、验证等活动,认识3的倍数的特征,会判断一个数是不是3的倍数。

  2、让学生在学习过程中学会用分析、比较、归纳或猜想,检验等方法,并培养学生动手实践能力。

  3、在探索3的倍数的特征的过程中,提高学生合作交流的能力,感受数学学习的乐趣,体会数学思维的严谨。

  教学重点:探索3的倍数的特征。

  教学难点:运用3的倍数的特征解决实际问题。

  设计理念:通过活动,让学生经历一个完整的探索过程,从中认识3的倍数的特征并提高学习能力。

  教学步骤

  教师活动过程

  学生活动过程

  一、复习导入

  你能用2、3、5、6、9这些数字中任先三个数字组成是2的倍数的三位数吗?为什么这样组数?

  同样选三个数组成是5的倍数的数。

  如果仍从这些数中任选三个数字,你能不能组成是3的倍数的三位数呢?这些数有什么共同的特征?

  学生回答

  学生练习

  学生讨论回答

  二、新授

  请你拿出百数表,在表中圈出3的所有的`倍数。

  从这些数中你发现了什么?

  在计数器上拨几个3的倍数,并数一数一共用了多少颗珠子?

  所用算珠的总颗数有什么特点?

  总颗数与这个数的各位上的数有什么关系?你能得出3的倍数的特征吗?

  说说你们研究发现了什么?3的倍数有什么特征?

  用你们发现的3的倍数的特征来检验下面的哪些数是3的倍数:

  245432141903651

  三、完善认识

  1、提出试一试中的问题:

  2、全班交流,明确认识。

  1、如果一个数不是3的倍数,这个数各位上数的和会是3的倍数吗?

  要求:分别找几个这样的数算一算,并将研究结果在小组里交流一下。

  2、如果一个数不是3的倍数,这个数各位上数的和不会是3的倍数。进一步要求:把例题中发现的结论和试一试中结论结合起来说一说。

  四、判断练习

  1、做想想做做第1题

  2、做想想做做第2题

  3、做想想做做第3题

  4、做想想做做第4题

  5、做想想做做第5题

  要求学生独立作出判断,并把题中3的倍数圈起来。

  交流:题中哪些数是3的倍数,你是怎样判断的?

  明确方法:判断一个数是不是3的倍数,可以先把这个数各位上数相加,看得到的和是不是3的倍数。

  启发:这几道除法算式有什么共同特点?如果一个数除以3没有余数,说明这个数与3存在什么关系?反过来,如果一个数是3的倍数,那么这个数除以3的结果会有余数吗?你打算怎样进行判断?

  让学生独立填写,再在小组里交流,你能找到几种不同的填法。

  学生按要求操作,指名问答:9的倍数都是3的倍数吗?

  各自组数,并把组成的数记录下来。指名报答案,全班学生评议。

  提问:你今年几岁?再过几年你的岁数是3的倍数?你是怎样想的?

  五、全课小结:

  3的倍数有什么特征?

  判断一个数是不是3的倍数时,你会怎样想?有哪些经验告诉全班同学?

  学生回答

  六、作业设计

  练习与测试

  教后反思:

《3的倍数的特征》教案10

  恩格斯说过:“思维是人类文化历史长河中一朵美丽的浪花。”课堂教学中,有效地引导学生思维,不仅可以启迪智慧,也能激发或抚慰人的情怀,使人赏心悦目、动人心弦,给人以美的享受。3的倍数特征这节课教学中,我让学生在猜想——讨论——验证的过程中感受到数学是形象的、有趣味的和美丽的。在学习过程中,师生共同探讨,开阔学生思维,感受教学的乐趣。

  教学片断一

  一、在知识链接中,激活思维

  师:我们学习了2、5的倍数的特征,谁来说说?

  生1:个位上是0、2、4、6、8的数都是2的倍数。

  生2:个位上是0或5的数都是5的倍数。

  师:那怎样判断一个数既是2的倍数、又是5的倍数呢?

  生3:看这个数的个位是不是0。

  师:请一、二组的同学根据自己的学号说说是不是2、5的倍数。

  生1:我的学号是1,既不是2的倍数,也不是5的倍数。

  生2:我的学号是2,是2的`倍数。

  教学片断二

  二、在新知探究中,发展思维

  师:看来我们已经掌握了2、5的倍数的特征,今天我们来学习3的倍数的特征,(板书)3的倍数的特征怎样呢?是不是和2、5的倍数的特征一样,只要看“个位”呢?请同学们一起来讨论这个问题。

  生1:我认为看个位可以。如:33、36、39它们的个位分别是3、6、9这些数都是3的倍数。

  生2:我认为不能只看个位。如:23、16、29它们的个位虽然也是3、6、9,但这些数不是3的倍数。

  生3:但也有的数它们不是3、6、9,如:24、45,可是这些数都是3的倍数。

  师:那么3的倍数有什么特征呢?你们可以以45为例,在它的前后面添上一个数、两个数、三个数……,老师能很快判断能否是3的倍数。

  生1:前面添上2。 (×)

  生2:后面添上24。 (√)

  生3:前面添上3,后面添上53。 (×)

  师:请们用计算器验证一下,看看老师判断对不对?

  (学生验证后,产生疑惑)

  师:老师判断对不对呀?

  生:(齐答)对。

  师:其实老师也不是圣人,不过知道其中的奥妙,先掌握其中的规律罢了,你们想知道吗?

  生:(异口同声说)想。

《3的倍数的特征》教案11

  教学目标:

  1、使学生经历探索3的倍数的特征的过程,知道3的倍数的特征,能正确判断一个数是否是3的倍数。

  2、使学生在探索3的倍数的特征的过程中,进一步培养观察、比较、分析、归纳以及数学表达的能力,感受数学思维的严谨性及数学结论的确定性,激发学生学习兴趣。

  教学重点:使学生掌握3的倍数的特征,会判断一个数是否是3的倍数。

  教学难点:探索3的倍数的特征。

  教学准备:有学号的卡片,学生准备小棒若干。

  教学过程:

  课前:

  一、复习引入

  对口令复习2、3、5的乘法口诀,由屏幕中的小游戏引入。

  二、操作探索,验证猜想

  1、合作发现

  百数表是咱们认识数的好帮手,找规律的好帮手。每个人手里都有一张百数表,请你在上面圈出出3的倍数。和小组内的同学商量一下3的倍数有什么特征。

  自主探究,小组合作,师巡视,帮助找3的倍数有困难的学生。

  小组代表合作,全班交流

  生1:我发现10以内的数只有3、6、9是3的倍数。

  生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。

  生3:3的倍数个位上0~9这十个数字都有可能。

  师:其他同学还有什么发现吗?

  生:我发现3的倍数按一条一条斜线排列很有规律。

  师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?

  生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。

  师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?

  生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。

  师:这是一个重大发现,其他斜线呢?

  生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。

  生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。

  生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。

  师:现在谁能归纳一下3的倍数有什么特征呢?

  生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。

  师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?

  生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

  让我们在组数的过程中再深入研究一下3的倍数的特征。

  课件出示四组卡片和活动要求。

  学生合作探索,教师巡视参与。

  师:谁来代表你们小组汇报研究的情况?

  课件出示各组数字之和。

  师:请同学们观察各位上的数字和,你有什么发现吗?到底什么样的数才是3的倍数?你能大胆地进行猜想吗?

  生:我的猜想是一个数的数字和是3的`倍数的数,这个数就是3的倍数。(板书:各个数位上数字之和是3的倍数,这个数就是3的倍数)

  2、举例验证

  师:咱们发现的这个规律是不是具有广泛性,如果是更大的数是不是符合这个特征呢?谁能任举一例子并说明具体的验证方法?

  生:如4572这个数。我先把4572各位上的数字加起来,看数字之和是不是3的倍数,再看这个数是不是3的倍数。

  师生共同讨论验证,并引导学生体会验证方法。(略)

  学生在小组内举例验证。

  汇报验证结果,形成共识,得出结论,总结出规律。

  三、课堂巩固练习

  3的倍数的特征你掌握了吗?我们做一下练习题。过五关斩六将,看谁是英雄好汉。闯关即将开始,你准备好了吗?

  第一关:下面哪些数是3的倍数?

  42 134 78 268

  第二关:在下面每个数的□里填上一个数字,使这个数是3的倍数。

  ① 3□ ② 2□6 ③ 2□ 5 ④ 47□

  学生在4□的□中填出0、3、6、9后,师:请你们观察填的3个数字,能发现其中的规律吗?

  生:它们依次相差3。

  第②、③④题的过程同上。

  生:因为0不能做一个数的最高位。

  四、拓展:生活中的数学

  课件出示小游戏

  五、课堂小结

  咱们今天学的是什么内容?谁来具体地说说3的倍数的数有什么特征?

  六、板书设计

  3的倍数的特征

  3的倍数的特征:各个数位上数字之和是3的倍数

《3的倍数的特征》教案12

  课题3的倍数的特征

  课时 一课时

  一、教材内容分析

  《3的倍数的特征》是人教版小学数学五年级下册第19页的内容,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。

  先教学2、5的倍数的特征,再教学3的倍数的特征。因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,学生理解起来有一定的困难。

  二、教学目标(知识与技能、过程与方法、情感态度与价值观)

  1、通过观察、猜测、验证等活动,让学生经历探索3的倍数的特征的过程理解3的倍数特征,能判断一个数是不是3的倍数。

  2、 使学生在学习过程中积累数学活动的经验,培养学生观察、分析、动手操作及概括问题的能力,发展学生的抽象思维和培养相互间的交流、合作与竞争意识,提高学生的合情推理能力。

  3、通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。

  教学重点:使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。

  教学难点:3的倍数的数的特征的归纳过程。

  三、学习者特征分析

  学生在学习本课之前,已经学习了2和5的倍数的特征,养成善于动脑思考、讨论、交流与研究,积极进行小组合作的习惯。可以说,学生有了一定的自学与研究的能力。

  学生容易从末尾数字进行判断这个数是否是3的倍数。所以,在教学本课时,让学生通过观察、思考、分析、归纳等活动,让他们真正理解、掌握、判断3的倍数的方法。

  四、教学策略选择与设计

  根据对教材的理解,从学生的自主学习出发,我从三个方面考虑教法和学法:

  1、创设情景,激趣导入。

  2、尊重学生,相信学生,让学生通过、观察、猜测、验证,动手操作、自主探究、合作交流,使学生成为学习的主人,使课堂变为学堂。

  3、采用让学生自主发现的学习方法。

  学习指学习方法,3的倍数的特征,有规律可循,容易上成机械刻板,枯燥无味的课,学生能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计旨在扬弃“满堂灌”的教学,取而代之以启发与发现相结合的教学方法,点拨学生大胆猜想,动手实践,去发现规律,使全体学生积极参与,积极思考,激发学生学习的积极性。

  六、教学过程

  教学过程

  一、猜想,激发兴趣

  二、探究,验证猜想

  三、练习,巩固结论

  1、提问:你能用5,6,7三个数字组成一个三位数,使这个数是2的倍数?说说什么样的数一定是2的倍数?可以摆成5的倍数吗?说说怎样摆?什么样的数是5的倍数?

  2、 谈话:我们已经知道看一个数是不是2或5的倍数,只要看这个数的个位,你能猜猜什么样的数是3的倍数?

  3、提问:同意他的猜想吗?他猜的到底对不对呢?我们一起来研究一下。

  四、总结,拓展延伸

  1、课件出示百数表

  (1)提问:请同学们观察一下,3的倍数个位上是哪些数字?刚才那位同学的猜想正确吗?要判断一个数是不是3的倍数,能不能只看个位?

  (2)究竟什么样的数才是3的倍数呢?这节课我们就来研究3的倍数的特征。(板书课题:3的倍数的特征)

  2、提问: 观察百数表中圈出的3的倍数,你们发现什么?

  (1)引导学生先横着看,竖着看,仍然找不到3的倍数特征。

  (2)引导学生斜着看:第一斜行3,12,21。

  汇报交流:

  ①第一斜行3的倍数交换两个数字的位置后,得到的还是3的倍数。

  ②第一斜行3的倍数各位上数字相加,和是3的倍数。

  (3)第二斜行是否也有这一特征呢?第三斜行呢?第四斜行呢?

  (4)将百数图中的数的顺序打乱,刚才大家发现的还正确吗?

  3、操作验证

  (1)在计数器上分别拨出几个3的'倍数:12、42、45、75、87看看各用了几颗算珠?

  小结:算珠的个数与3的倍数之间的联系。

  (2)观察这些3的倍数,它们十位与个位上数的和跟3有着怎样的关系?

  教师板书:3的倍数,它各位上的和一定是3的倍数。

  4、学生举例验证此规律在100以外的数是否适用。

  5、运用结论,完成试一试。

  五、课外作业:

  课件出示:

  1、下面的数,那些是3的倍数?

  29 45 51 67 284 196 3456 760058947641587

  组织交流:哪些数是3的倍数?你是怎样判断的?

  2、在每个数的口里填上一个数字,使这个数是3的倍数。

  7口 20口 口12 3口5

  提问: 为什么填这个数?你是怎么想的?还可以填哪些数?

  3、从下面选出三张数字卡片,组成一个是3的倍数的三位数。你一共可以组成多少个这样的三位数?

  0 5 6 7

  4、猜猜老师的年龄:老师的年龄既是2的倍数,又是5的倍数,又是3的倍数,老师今年( )岁。

  5、看谁最聪明?

  23663997是3的倍数吗?你是怎样判断的?

  学生交流,汇报。

  快速判断下列数是不是3的倍数?再用计算器验证前三个。

  369639693、13693692、121212127、18275499、9233……3

  总结:

  当一个数的数位上出现3、6、9时,可以先去掉3、6、9,剩下的数的两个数和是3的倍数,再去掉,最后去掉三个数的和是3的倍数。余下的数是3的倍数。那么这个数就是3的倍数,不是则相反。

  板书设计

  33的倍数的特征

  33的倍数,它各位上的和一定是3的倍数。

  课后作业 研究6和9的倍数的特征。

《3的倍数的特征》教案13

  一、学习目标

  知识目标:知道3的倍数的特征,并且能熟练地判断一个数是否是3的倍数,了解3的倍数特征的算理。

  能力目标:通过观察、猜测、验证等活动,让学生经历3的倍数的特征的探究过程,体会简单枚举归纳法,以培养学生观察、分析及概括问题的能力,进一步发展学生的数感,体会探索数的特征的一些方法。

  情感目标:让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。

  二、学习重、难点

  重点:理解和掌握3的倍数的特征,正确判断一个数是否是3的倍数。

  难点:探究并理解3的倍数的特征。

  三、数学思想方法

  简单枚举归纳推理

  四、教具学具准备:

  课件、算理讲解视频、学习记录单

  五、教法设计及学法指导

  1、猜想验证 讨论交流

  2、自主探究 体验感悟

  六、教学程序

一、创设情境,激活经验。

  同学们看大屏幕,课件出示3、6、9 、12 、15 、18 ……

  问题1:刚才这些数都是什么数?(他们有什么共同的特点?和3有什么关系?)

  引导概括:都是3的倍数。

  问题3:25是3的倍数吗?怎么判断的?

  引导学生概括:判断一个数是否为3的倍数,只要看能否被3整除。(用这个除以3,看看有没有余数,没有余数就说明是3的倍数,有余数就不是3的倍数)注意:不要重复学生的话!

  师:用除以3去计算的方法判断,是一个有效的办法!那54326时的倍数吗?用除以3计算会非常麻烦,有没有更快速的方法呢?

  揭题:今天我们就来研究有关3的倍数的知识。板书:3的倍数

  二、猜想验证,探究新知。

  (一)组数游戏

  引导语:组数游戏我们已经学过,今天看看能不能玩出新知识?

  师: 用“1、4、5”组成三位数,谁能组的不重复,不遗漏?

  学生例举:541、145 ……

  师:看来大家没有忘记方法,掌握的`真扎实!咱们接着玩!

  出示小组合作资料,强调要求

  (1)独立尝试组数,教师巡视,引导学生小组内交流并验证是否为3的倍数。

  (二)交流发现规律。

  1.组成的数都是3的倍数的小组先汇报

  教师总结:你们的这组数字,不管3个数字怎么排列,也不管组成的数的大小,都是3的倍数!和他们组一样的有哪个小组?

  2. 组成的数都不是3的倍数的小组接着汇报

  教师追问:这么多组都组成了3的倍数,你们2个组怎么就组不起来呢?每种可能都尝试了吗?是因为你们水平的问题吗?

  师:看来问题不是出在你们身上,问题可能出在这几个数字上。

  3. 探索规律。

  师:这个6组数字随意组都是3的倍数,这个2组数字怎么组都不是3的倍数,这应该不是偶然的,请你观察这几组数字,思考是否存在什么规律?

  (1)引导学生在小组内交流自己的想法。

  (2)反馈交流

  生边汇报,师边出示课件:能组成3的倍数的6组数字的和分别是:3、6、9、12、12、15,都是3的倍数,而不能组成的两组数字的和分别是5和8,都不是3的倍数。

  学生的发现:3个数字的和是3的倍数,组成的数都是3的倍数,3个数字的和不是3的倍数,组成的数都不是3的倍数,师:真是一个有趣的发现?那四位数的时候怎么说?

  师:那五位数,六位数,七位数呢?谁能用简洁的语言说说这个发现?

  4. 提出猜想。

  师生总结:教师出示“各位上数的和”,强调各位和个位的区别!

  小结:一个数,各位上数的和是3的倍数,那么这个数就是3的倍数。

  同桌互说,抽查学生说

  5. 验证猜想。

  问题1:你觉得我们的猜想一定正确吗?如何来验证我们的猜想?

  学生:举例验证

  追问1:怎么样来举例子比较合理?

  提炼总结:例子的类型齐全(2位数、3位数、4位数……更多位数;大的数,小的数);

  追问2:例子举的完吗?那怎么办?

  师:只要我们举不出反例来,就说明我们的猜想是正确的。介绍反例的含义!

  一个数,各位上数的和是3的倍数,那么这个数不是3的倍数。

  (2)独立验证(教师示范写法)

  师:把你想的数写在例子下面的方格里,写完了吗?写完的请坐正。

  (3)反馈交流验证的例子。

  小组展示(师展示生的的学习纸:有不是3的倍数的,有是3的倍数的,有2位数的、3位数的、4位数的)

  师:下面的同学举的例子都符合这个规律吧?

  生:符合

  师:咱现在就可以说这个规律是正确的了,什么规律来?

  生:3的倍数特征是:一个数各个数位上的数字之和是3的倍数,这个数就是3的倍数。(同桌互说)

  小结:今天我们做了一件非常了不起的事,科学发现就是像这样先有猜想,再严谨地验证得到的。

  三、分层练习,内化新知

  2. 分别在方框里填上一个数字,使这个数是3 的倍数。

  5□ 2□4 1□27

  3. 有一个很大的数:33629996646967,请快速地判断是否为3的倍数。对判断的方法你有什么改进的建议吗?

  4.理解规律内在原理

  问题:数学中就是有这么神奇的规律,那你知道其中有什么道理吗?想知道吗?

  师通过课件演示。

  以135为例,小棒图为载体,“135÷3”就是“把135平均分成3份”,一百平均分成3分,余下1根;1个十平均分成3份,余下1根,3个十就会余下3根;个位上还有5根,百位、十位、个位上的数恰好就是各自分完剩下的数,只要把剩下的数加起来,也就是把各个数位上的数加起来,因此只要看各个数位上数字之和是否为3的倍数即可。

  3. 小结。

  数学是讲道理的,看似复杂神奇的规律其实道理并不难,同学们遇到问题还是要多想想“为什么”。

  四、回顾总结,拓展延伸。

  1. 今天你学到了什么?

  2. 你还想探究几的倍数的特征?(想一想今天我们是怎么探究的?赶紧试试吧!)

《3的倍数的特征》教案14

  1、学习目标

  1.经历探索3的倍数的过程,理解3的倍数的特征。

  2.能判断一个数是不是3的倍数。

  3.在探究过程中发展概括和归纳能力。

  2、学情分析

  学生已经学习了2、5的倍数的特征,但3的倍数的特征与2、5的倍数的特征有很大的区别,学生不能仅从一个数的个位加以观察、归纳来得出结论,因此对于孩子们来讲如何探索得出这个特征就较有难度,而对于一些学习能力较弱的孩子,能够正确掌握3的倍数的特征并加以正确运用都会有一定的难度。因此针对学生的这一认知难点,我在设计教学时更加突出学生的自主探索,是学生在找数——观察——讨论——验证——归纳的过程中,概括出3的倍数的特征。

  3、重点难点

  学习重点:经历探索并掌握3的倍数特征的过程。

  学习难点:发现概括出3的倍数特征。

  4、教学过程

  4.1.2教学活动

  活动1【导入】(一)游戏复习、激发兴趣

  游戏复习、设疑导入

  (一)游戏复习、激发兴趣

  同学们,请举起你们的学号给老师看一看,每个人的学号里都隐藏着数学奥秘!(课件)孔子有句话“温故而知新”,根据老师的指令请中奖学号起立,高高举起你的学号,看谁反应快。小组同学判断,准备好了吗?

  (课件2的倍数)第一次中奖学号:是2的倍数起立。采访一下:2的倍数的特征是什么?(课件2的倍数特征:个位是0、2、4、6、8的数)(课件5的倍数)第二次学号中奖:是5的倍数起立。再采访一下:5的倍数的特征是什么?(课件5的倍数特征:个位是0或5的数)

  小结:看来,快速判断一个数是不是2或5的倍数的秘诀是,只要看这个数的个位就行了。(课件圈出个位)

  【设计意图:学生在中奖学号游戏中复习旧知,为新知做好准备。】

  第三次学号中奖:是3的倍数起立。你是怎么知道的?大家来看看这个数是不是3的倍数? 如何快速地判断出是不是3的倍数?3的倍数有什么特征呢?今天我们就来探究3的倍数的.特征。 (板书课题:3的倍数的特征)

  活动2【活动】二、自主探究,感悟规律

  1、请同学们拿出准备好的学具百数表,请在表中找出3的倍数,并圈起来。

  2、学生活动后,教师组织学生进行交流,投影学生圈的百数表,并不断完善。

  3、观察3的倍数,猜想一(横着看):判断一个数是不是3的倍数,只看个位行吗?

  4、仔细观察这个百数表。猜想二(斜着看):判断一个数是不是3的倍数,看这个数各位上数的和行吗?

  把你的发现与同桌交流一下。

  活动3【讲授】学生摸索,教师讲解归纳

  (三)举例验证规律

  师:咱们发现的这个规律只适合100以内的数吗?能推广到更大的数吗?

  小组合作学习二:验证、归纳3的倍数的特征

  举例

  各位上的数的和

  是不是3的倍数

  验证摆出的数

  是不是3的倍数

  两位数:

  48

  4+8=12

  √

  48÷3=16

  √

  37

  3+7=10

  ×

  37÷3 有余数

  ×

  三位数:

  四位数:

  2、小组再次讨论总结。

  3的倍数特征:

  (四)、总结规律

  下面小组的验证是否正确?

  看来,通过我们的发现,进一步验证,归纳出3的倍数的特征是(板书:一个数各位上的数的和是3的倍数,这个数就是3的倍数。)

  【注意】:与2、5的倍数的特征不同,3的倍数的个位上可以是任何数字。

  【设计意图:汇报验证结果形成共识,得出结论。让孩子们验证此规律在100以外的数是否适用,体会“特殊—一般”的研究方法,培养孩子们研究数学的科学性和思维的严谨性。体会发现—验证—归纳的数学思想和方法。】

  活动4【练习】三、闯关比赛:

  闯关比赛:

  3的倍数的特征相信你们已经掌握,闯关开始了,准备好了吗?

  第一关:下面的数哪些是3的倍数,手势判断。

  92 654 7203

  71 164 20xx

  老师质疑:7203为什么是3的倍数?如果打乱一下顺序,这个四位数还是3的倍数?你们有什么发现?(3的倍数与数字的顺序无关。)

  【设计意图:换位探索——引导发现3的倍数与数字的顺序无关。】

  第二关:在横线上填上合适的一个数,组成三位数并且是3的倍数。想想共有几种填法?

  老师质疑:一共几种填法?有什么规律?(只要相差3就可以了)

  【设计意图:通过小组合作学习了解到多角度思考问题,答案不唯一,纠正自己的认识,学生学以致用,有助于培养孩子们的发散思维的能力。】

  活动5【测试】师生闯关

  第三关:师生闯关:

  同学们,老师也想和你们合作一下。请学号1-9的同学上讲台,赵老师没有学号,用0代替。和你们一起组成10位数,看看这么大的数是3的倍数吗?为什么?

  请看,老师取走一个数,(9)这个9位数还是3的倍数吗?

  再看,老师再取走一个数,(6)这个8位数还是3的倍数吗?

  猜猜看,这次取走哪数,(3)这个七位数还是3的倍数?

  你们有什么发现?(划去单个数字是3的倍数,剩下的数还是3的倍数)

  你能快速发现下面这个数是不是3的倍数?想好就起立。98763963

  【设计意图:发散练习:学生体会划去的数字是3的倍数,剩下的数还是3的倍数。】

  第四关:猜猜中奖学号

  到目前为止,我们已经学习了2、3、5的数的倍数特征,看见今天最后一次中奖学号是谁呢?同时是2、3、5的倍数的学号。(30)老师期待下一个中奖学号就是你。

  【设计意图:综合运用所学2、3、5的倍数的特征的知识,让学生深刻体会自己的学号里藏着的数学奥秘】

  活动6【作业】延伸和总结

  四、全课小结:

  1、今天你学会了什么?通过小组合作学习你有什么收获?

  2、我们是通过什么方法得出3的倍数的特征?

  【设计意图:在课结束前适时总结,重在使同学们进一步体会到一些研究的方法,使孩子们掌握一些“学法”。】

  五、作业(课后延伸)

  课后可以运用今天所学的方法去探索研究9的倍数的特征。

  【设计意图:让同学们把这种探究活动延伸到课外,进一步培养了同学们学习数学的兴趣。】

《3的倍数的特征》教案15

  教学目标:

  1、理解3的倍数的特征,掌握一个数是否是3的倍数的判断方法。

  2、培养分析、比较及综合概括能力。

  3、培养合作交流的意识,掌握归纳的方法,获取一定的学习经验。

  教学重点:

  掌握3的倍数的特征,正确判断一个数是否是3的倍数。

  教学难点:

  探索3的倍数的特征。

  教学过程:

  一、创设情景,明确目标(3分钟)

  (一)创设情景,反馈预习

  1、师:课前我们已经完成了导学案自主预习部分,我们已经知道了2、5的倍数特征,下面的数你能判断出下面的数哪些是2的倍数,哪些是5的倍数,哪些即是2的又是5的倍数呢?

  P:16、24、85、102、138、170、

  2 的倍数:16、24、102、138、170

  5的倍数:85、170

  即是2的倍数又是5的倍数:170

  师:说一说,你是怎么想的?

  生1:个位上是02468就是2的倍数。个位是上0或者5的数就是5的倍数。一个数既是2的倍数,又是5的倍数,它的个位上一定是0.

  2、看来要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?

  生:2的倍数的个位数是0、2、4、6、8;5的倍数个位上是0、5。

  师:那么3的倍数有什么特征呢?是不是还看个位数呢?这就是这节课我们要研究的内容。

  3、教师板书课题:3的倍数的特征。

  (二)明确目标,引领方法

  1、出示学习目标(见学案),生自读目标。

  2、同伴说说自己的理解,谈谈如何实现目标。

  设计意图交流预习内容,解决预习中的问题;明确学习目标,带着目标进行合作学习。

  二、自主学习,同伴合作(15分钟)

  (一)自主学习,自我感知

  1、小棒游戏,探究规律

  师:首先我们来做一个摆小棒的游戏,怎么玩呢?(拿6根小棒)找一个同学在这张数位表上随意用小棒摆出一个数,我能马上猜出它是不是3的倍数。信不信?

  师:你来!

  师:为了验证我猜得对不对,再请一个同学到前面的展台上用计算器来算一算,跟我比比速度。

  学生摆出:51

  师:51是3的倍数。我算的比计算器快吧?

  师:能摆一个三位数吗?

  学生摆出:312

  师:312是3的倍数。

  师:再来一个难点的。

  学生摆出:1123

  师:1123不是3的倍数。

  师:想知道老师为什么判断的这么快吗?相信通过下面的操作你能发现其中的秘诀。

  2、小组合作探究

  (1)用3根小棒摆一个数,这些都是3的倍数吗?

  师:我们一探究要求:用相应根数的小棒在数位表上各摆出3个数。

  小组内合理分工,请大家看一下导学案的合作要求

  ①根据要求每人用3根小棒摆一个数,并思考是不是3的倍数,3人摆数,1人记录。

  ②用计算器算一算,将3的倍数圈出来。

  ③仔细观察表格,从中你发现了什么?

  (2)用4根再摆出一些数,这些都是3的倍数吗?

  (3)用6根再摆出一些数,这些都是3的倍数吗?

  (4)摆出3的倍数与所需的小棒的根数有什么联系?3的倍数有什么特征?

  预设

  第一组:用3根小棒摆:2、12、102,都分别是3的倍数。

  第二组:用4根小棒摆:22、1111、1102,都不是3的倍数。

  第三族,用6根小棒摆:都是3的倍数。

  问题:你发现了什么?

  生:我们发现了3根、6根小棒摆出来的数都是3的倍数。

  师:关键要看小棒的根数,了不起的发现。

  生:只要小棒的根数是3的倍数,这个数就是3的倍数。

  师:你们认为除了3根、6根,还有其它情况是吗?具体解释一下。

  生: 9根、12根、15根……都行——

  (5)真的是这么回事吗?以9为例摆摆看。

  师:来,说说你们小组摆出了哪个数,它是不是3的倍数?

  生:我用9根小棒摆出了36,36是3的倍数。

  师:哪个小组还想出三位数、四位数或是更大的数?

  生:我用9根小棒摆出了216,216是3的倍数。

  生:我用9根小棒摆出了3015,3015是3的倍数。

  师:说得完吗?

  生:说不完。

  师:大家用九根小棒摆出来的数都是3的倍数吗?那你认为他们小组的结论合理吗?

  生:很合理。

  师:大家说着,我把它记录下来(板书):只要小棒的根数是3的倍数,摆出来的数就是3的倍数。

  师:由摆数所用小棒的根数我们就能快速判断出一个数是不是3的倍数。

  3、提升

  师:通过摆小棒,我们能判断出一个数是不是3的倍数,现在不摆了,也不拨了,通过上面的两次操作,能不能说说什么样的数是3的倍数?

  师:小组内交流一下。

  小组活动。

  师:谁来说说?

  生1:各个数位上的数加起来是3的倍数,这个数就是3的倍数。

  生2:各个数位上数的'和是3的倍数,这个数就是3的倍数。

  生3:只要各个数位上数的和是3的倍数,这个数就是3的倍数。

  师:无论是小棒的根数还是各个数位上珠子的颗数,实际上也就是各个数位上数的和。只要各个数位上数的和是3的倍数,这个数就是3的倍数。

  4、探究原因,区别理解

  (1)要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?

  研究16

  师:上节课我们讲过,16是2的倍数,它是由一个十和六个一组成的,那么想想把一个十,两个两个的分,会出现什么结果?(也就是说如果把16两个两个地分,正好可以分完,没有余数)

  但既然十位上没有剩余,那十位上的数还需要观察吗?(我们只需要观察个位上的6根小棒就可以,把它两个两个地分能正好分完)

  用刚才的方法判断5的倍数为什么也只观察个位?(因为一个百被5分完没有余数)

  看来判断2、5不受百位和十位的影响,只需要观察个位上的数就可以。

  通过刚才地研究,我们更加熟练了判断2、5倍数的方法,还知道了为什么只需要观察个位上的数就可以了。

  (2)问:为什么3的倍数特征要看各个数位相加的和呢?

  举例24是不是3的倍数,但是个位4是吗?这是为什么?自己分一分,画一画,看看24为什么是3的倍数?

  一个十3个3个分余1根,第二个余1根,两个各余1根,在和个位继续分,

  138分一分,试一试,看看是不是3的倍数

  一个百3个3个分最后剩1根,三个十3个3个分,每个余1根,所以剩三个一,个位傻上还剩一个8,合起来继续分,12个继续分。

  (2):梳理一下:24、138,分一遍,你发现什么?(剩余就是3的倍数。数位是几,余数就是几)无论百位上是几,3个3个分完,就剩几。

  P:剩余的小棒正好是每个数位加起来的数。(因为这些数位和剩下的数相同,所以可以直接把数位上的数相加,如果和是3的倍数,那么这个数就是3的倍数,如果不是,就不是3的倍数。)

  三、巩固拓展,形成能力(10分钟)

  (一)巩固训练,夯实基础

  1、口头练习:是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是3的倍数,再算一算各个数位上的和是不是3的倍数?

  把一个数各个数位上的数相加是3的倍数……

  2、圈出3的倍数的数:42、78、111、165、655、5988

  3、□2,这是一个两位数,十位被遮盖住了,如果它是3的倍数,猜一猜,这个数可能是几?为什么?

  (预设:生1:1。

  师:可以吗?还有其他答案吗?

  生2:1,4,7都可以。

  师:理由呢?

  生2:1+2=3,4+2=6,7+2=9,3,6,9都是3的倍数,所以填1、4、7都可以。

  师:恭喜你,三种可能都被你们猜中了!

  师:如果它既是2的倍数,又是3的倍数呢?

  生:24。

  师:为什么只有24可以呢?

  生:因为只有24既是2的倍数,又是3的倍数。)

  (二)拓展训练,灵活创新

  以前我们用除法来检验这个数是不是3的倍数,今天我们又学了3的倍数特征,我们只需要求各个数位上的和是3的倍数就可以,但是如果遇到这样的题怎么办?(PPT)

  13689362754、123456789

  老师:如果用各个数位之和是3的倍数,比较麻烦。

  但是我们用划掉3的倍数的方法求,这样即便是很复杂的数也能特别轻易的解决。比如:13689362754,从左开始,1不够,看13,是3的4倍,余1,和6组成16余1,18算完……

  后面的练习我们下课完成,好,这节课不仅发现3的特征,还根据特点发现简便地判断方法,更可贵的发现了背后的道理。学习数学就是这样,不仅要知其然还要知其所以然。希望同学们能在快乐的数学海洋里继续愉快地畅游。这节课我们就上到这里,下课。

  教师巡视,个别辅导。

  (二)同伴讨论,互助共进

  完成学案中“同伴合作,互助共进”内容。

  重点交流学生所举的例子。

  教师巡视,个别辅导。

  设计意图这一环节由学生自学和同伴合作,完成因数倍数的知识的学习。

  四、师生共学,交流分享(5分钟)

  (一)小组展示,彰显风采

  指名小组进行汇报。

  (二)师生完善,共同提高

  1、学生纠正、补充、质疑

  2、教师精讲、点拨、

  在学生讨论比较充分的基础上,教师进行点拨来完善学生对比的认识。

  设计意图通过教师的点拨完善学生对比的认识。

  五、巩固拓展,形成能力(10分钟)

  (一)巩固训练,夯实基础

  先由学生自主完成学案中相应的内容,再同桌交流,完善答案。

  1、是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是是不是3的倍数,再算一算各个数位上的和是不是3的倍数?

  把一个数各个数位上的数相加是3的倍数……

  2、看一看哪些是3的倍数:42、78、111、165、655、5988

  原来判断是用除法,现在用加法。改革了

  3、不用计算,能快速算出来那个式子有余数吗?

  802、3;342、3

  4、下面的数是3的倍数吗?888、555,那这样的三位数都是三的倍数吗?P:777、888,可以想成3个8相乘,像这样的三位数一定是3的倍数

  5、下面都是吗?789、345、654

  都是,有什么特点?相邻、连续三个自然数。

  是不是所有都是呢?举例:123.为什么呢?

  654,把大的给小的,把6给4,三个都是5了,把较大数给叫小叔一个,数字和不变,所以一定是3的倍数。

  6、是吗?363、669、993。是。有简便的方法吗?每个数学都是3的倍数,这个数字和一定是3的倍数。

【《3的倍数的特征》教案】相关文章:

《3的倍数的特征》教案08-26

《3的倍数的特征》教案15篇02-27

《3的倍数的特征》教案(15篇)03-07

《3的倍数的特征》说课稿11-09

《3的倍数特征》教学反思04-11

《3的倍数的特征》教学反思02-11

3的倍数的特征教学反思06-10

3的倍数特征教学反思03-19

3的倍数的特征的教学反思02-18

数学教案《2、5的倍数的特征》04-03