当前位置:育文网>教学文档>教案> 《3的倍数的特征》教案

《3的倍数的特征》教案

时间:2024-07-01 08:39:07 教案 我要投稿

《3的倍数的特征》教案(集合15篇)

  作为一位优秀的人民教师,总归要编写教案,教案是备课向课堂教学转化的关节点。快来参考教案是怎么写的吧!以下是小编精心整理的《3的倍数的特征》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

《3的倍数的特征》教案(集合15篇)

《3的倍数的特征》教案1

  学习目标:

  使学生通过观察、猜想、比较、验证等一系列数学活动,自主探索并掌握3的倍数的特征。

  2. 使学生在具体的探索活动中,培养自主探索的意识,发展初步的推理能力。

  3. 使学生在参与学习活动的过程中,体验成功的喜悦,增强学习数学的兴趣。

  4.让学生感受生活中蕴藏着丰富的数学知识。

  教学重点、难点:

  1、重点:知道3的倍数的特征,能判断一个数是不是3的倍数。

  2、难点:让学生通过操作实验自主发现3的倍数的特征。教学准备:小棒、计算器、数位表

  教学过程:

  一、知识链接前面同学们已学习了2和5的倍数的特征,下面老师就来检查一下你们能用3、4、5这三个数字来组成是2的倍数的三位数吗?(学生根据教师要求组数,教师板书出学生组数的情况:354、534。)

  师:同学们你们为什么这样组数呢?同样用这三个数字,你们能组成是5的倍数吗?(教师根据学生组数的情况板书出:345、435。)你们是怎样想的呢?(设计意图:这样采用组数的方法,既复习了2和5的倍数的数的特征,又可为下面学习新的内容打下一定的基础,同时又激发了学生学习的兴趣。)

  二、新知学习

  (一)设疑引入如果仍用这三个数字,你们能否组成是3的倍数的数吗?

  请同学们试一试。(教师根据学生组数的情况板书出:543、453。 )这两个数是3的倍数吗?(学生通过试除验证,得出这两个数都是3的倍数。)从这两个是3的倍数的数来看,你想到了什么?能被3整除的数 有什么特征?(设计意图:学生已经掌握了2的倍数和5的倍数的数的特征,在研究3的倍数的数的特征时,会很自然地想到“看个位上的数”。这里正是把学生的已有知识经验作为教学资源,巧妙地通过对比引起学生的思维冲突,促使学生自觉克服思维定势的负面影响,激发学生强烈的探究欲望。)

  (二)制造认知矛盾刚才同学们是从个位上去寻找3的倍数的“特征”的,那么个位上是3的数,它就一定是3的倍数吗?(我紧接着举出13、23、46、126、49等数让学生试除判断,从而由此引导学生推翻假设。)同学们,注意观察一下这几个数个位上的数字,个位的数字都是3的倍数,但它们的结果有的是3的倍数,但有的数却不是3的倍数,那么我们能从个位上找出是3的倍数的数的特征吗?

  (三)设问激趣我们再看看刚才的那3个数字,你们还能利用3、4、5这三个数字,组成一个三位数, 然后再看看它是不是3的倍数,好吗?(学生再通过3、4、5这三个数字任意组成一个三位数,通过试除发现:所组成的三位数都是3的倍数。)通过刚才的发现,那么3的倍数的特征有没有规律可循呢?

  下面我们就一起来学习“3的倍数的特征。”(板书课题)(设计意图:通过设置这样一个教学小“陷阱”,引导学生提出3的倍数的特征的假设,然后推翻假设,引发认知矛盾,并再次创设问题情境让学生进行探究,这样的设计不仅有效地避免了“2和5的倍数的特征”思维定势的影响,而且进一步地激发了学生的求知欲望。)

  (四)操作中发现规律下面我们来做几个小活动,要求同桌之间互相合作完成。1. 活动一:每个同学手中都有一些小棒和一张数位表,先请同学们拿出其中的3根小棒,在数位表上摆出一个两位数或三位数,然后再用计算器进行验证(例如:用3根小棒摆出两位数:个位摆1根,十位摆2根,组成21……)请把摆出的数填在下面的表中:

  小棒的根数 摆出的数 3的倍数 不是3的倍数

  学生完成操作并填写表格。问:你摆了哪些数啊?(根据学生回答,填表)这些数都是3的倍数吗?(请在表里画“√”)追问:用3根小棒能摆出一个不是3的倍数的数来吗?(通过这样的设问,充分调动学生的求知欲望)

  1.如果有学生认为能摆出一个不是3的倍的数来,就请他自己在下面摆一摆,然后一起验证,再下结论。

  2. 活动二:再请同学们拿出5根小棒,按刚才的方法在数位表上摆出几个两位数或三位数,看摆出的数是不是3的倍数。(学生合作操作并填写表格。)问:用5根小棒摆出的'数是3的倍数吗?追问:用5根小棒能摆出一个是3的倍数吗?(学生验证后回答)(设计意图:用实验操作的方法来教学3的倍数的特征,改变了以往先列举几组3的倍数和不是3的倍数的数字,然后引导学生归纳特征的教法。这样做,不但提高了数学知识本身的趣味性,而且让学生更好地经历了探究3的倍数的特征的过程。先让学生用3根小棒摆出3的倍数,学生非常投入地去摆数,结果成功了。再用5根小棒去摆,可就是摆不出3的倍数来,从而产生了很大的困惑。学生的困惑越大,继续研究的欲望就越强,从而为探索出结论打下坚实的基础。)

  3. 活动三:请同学们自己选择小棒的根数摆一摆,再按照刚才的摆法把结果填在表格里,并和小组里的同学说一说,从摆小棒的活动中,你发现了什么?(学生合作完成活动,并在小组里交流。)问:你选择的是用几根小棒摆的啊?结果怎样呢?你发现了什么?(如果小棒的根数是3的倍数,摆出的数就一定是3的倍数;如果小棒的根数不是3的倍数,摆出的数就不是3的倍数……)

  4. 活动小结:通过刚才的活动,我们发现3的倍数的一些特点,谁能归纳一下是3的倍数的数有什么特征吗?得出结论:一个数各位上数的和是3的倍数,这个数就是3的倍数(设计意图:通过学生任意选取小棒数量来进行实验和全班学生的汇报,让学生自主地操作、观察、比较、交流,进一步丰富前两次活动得出的结论,促使学生主动地发现规律,从而更好的获得相应的知识。)

  5.看书质疑(通过活动总结了结论,再让学生看书,来发现问题,从而加深了学生对新知的认识。)

  三、达标检测:

  通过实验,我们现在已经知道3的倍数的特征,你能运用这一规律来解决一些简单问题吗?

  1、完成课本第51页的做一做的第4题。(简单说说理由)

  2、说一说。(同桌间合作,一问一答,1人随便说一个数让另1人猜该数是否是3的倍数。要求所说的数尽量别超过4位,然后调换角色。)

  3、在下面每个数的□里填上一个数字,使这个数是3的倍数。 它们各有几种不同的填法?  □7 4□5 □44 65□引导学生掌握科学的填数方法:

  (1)先看已知数位上的数字的和是多少;

  (2)如果已知数位上的数字和 是3的倍数,那么未知数位的□里最小填“0”,要填的其它数字可依次加上3;如果已知数位上的数字和不是3 的倍数,那么未知数位的方格里可先填一个最小的数,使它能与已知数位上的数字的和凑成是3的倍数,要填的其它数字可在此基础上依次加上3.4、玩学号小游戏(上课前已分工好,按顺序一个号码代表一个学生,即“学号”)同学们刚才的题目完成得很精彩,最后我们再来玩一个小游戏。

  同学们都知道自己的学号是多少吧?那我们就来玩一个关于学号的游戏。请听:如果你的学号是2的倍数请你站起来;如果你的学号是5的倍数请你站起来;如果你的学号是3的倍数也请你站起来。刚才老师发现有些同学好象站起来2(3)次哦?你为什么要站起来2(3)次呢?请你用一句话说明理由。(重点突出30号、60号)学生回答后,师生共同小结,得出新的结论。(设计意图:通过各种趣味性强的练习,既让学生内化了“3的倍数的特征”,又让学生能从游戏中轻松的获得知识,而且内容一层层深入,让学生体会到知识的延伸性。另外还让学生感受到数学的奇妙和乐趣。)

  四、学习小结

  通过这节课,说一说你有什么收获啊?你印象最深的是什么?你对自己在课堂上的表现满意吗?

《3的倍数的特征》教案2

  一、教学内容:五年级下册教科书p19。

  二、教学目标:

  1.通过观察、猜想、验证,理解并掌握3的倍数的特征。

  2.引导学生学会判断一个数是不是3的倍数。

  3.培养学生分析、判断、概括的能力。

  三、教学重点:

  理解并掌握3的倍数的特征。

  四、教学难点:

  探究能被3整除数的特征。

  五、教法要素:

  1.已有的知识和经验:

  ⑴猜想。

  ⑵ 2、5的倍数特征。

  2.原型:3的倍数图表。

  3.探究的问题:

  ⑴一个数的特征的研究方法。

  ⑵能被3整除的数的特征。

  六、教学过程:

  (一)唤起与生成

  从1、2、3、4、5、6中任选3个数字组成三位数,要求:

  (1)是2的倍数;

  (2)是5的倍数。

  生说师记录,并让学生说说2和5的倍数的特征。

  引入:有没有能组成3的倍数的三位数?3的倍数有什么特征呢?今天我们就来研究3的倍数的特征。

  (二)探究与解决

  经历“猜想--验证--观察探究--验证”的全过程,探究3的倍数的特征。

  1. 猜想。

  激励学生大胆猜想,分小组交流,然后全班汇报。教师根据学生的汇报进行归纳。

  学生根据学过的2、5的倍数特征,可能猜测个位上是3、6、9的数是3的倍数。

  2.验证。

  我们用什么方法来验证大家的猜想是不是正确呢?

  让学生举出一些个位上是3、6、9的数字,小组内进行验证。小组验证中发现2种情况:个位上是3、6、9的数字不一定是3的倍数;而另一些数如12、18、21等个位上不是3、6、9的数,却是3的倍数。从而断定猜想是错误的。

  小结:看来3的倍数和一个数的个位上的数无关,那与什么有关呢?

  3.一个数的特征可以从哪些方面进行研究。

  同学们你们知道研究一个数有什么特征,可以从哪些方面入手吗?让学生明白研究一个数的特征可以从以下几方面入手:

  (1)从一个数的个位去研究。

  (2)从一个数的十位去研究

  (3)把各个数位上的数加起来研究。

  4.根据3的倍数,探究3的倍数的特征。

  (1)投影出示百以内数表,学生利用p18的表。要求:在表中找出3的倍数,并做好标记。

  (2)观察这些3的倍数,根据我们了解的研究方法,寻找3的倍数的特征。

  学生先独立思考,再小组讨论,然后全班交流。小组之间相互补充、质疑。

  汇报1:我们组发现个位上的数字没有什么规律,十位上的数字也没有什么规律。

  汇报2:我们组发现像12、18、27、36、39 ……,这些数他们个位和十位上的数字加起来的和都是3的倍数。

  5.验证。

  是不是所以的数都符合呢?我们来验证一下吧。

  (1)找3的倍数来验证。

  找几个3的'倍数(两、三位的数),看各个数位上数的和是不是都是3的倍数。

  (2)找不是3的倍数来验证。

  找几个不是3的倍数的数(两、三位的数),通过计算看看各个数位上数的和是不是3的倍数。

  6.归纳小结。

  引导学生小结:一个数各个数位上数的和如果是3的倍数,这个数就是3的倍数,如果各个数位上数的和不是3的倍数,这个数就不是3的倍数。

  (三)训练与应用

  1.完成“做一做”第1题。

  学生独立完成,集体订正。

  2. 练习三第4题。

  让学生逐题判断,再说说理由。

  3.再方框里填上合适的数字,使这个数是3的倍数。

  5 20 1 4 35

  4.做一做第2题。

  独立完成,并说明理由。

  5.出示385.

  (1)改一个数使它变成3的倍数。

  (2)改两个数使它变成3的倍数。

  (四)小结与提高

  小结学到的知识、方法以及学习的过程等,评价学习的表现。

  课外延伸:根据乘法分配律,你能分析2453,732是不是3的倍数吗?课下试一试。

《3的倍数的特征》教案3

  教学内容:17—18页的内容以及练习3的第1—3题。

  教学过程设计:

一、引入新课

  同学们,我们在前几节课中已经掌握了倍数和因数的特征,像2、3、5这些数,它们的倍数又有哪些特征呢?这节课,我们就一起先来探究2、5的倍数的特征。[板书课题]

  二、学习新课:

  (一)2的倍数的特征。

  1、长江大桥在过节车流量过大时,常会进行交通管制。按车牌单双号分别放行。如果一、三、五、周日则单号车通过,如果二、四、周六则双号车通过。如果你是交警,今天是周几?(周二),你能判断一下,下列哪些车辆违规通行了吗?

  鄂A。Y7134鄂A。31228鄂A。G4087鄂A。23980鄂A。86323

  你怎么这么快就找出来了呢?

  双号的这些数有什么特点?它们和2有什么联系?

  2、找倍数

  在前面,我们已经学习过怎样求2的倍数,谁能够按一定顺序说出一些2的倍数来。

  [师板书:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30……]

  3、观察特征

  请观察这些2的倍数,你发现有什么特征?如果学生有困难,则提示观察:它们个位上的数有什么特点?(个位上是0,2,4,6,8。)

  4、验证发现

  请任意写出两个个位上是0、2、4、6、8的数,用算式进行验证,看看符不符合这个特点?

  5、得出结论

  谁能说一说2的倍数的数的特征?[板书:个位上是0,2,4,6,8的数,都是2的倍数。]

  6、师:自然数中,是2的倍数的数叫做偶数(0也是偶数)。不是2的倍数的数叫奇数。奇数、偶数在我们日常生活中习惯上称它们为什么数?(单数、双数。)

  3、练习:(先分小组小说,再全班统一回答。)

  ① P17做一做。

  指名说一说为什么是偶数或奇数。

  ②说出3个不是2的倍数的三位数。

  ③说出15~35以内的偶数。

  ④ 50以内的偶数有多少个?奇数有多少个?

  (二)5的倍数的特征。

  1、刚才我们学习了2的倍数的特征,了解了奇数和偶数的概念。下面你们能不能用与研究2的倍数的特征的相同方法,找出5的倍数的特征呢?

  先请学生自己动手找5的倍数,然后观察、讨论。说一说5的倍数的特征。再举几个多位数验证。最后得出5的倍数的特征。

  [板书:个位上是0或者5的数,都是5的倍数。]

  2、练习:

  ①(投影片)下面哪些数是5的倍数?

  240,345,431,490,545,543,709,725,815,922,986,990。

  ②P18做一做

  问:你是怎么找到哪些数既是2的倍数,又是5的倍数?

  方法一:把2的倍数和5的倍数找出来,再找它们的共有部分。

  方法二:2*5=10,所以既是2的倍数又是5的倍数的数,一定是10的倍数。再在这种些数中找到10的倍数的数。

  学生口答后教师板书:个位是0的数,既是2的倍数,又是5的倍数。

  教师随口说出数,请立即说出这个数是2的倍数还是5的倍数,或者同时是2和5的倍数,并说明判断的依据。

  三、巩固反馈:

  1 、比75小,比50大的奇数有()。

  2 、在1~100的自然数中,2的倍数有()个,5的倍数数有()个。

  3 、个位是()的数同时是2和5的倍数。

  4 、最大的两位偶数是(),最小的三位奇数是()。

  5、用0,7,4,5,9五个数字组成2的倍数;5的倍数;同时是2和5的倍数的数。

  四、全课总结:这节课你学会了什么?有什么收获?

  教学板书:

  2、3的倍数的特征

  个位上是0、2、4、6、8的数都是2的倍数。个位上是0或5的数都是5的倍数。

  自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

  个位上是0的.数既是2的倍数,又是5的倍数。

  教学反思:

  今天的教学对教材进行了两处较大改动:一是删改了2的倍数特征主题图;二是删去了用来探索5的倍数表。为什么将教材中这么重要的两大篇幅进行删改了?我有自己的一点思考:

  一、联系生活实际,创设问题情境。

  如今随着影视业迅猛发展,我市电影展厅变多,单间展厅面积变小,已不再分单双号进入,所以这一生活情境学生基本没有体验。其次,即使有这样的电影院,学生也并非必须按单双号入口进入才能找到座位,因为从单号入口进入同样也能坐在双号座位上。根据以上两点原因,我改变问题情境。以近两年来武汉新变化——过桥分单、双号为切入口,邀请学生当交警来导入新课,学生不仅学习积极性高涨,而且也充分体现出数学在生活中的应用。

  二、学会迁移,培养能力。

  2、 5的倍数特征有共同之处,既都要关注个位上的数字。我在教学2的倍数特征时下功夫较多,由找倍数——观察特征——验证发现——得出结论,每一环节都使学生明确活动目的,找到学习方法。再到5的倍数特征时,何不由扶到放,充分发挥学生的自主能力性呢?因此,我完全放手,给学生以充分的时间和空间,让他们在观察、探索中体验成功的喜悦。

  教材中所提供的1——100的表格并非必不可少,且少了表格下的“个位上是()或()的数,是5的倍数”给学生思维空间更大,对他们的抽象概括能力要求更高,因此全部删掉。

  教学目标:

  1、通过自主探索,掌握2 、 5倍数的特征,会判断一个数是不是2或者5的倍数。

  2、理解并掌握奇数和偶数的概念,会判断一个数是偶数还是奇数。

  3、经历探索2和5倍数的特征的过程,体现观察探究、归纳总结的学习方法。

  4、在学习活动中,感受数学知识的奥妙,体验发现知识的乐趣,激发学习数学知识的兴趣,培养热爱数学的良好情绪。

  教学重点和难点:

  1、掌握2 、5倍数的数的特征。

  2、奇数和偶数的概念。

《3的倍数的特征》教案4

  【学习内容】

  教材P10例2。

  【学习目标】

  1.经历探索3的倍数的特征的过程,理解3的倍数的特征。(重、难点)

  2.能判断一个数是不是3的倍数。(难点)

  【知识链接 温故知新】

  1.判断下面各数哪些是2的倍数?哪些是5的倍数?哪些既是2的 倍数又是5的倍数?

  92 13 28 70 33 78 125

  50 735 426 515 210 3055 1560

  2的倍数:_________________________________________

  5的倍数:_________________________________________

  既是2的倍数,也是5的倍数:_________________________________________

  2.说一说你是怎样判断的?它们各有什 么特征?

  2的倍数的特征:_________________________________________

  5的倍数的特征:_________________________________________

  既是2的倍数,也是5的倍数的特征:_________________________________________

  【自主学习 个体探究】

  1.下表中哪些数是3的倍数?把它们圈起来或涂上颜色。

  2.观察圈出的数,有什么发现?

  温馨提示:可根据上节课知识的研究方法:找数、观察、猜想、验证、归纳,试着探索3的.倍数的特征。

  思路导航:

  1.横着看,圈起来的前10个数,个位分别是哪些数字?判断一个数是不是3的倍数,只看个位行吗?

  2.斜着看,你发现了什么?

  【合作探究 交流分享】

  1.交流与讨论:四人小组交流发现。

  2.探索与猜想:

  (1)横着看,圈起的前 10个数:3,6,9,12,15,18,21,24,27,30

  个位上0-9十个数字都有,只看个位数行吗?

  (2)斜着看,你发现了什么?说说你的发现与猜想,3的倍数的特征是什么?

  任意找几个3的倍数,把各位上的数相加,看看你有什么发现。

  3.验证与归纳:

  (1)根据猜想,每人各想一个符合猜想的数,检验是不是 3的倍数(可用计算器)。

  (2)全班交流:3的倍数的特征是什么?你们验证了哪几个数?

  (3)试着 找一个反例:各位上数的和是3的倍数,但这个数却不是3的倍数。

  (4)归纳3的倍数的特征。

  3的倍数的特征:_______________________________________

  【归纳小结 整合知识】

  这节课我们运用了数学上很重要的研究方法:观察、猜想、验证、归纳,研究3的倍数的特征,与2、5的倍数的特征不同,3的倍数的个位上可以是任何数字。一个数( )是3的倍数,这个数就是3的倍数。课下大家可以运用这种方法,继续研究9的倍数、11的倍数什么特征。

  【当堂检测 达标演练】

  1.判断。

  (1)个位上是3、6、9的数都是3的倍数。 ( )

  (2)是9的倍数的数一定是3的倍数。 ( )

  (3)由7、3、2组成的三位数都是3的倍数。 ( )

  (4)凡是3的倍数的都是奇数。 ( )

  (5)一个非零自然数,不是奇数就是偶数。 ( )

  2.不计算,在没有余数的算式后面画“√”。

  154÷5= 38÷3= 207÷3=

  297÷3= 189÷2= 358÷3=

  3.下面用数字卡片摆出的数中,哪些是3的倍数?在每个数后面增加一张卡片,使这个三位数成为3的倍数。

  4.圈出3的倍数。

  92 75 36 206 65 3051 779 99999

  111 49 165 5988 655 131 222 7203

  思 考:像99999、7203这么大的数,你是怎么判断的?

  学法指导:

  (1)9是3的倍数,99999每一位上都是9,这个数就是3的倍数。

  (2)7203中先把3和0划去,剩下的7+2=9,是3的倍数,所以,这个数是3的倍数。这种方法叫“弃3”法,就是 先把3的倍数划去,剩下的数再相加判断。

  5.根据要求,在□里填上一个合适的数字。

  (1)既是2的倍数,又有因数5。 675□

  (2)是5的倍数,不是2的倍数。 38□

  (3)既是3的倍数,又是5的倍数。 334□

  (4)能同时被2、3、5整除。 8□8□

  【学习反思】

《3的倍数的特征》教案5

  教学目标:

  1.知识与技能:让学生经历2、5的倍数特征的探索过程,理解并掌握2和5的倍数的特征,会运用这些特征判断一个数是不是2和5的倍数;知道偶数和奇数的意义,会判断一个自然数是偶数还是奇数。

  2.过程与方法:在观察、猜测和小组合作学习讨论的过程中,提高探究问题的能力,增强学生的探索意识,3.情感态度与价值观:在学习活动中培养学生概括能力,加强对自然数特征的认识,感受教学的奇妙,增强学习数学的积极情感,进一步感受数学的魅力。

  教学重点:理解并掌握2和5的倍数的特征

  教学难点:通过探索2、5的倍数的特征,判断一个数是不是2和5的倍数。

  教学准备:课前让每个学生写好一张百数表。教学过程:

  一、情境导入

  1.同学们,数学王国中的5联盟和2联盟要召集散落在外的人马了,召集条件是:5联盟要召集的必须是5的倍数(板书:5的倍数),2联盟要召集的必须是2的倍数(板书:2的倍数)。

  2.同学们看,黑板上就有一些2部落和5部落的人马:黑板出示一些数(49 10 17 18 22 25 34 36 40 43 55 82 75 60),谁想和老师比试一下,以最快的速度把它们送回到5联盟和2联盟?

  3.通过刚才的比赛,你有什么感想?

  4.那是因为老师运用了2、5的倍数的特征,今天我们就来探索2、5的倍数的特征。(板书:2和5的倍数特征)

  二、探究新知

  (一)探索5的倍数的特征

  1.引入百数表

  2.出示课件:百数表,在这些数中找出5的倍数,写出来。

  3.你们找的数和老师找的相同吗?(课件出示)

  4.观察5的倍数,你有什么发现?把你的发现说给同桌听听 谁来概括一下5的倍数到底有什么特征?(小组讨论、交流)引导总结:个位上是0或5的数都是5的倍数(板书)验证:除了这些数以外,其它5的倍数也有这样的特征吗?请举例验证。(小组合作验证,写几个多位数)

  过渡问题:学习了5的特征有什么好处?

  师随机在黑板上写一个数,让学生猜猜它是不是5的倍数。练一练:(出示课件)

  过渡:那172是几的倍数呢?请同学验证。2的倍数有什么特征,想不想研究?下面我们一起研究2的特征。

  (二)探索2的倍数的特征

  1.猜一猜:根据研究5的倍数特征的经验,你猜一猜2的倍数可能会有什么特征呢?

  2.课件出示:百数表找出2的倍数,(小组合作找出所有2的倍数)。

  3.汇报后,观察2的倍数的特征,看看你刚才的猜测是不是正确? 4.归纳:2的倍数有怎样的特征?

  板书:个位上是0、2、4、6、8的数都是2的倍数

  验证:除了这些数以外,其它2的倍数也有这样的特征吗?请举例验证。

  (三)奇数、偶数的.再认识

  自然数按是不是2的倍数来分可分为奇数和偶数两大类,2的倍数都是偶数,不是2的倍数就就是奇数。

  通过奇数和偶数的学习,你们还能想到哪些数学知识呢?(学生独立思考,小组讨论交流)

  (如:最小的偶数是0;最小的奇数是1;自然数按是不是2的倍数可以分为偶数和奇数等。)

  (四)探究2和5的倍数的共同特征

  比较:判断一个数是不是2或5的倍数,都是看什么? 1.练一练,在5的倍数中找出2的倍数;在2的倍数中找到5的倍数。

  引导总结:个位上是0的数,既是2的倍数又是5的倍数。试一试:一本30页的画册,任意翻开后看到的页码数,有一个既是2的倍数,又是5的倍数,翻开的可能是哪两页?

  三、自学检测,巩固深化 1.轻松演练 快速判断下面各数哪些是奇数,哪些是偶数? 52、77、124、501、3170、4286、6003 2.轻松演练

  按要求将下面的数分类 47、75、96、100、135、246、369、718、900 2的倍数有()5的倍数有()既是2的倍数又是5的倍数有()3.生活中的数学

  ①体育课上,五年二班的55位同学在操场上做游戏,如果每两位同学一个组,能正好分完吗?如果每5位同学一个组,能正好分完吗?为什么?

  ②看商品猜价格

  童车:(价钱在130——135之间,是2的倍数)脚踏自行车:(价钱在350——360之间,是5的倍数)电动自行车:(价钱在1950——20xx之间,既是2的倍数又是5的倍数)

  四、知识拓展 思考:一个三位偶数,各个数位上的数字的和是12,若这个偶数既是2的倍数又是5的倍数,这个三位偶数可能是多少?

  五、课堂总结

  通过今天的学习,你有什么收获?还有什么问题?

  六、布置作业 课本第一、二题 板书设计: 2、5的倍数的特征

  个位上是0或5的数都是5的倍数 个位上是0、2、4、6、8的数都是2的倍数 教学反思:

  本课时是在学生学习了因数、倍数的基础上,进一步来探索2、5的倍数的特征。通过呈现 “百数表”和“列举法”让学生从表中(或列举的数据)找出2和5的倍数,并用不同的符号分别圈出,再观察其特征。在理解2的倍数的特征后,揭示偶数和奇数的含义。对于2、5的倍数的共同特征,则引导学生在观察、交流的基础上自己归纳。对于数的奇偶性我让学生以小组为单位自主探讨、交流,使学生经历猜想、观察、归纳、交流等数学活动,获得基本的数学知识和技能,发展思维能力,激发学习的兴趣,增强学好数学的信心。出现疑难问题或意见不一时,通过小组或集体讨论解决,教师发挥引导的作用,消除学生的疑惑;关注学生的个体差异,使不同层次的学生在练习中获得不同的发展,体验成功的喜悦。

《3的倍数的特征》教案6

  知识与技能:

  1、学生会正确判断一个数是否是3的倍数。

  过程与方法:

  2、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。

  情感态度价值观:

  3、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。

  教学重、难点:

  1、掌握3的倍数的特征。

  2、能正确判断一个数是否是3的倍数。

  教学过程设计:

  一、复习引新

  1、用5,6,7三个数字组成一个三位数,使这个数是2的倍数?

  说说什么样的数一定是2的倍数,可以摆成5的倍数吗?怎样摆出的数一定是5的倍数呢?

  2、引入:我们已经知道看一个数是不是2或5的倍数,只要看这个数的个位,那么你能从个位上发现3的倍数的特征吗?今天我们一起来研究3的倍数的特征。(揭示课题:3的倍数的特征)

  二、探索猜想,初步感知

  师:3的倍数有什么特征?

  1、学生进行猜想。

  (1)个位上是3、6、9的数是3的倍数。

  (2)个位上是3、6、9的数不一定是3的倍数,如23、26、29都不是3的倍数。

  (3)学生面对所出现的问题进行猜想,教师可根据学生的猜想进行适当的引导。

  2、可能出现的问题。

  (1)猜测个位上是3、6、9的数是3的倍数。

  (2)个位上能被3整除的数且被3整除。

  3、探索猜想。

  (1)学生用3、4、5三个数字组成是3的倍数的3位数。

  (2)学生如果提出345或354的例子,可板书并多加评论作为后面要学的内容。

  (3)在这个过程中学生可能会提出猜想的结论。即个位上是3、6、9的数是3的倍数。

  4、验证猜想。

  (1)让学生举例子对猜想的结论进行验证。

  (2)在这个环节中,学生有可能也会发现以下情况:

  ①45是3的倍数,但是,个位上的数字是5,不是3、6、9等。

  ②26个位上的数是6,但它不是3的倍数。

  (3)猜想的结论不成立。

  (4)让学生对猜想结论不成立的这个问题提出自己的看法。

  师:对于一个结论是否成立,只举一个正例是不够的,如举一个反例就可以推翻这个结论,这个结论就不能成立。请同学们在今后的学习中要注意。

  三、自主探索,总结3倍数的特征

  1、在质疑中引导学生探究3的倍数的特征。

  师:请在下表中找出3的倍数,并做上记号。那么多的数,我们怎么找呢?我们要聪明地找,从比较小的数开始找。(师出示100以内数表,每小组各一张,在小组活动后,教师组织学生进行交流汇报,并呈现学生圈出3的'倍数的百以内的数表,如下图。)

  2、引导观察。

  (1)请同学们观察这个表格,你发现3的倍数有什么特征?把你的发现在小组里说一说。(小组交流后,再组织全班交流。)

  (2)在教学过程中,教师要巡视,认真倾听学生有什么发现,有什么不懂的地方。

  (3)学生可能发现3的倍数个位上的数有1、2、3、4、5、6、7、8、9、0,没有什么特别规律,十位上的数字也没有什么规律。

  3、教师引领。

  (1)斜着观察你发现了什么?

  (2)在学生观察思考的基础上,概括学生的实际情况,提出新的思考问题:观察每个数各个数位上的数与3有什么关系?将每个数的各个数字加起来看一看会怎样?

  (3)试着概括出3的倍数特征。

  4、总结3的倍数的特征。

  一个数各个位上的数字之和如果是3的倍数,那么,这个数一定是3的倍数。否则,这个数就不是3的倍数。

  5 、检验结论。

  (1)我们从10 0以内的数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?

  (2)利用100以内数表来验证。

  (3)延伸到三位数或更大的数。如:573、753、999、1236、2244、7863……

  (4)学生自己写数并验证,然后小组交流,观察得出的结论是否相同。

  四、巩固应用

  1、从3、0、4、5这4个数字中,选出两个数字组成1个两位数,分别满足以下条件:

  (1)是3的倍数。

  (2)同时是2和3的倍数。

  (3)同时是3和5的倍数。

  (4)同时是2、3和5的倍数。

  2、完成教材19页的“做一做”

  五、课堂小结:

  这节课你有什么收获?

  板书设计:

  3的倍数的特征

  一个数各位上的数的和是3的倍数,这个数就是3的倍数

  教学反思:

  “3的倍数的特征”属于数论的范畴,离学生的生活较远,有一定的难度。而2、5的倍数的特征是学生学习这一课的基础。所以,我用复习2、5的倍数特征,迁移到3的倍数特征上来,巧妙设疑,激发学生的兴趣,为学习新的知识,奠定了良好的基础。在新知探究这一块的教学我让学生大胆猜测,质疑,让学生在“实验——讨论——验证”中,产生认知的冲突。激发学生探索的兴趣,然后再在“想象——探索”的过程中,培养学生从不同角度去研究问题,用不同方法去解决问题。学生通过大量的表象积累,思维产生了飞跃,自然就概括出结论。整个课堂孩子们在充分地体验着、感悟着、发展着。这是我觉得成功的地方。

《3的倍数的特征》教案7

  教学目标:

  1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。

  2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。

  教学重、难点:是3的倍数的数的特征。

  教学过程:

  一、提出课题,寻找3的特征。

  师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜测一下?

  生1:个位上是3、6、9的数是3的倍数。

  生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。

  生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。

  师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)

  师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的'活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)

  二、自主探索,总结3的特征师:

  先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生利用p18的表。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)

  师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。

  学生同桌交流后,再组织全班交流。

  生1:我发现10以内的数只有3、6、9是3的倍数。

  生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。

  生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。

  师:个位上的数字没有什么规律,那么十位上的数有规律吗?

  生:也没有规律,1~9这些数字都出现了。

  师:其他同学还有什么发现吗?

  生:我发现3的倍数按一条一条斜线排列很有规律。

  师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?

  生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。

  师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?

  生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。

  师:这是一个重大发现,其他斜线呢?

  生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。

  生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。

  生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。

  师:现在谁能归纳一下3的倍数有什么特征呢?

  生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。

  师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?

  生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

  师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。

  学生先自己写数并验证,然后小组交流,得出了同样的结论。

  全班齐读书上的结论。

  三、巩固练习:

  完成p19做一做

  四、课堂小结:

  这节课你有什么收获

《3的倍数的特征》教案8

  教学目标:

  1、通过自主探索,掌握2、3、5 的倍数的特征。

  2、能判断一个数是不是2、5 或3 的倍数。

  3、知道奇数和偶数,能判断一个数是偶数还是奇数。

  教学重点:

  2、3、5 的倍数的特征。

  教学难点:

  3 的倍数的特征是难点。

  教学准备:

  课件。

  教学过程:

  一、引入新课。

  讲解导入:同学们,我们在前几节课中已经掌握了倍数和因数的特征。像2、3、5 这些特殊的数,它们的倍数又有哪些特征呢?这节课我们就一起来学习。(板书课题)

  二、探究2 的倍数的特征。

  1、引导:同学们都看过电影吧?电影票的票号和电影院入口一般都是怎样设置的?

  2、出示教材第17 页主题图,问:双号的号码有什么特点?

  3、引导学生明确奇数和偶数的概念:在自然数中,是2 的倍数的数叫做偶数(0 也是偶数),不是2 的倍数的数叫做奇数。(板书)

  4、组织学生做“你说我判断”的游戏:同桌合作,一个同学任意说一个数,另一个同学判断一下对方说的是奇数还是偶数;交换角色再做。同桌之间互相说一些数,并判断是偶数还是奇数。

  5、出示“做一做”的题目,让学生完成。(巡视;学生做完后集体订正)

  三、探究5 的倍数的特征。

  1、刚才我们学习了2 的倍数的特征,了解了奇数和偶数的概念,现在我来考考大家,看大家掌握的怎么样:所有同学,学号是奇数的请举手。(停顿,等学生举完手)所有的同学,学号是偶数的请举手。

  2、好,同学们对奇数和偶数掌握的还是不错的。下面我们继续做游戏:学号是5 的倍数的同学请举手。

  3、同学们想一想,哪些数是5 的倍数?5 的倍数有哪些特征?

  4、出示教材第18 页的表,让学生找出1 至100 中的5 的倍数并涂上颜色。提问:涂一涂,你能从表中看出什么规律?(指名板演)

  5、观察一下这些数的个位数,你能得出什么结论?

  6、让学生做教材第18 页“做一做”的练习,先分别找出2 和5 的倍数。

  7、让学生再找一找既是2 倍数又是5 的'倍数的数。提问:你是怎么找到的?

  8、不错,这两种方法都可以找到10 的倍数。有些同学还发现了既是2 的倍数又是5 的倍数的数一定是10 的倍数。同学们在观察这些是10 的倍数的数,大家能不能总结出10 的倍数的特征?

  四、探究3 的倍数的特征。

  1、刚才我们学习了2 和5 的倍数的特征,那么3 的倍数又有哪些特征呢?请同学们先把3 的倍数找出来,在进行小组讨论,看看3 的倍数有什么特征。

  2、观察这些数,大家能不能找到3 的倍数的特征?(给学生足够的时间来讨论)

  3、用老方法不能得出3 的倍数的特征,怎么办呢?提示:同学们再看看12 这个数,研究一下它的个位和十位上的数字,看看能发现什么?

  4、表扬学生的发现,鼓励学生继续探讨:非常棒!同学们在研究一下15、18、21,看看这三个数是不是也符合这个规律。

  5、现在大家是不是可以总结出3 的倍数的特征了?(教师同步板书)

  6、现在同学们用自己得出的结论做“做一做”第1 题,看看其他数是不是也是这样的。

  7、组织学生做“我说你判断”的游戏。

  8、让学生自主完成“做一做”第2 题。

  五、总结。

  组织学生说说这节课学到了哪些知识以及有些什么收获。

  作业

  1、下列哪些数是2 的倍数,而不是5 的倍数?在对应的括号内画“√”。

  8 10 24 120 88 185 ()()()()()()

  2、找出下列各数中是3 的倍数的数。

  45 76 121 273 690 1234 29 94 302 57 850 20xx

  3、写出三个既是3 的倍数又是2 的倍数的数。

  4、写出三个是3 的倍数但不是2 和5 的倍数的数。

  5、在方框中填一个数,使每个数都是3 的倍数。

  8 5 1 34 78 31

  板书设计:

  2、3、5 的倍数的特征

《3的倍数的特征》教案9

  教学内容:

  3的倍数的特征

  教学目标:

  1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。

  2、让学生在学习过程中学会用分析、比较、归纳或猜想,检验等方法,并培养学生动手实践能力。

  3、在探索3的倍数的特征的过程中,提高学生合作交流的能力,感受数学学习的乐趣,体会数学思维的严谨。

  教学重点:

  探索3的倍数的特征。

  教学难点:

  运用3的倍数的特征解决实际问题。

  设计理念:

  通过活动,让学生经历一个完整的探索过程,从中认识3的倍数的特征并提高学习能力。

  教学步骤

  一、口动训练

  游戏“抢三十”

  游戏规则:老师和学生轮流报数,每人每次至少报1个数,最多报2个数,从1到30按顺序连续报数。谁先报到30,谁就获胜。

  老师和学生开始做游戏。

  同学们发现:每次都是老师胜利了,为什么呀?

  二、眼动与心动

  课件出示百数表,在表中找出3的所有的倍数,老师并做标记。

  老师一列一列的出示我们所找到的3的`倍数,3、 12 、 21。

  6、 15、 24 、 33、 42、 51。

  9、 18、 27、 36、 45、 54、 63、 72 、 81。

  30、 39、 48、 57、 66、 75、 84、 93。

  60、 69、 78、 87、 96。

  90、 99。

  同学们认真观察从这些数中你发现3的倍数什么特征呢?吧你

  的发现与同桌交流一下。

  三、互动

  以小组为单位讨论并总结3的倍数特征。

  请小组代表发言。

  生1:我发现10以内的数只有3、6、9是3的倍数。

  生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。

  生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个

  位上0~9这十个数字都有可能。

  师:个位上的数字没有什么规律,那么十位上的数有规律吗?

  生:也没有规律,1~9这些数字都出现了。

  师:其他同学还有什么发现吗?

  生:我发现3的倍数按一条一条斜线排列很有规律。

  师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?

  生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。

  师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?

  生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数

  字加起来都等于3。

  师:这是一个重大发现,其他斜线呢?

  生:1,我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。

  生:2,“9”的那条斜线上的数,两个数字加起来的和都等于9。

  生:3,我发现另外几列,除了边上的30、60、90两个数字的和是3、

  6、9,另外的数两个数字的和是12、15、18。

  师:现在谁能归纳一下3的倍数有什么特征呢?生:一个数各个数位上

  数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。

  师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以

  怎么说呢?

  生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

  师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是

  三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。

  学生先自己写数并验证,然后小组交流,得出了同样的结论。齐读3

  的倍数特征(幻灯片13):一个数,如果各个数位上的数字之和是3的倍

  数,这个数就是3的倍数。

  四、手动

  1、下面这些数中,哪些是3的倍数?

  354 160 72 375 820 964 6000

  2、课堂活动

  0 1 2 3 5 7

  (1)选出两张卡片组成一个两位数,使这个两位数是3的倍数,你认为该怎么选?

  (2)按上面的想法选出3张卡片组成是3的倍数的三位数,并验证。

  3、做一做

  在里填上适当的数字,使这些两位数能被3整除,各有几种填法?

  4 1 2 3

  4、判断题

  (1)个位上是3、6、9的数都是三的倍数。()

  (2)34这个三位数是3的倍数,里只能填2。()

  (3)除0外,能被3整除的最小数是6。()

  (4)9的倍数一定是3的倍数。()

  (5)能被3整除的最小两位数是12。()

  5、拓展练习

  先求出下面每个数个位上的数的和,看能不能被9整除,再算一算下面各数能不能被9整除,最后总结出9的倍数特征是什么。

  162 378 586 6322 981

  五、课堂小结:

  这节课你有什么收获?

  六、课堂作业

  研究9的倍数特征

《3的倍数的特征》教案10

  教学内容:

  苏教版义务教育教科书《数学》五年级下册第33~34页例5、“练一练”和“你知道吗”,第36页练习五第8~10题。

  教学目标:

  1.使学生认识和掌握3的倍数的特点,能判断或写出3的倍数,并能说明判断理由。

  2.使学生经历探索和发现3的倍数的特征的过程,培养观察、比较和分析、概括等思维能力,积累数学活动的经验,提高归纳推理的能力,进一步发展数感。

  3.使学生主动参与探索、发现规律的活动,获得探索数学结论的成功感受;体验数学充满规律,体会数学的奇妙,增强学习数学的积极情感。

  教学重点:

  认识3的倍数的特征。

  教学难点:

  研究并发现3的倍数的特征。

  教学准备:

  准备计数器教具和学具。

  教学过程:

  一、激活经验

  1.复习回顾。

  提问:2和5的倍数有哪些特征?

  回顾一下,我们是怎样发现2和5的倍数的特征的?(板书:找出倍数——观察比较——发现特征)

  2.引入课题。

  谈话:我们上节课通过找2和5的倍数,对找出的倍数进行观察、比较,分别发现了2和5的倍数的特征。今天,我们就按照这样的过程,探索、寻找3的倍数的特征。(板书课题)

  二、学习新知

  1.提出猜想,引导质疑。

  引导:我们知道2的倍数,个位上是0.2.4.6.8;5的倍数,个位上是5或O.那你能猜想一下3的倍数会有什么特征吗?为什么这样想?说说你的想法。(按思维惯性,可能许多学生会猜测个位上是3的倍数)

  许多同学认为,3的倍数可能是个位上是3.6.9的数。(板书:3的倍数,个位上是3、6、9)

  质疑:利用以前的经验学习新内容,是不错的`学习方法。今天大家联系2和5的倍数的特征这样猜想,想法是很好的,数学学习经常可以这样类推。那这一次的猜想还对不对呢?大家来看几个数:13是3的倍数吗?26和49呢?(根据回答擦去板书内容后半部分)

  2.利用经验,组织探究。

  (1)找3的倍数。

  (2)探索特征。

  3.学生归纳,强化认识。

  追问:现在你能告诉大家,经过找出倍数、观察比较,我们发现3的倍数有什么特征吗?

  让学生读一读板书的结论。

  强调:同学们通过自己的思考、探索,发现了一个数各个数位上数字的和是3的倍数,这个数就是3的倍数;反之,一个数各个数位上数字的和不是3的倍数,这个数就一定不是3的倍数。

  4.阅读“你知道吗”。

  启发:当你发现3的倍数的特征时,你对数学有什么感觉?

  谈话:是的,数学很神奇、神秘,3的倍数居然和它各个数位上数字的和有这样密切的关系!数学有许多神奇、有趣的规律,只要我们具有一定基础,认真探究,这一条条神奇的秘密和规律就会被发现和应用。下面请大家阅读课本第34页的“你知道吗”,看看会有什么神奇的规律告诉你。

  交流:你知道了什么?什么样的数叫完全数?举例说一说。(结合举例6和28,先板书因数,再板书表示完全数的等式) 现在发现的完全数都有什么特征?

  三、练习巩固

  1.做“练一练”第1题。

  2.做“练一练”第2题。

  3.做练习五第8题。

  4.做练习五第9题。

  5.做练习五第10题。

  四、课堂总结

  提问:今天的学习你又有什么收获和体会?

  判断3的倍数的方法,和判断2、5的倍数不同在哪里?

《3的倍数的特征》教案11

  学习内容

  3的倍数的特征(教材第10页的内容及教材第11页练习三的第3~6题)

  第1课时课型新授

  学习目标

  1、使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。

  2、引导学生学会判断一个数能否被3整除。

  3、培养学生分析、判断、概括的能力。

  教学重点

  理解并掌握3的倍数的特征

  教学难点

  会判断一个数能否被3整除。

  教具运用

  课件

  教学方法

  二次备课

  教学过程

  【复习导入】

  1、学生口述2的倍数的特征,5的倍数的特征。

  2、练习:下面哪些数是2的倍数?哪些数是5的倍数?

  324 153 345 2460 986 756

  教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。

  板书课题:3的倍数的`特征。

  【新课讲授】

  1、猜一猜:3的倍数有什么特征?

  2、算一算:先找出10个3的倍数。

  3×1=3 3×2=6 3×3=9

  3×4=123×5=15 3×6=18

  3×7=213×8=24 3×9=27

  3×10=30……

  观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)

  提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

  12→21 15→5118→81 24→42 27→72

  教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

  (以四人为一小组、分组讨论,然后汇报)

  汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。

  3、验证:下面各数,哪些数是3的倍数呢?

  21054 216 129 9231 9876

  小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)

  4、比一比(一组笔算,另一组用规律计算)。

  判断下面的数是不是3的倍数。

  34025003 1272 2967

  5、“做一做”,指导学生完成教材第10页“做一做”。

  (1)下列数中3的倍数有。

  143545100 332 876 74 88

  ①要求学生说出是怎样判断的。

  ②3的倍数有什么特征?

  (2)提示:

  ①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)

  ②接着再考虑什么?(最小三位数是100)

  ③最后考虑又是3的倍数。(120)

  【课堂作业】

  完成教材第11~12页练习三的第4、6、7、8、9、10、11题。

  【课堂小结】

  同学们,通过今天的学习活动,你有什么收获和感想?

  【课后作业】

  完成练习册中本课时练习。

  板书设计第2课时3的倍数的特征

  一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。

  【作业设计】

  学习目标,教学方法,数学,教师,能力。

《3的倍数的特征》教案12

  教学目标:

  1、理解3的倍数的特征,掌握一个数是否是3的倍数的判断方法。

  2、培养分析、比较及综合概括能力。

  3、培养合作交流的意识,掌握归纳的方法,获取一定的学习经验。

  教学重点:

  掌握3的倍数的特征,正确判断一个数是否是3的倍数。

  教学难点:

  探索3的倍数的特征。

  教学过程:

  一、创设情景,明确目标(3分钟)

  (一)创设情景,反馈预习

  1、师:课前我们已经完成了导学案自主预习部分,我们已经知道了2、5的倍数特征,下面的数你能判断出下面的数哪些是2的倍数,哪些是5的倍数,哪些即是2的又是5的倍数呢?

  P:16、24、85、102、138、170、

  2 的倍数:16、24、102、138、170

  5的倍数:85、170

  即是2的倍数又是5的倍数:170

  师:说一说,你是怎么想的?

  生1:个位上是02468就是2的倍数。个位是上0或者5的数就是5的倍数。一个数既是2的倍数,又是5的倍数,它的个位上一定是0.

  2、看来要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?

  生:2的倍数的个位数是0、2、4、6、8;5的倍数个位上是0、5。

  师:那么3的倍数有什么特征呢?是不是还看个位数呢?这就是这节课我们要研究的内容。

  3、教师板书课题:3的倍数的特征。

  (二)明确目标,引领方法

  1、出示学习目标(见学案),生自读目标。

  2、同伴说说自己的理解,谈谈如何实现目标。

  设计意图交流预习内容,解决预习中的问题;明确学习目标,带着目标进行合作学习。

  二、自主学习,同伴合作(15分钟)

  (一)自主学习,自我感知

  1、小棒游戏,探究规律

  师:首先我们来做一个摆小棒的游戏,怎么玩呢?(拿6根小棒)找一个同学在这张数位表上随意用小棒摆出一个数,我能马上猜出它是不是3的倍数。信不信?

  师:你来!

  师:为了验证我猜得对不对,再请一个同学到前面的展台上用计算器来算一算,跟我比比速度。

  学生摆出:51

  师:51是3的倍数。我算的比计算器快吧?

  师:能摆一个三位数吗?

  学生摆出:312

  师:312是3的倍数。

  师:再来一个难点的。

  学生摆出:1123

  师:1123不是3的倍数。

  师:想知道老师为什么判断的这么快吗?相信通过下面的操作你能发现其中的秘诀。

  2、小组合作探究

  (1)用3根小棒摆一个数,这些都是3的倍数吗?

  师:我们一探究要求:用相应根数的小棒在数位表上各摆出3个数。

  小组内合理分工,请大家看一下导学案的合作要求

  ①根据要求每人用3根小棒摆一个数,并思考是不是3的倍数,3人摆数,1人记录。

  ②用计算器算一算,将3的倍数圈出来。

  ③仔细观察表格,从中你发现了什么?

  (2)用4根再摆出一些数,这些都是3的倍数吗?

  (3)用6根再摆出一些数,这些都是3的倍数吗?

  (4)摆出3的倍数与所需的小棒的根数有什么联系?3的倍数有什么特征?

  预设

  第一组:用3根小棒摆:2、12、102,都分别是3的倍数。

  第二组:用4根小棒摆:22、1111、1102,都不是3的倍数。

  第三族,用6根小棒摆:都是3的倍数。

  问题:你发现了什么?

  生:我们发现了3根、6根小棒摆出来的数都是3的倍数。

  师:关键要看小棒的根数,了不起的发现。

  生:只要小棒的根数是3的倍数,这个数就是3的倍数。

  师:你们认为除了3根、6根,还有其它情况是吗?具体解释一下。

  生: 9根、12根、15根……都行——

  (5)真的是这么回事吗?以9为例摆摆看。

  师:来,说说你们小组摆出了哪个数,它是不是3的倍数?

  生:我用9根小棒摆出了36,36是3的倍数。

  师:哪个小组还想出三位数、四位数或是更大的数?

  生:我用9根小棒摆出了216,216是3的倍数。

  生:我用9根小棒摆出了3015,3015是3的倍数。

  师:说得完吗?

  生:说不完。

  师:大家用九根小棒摆出来的数都是3的倍数吗?那你认为他们小组的结论合理吗?

  生:很合理。

  师:大家说着,我把它记录下来(板书):只要小棒的根数是3的倍数,摆出来的数就是3的倍数。

  师:由摆数所用小棒的根数我们就能快速判断出一个数是不是3的倍数。

  3、提升

  师:通过摆小棒,我们能判断出一个数是不是3的倍数,现在不摆了,也不拨了,通过上面的两次操作,能不能说说什么样的数是3的倍数?

  师:小组内交流一下。

  小组活动。

  师:谁来说说?

  生1:各个数位上的数加起来是3的倍数,这个数就是3的倍数。

  生2:各个数位上数的和是3的倍数,这个数就是3的`倍数。

  生3:只要各个数位上数的和是3的倍数,这个数就是3的倍数。

  师:无论是小棒的根数还是各个数位上珠子的颗数,实际上也就是各个数位上数的和。只要各个数位上数的和是3的倍数,这个数就是3的倍数。

  4、探究原因,区别理解

  (1)要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?

  研究16

  师:上节课我们讲过,16是2的倍数,它是由一个十和六个一组成的,那么想想把一个十,两个两个的分,会出现什么结果?(也就是说如果把16两个两个地分,正好可以分完,没有余数)

  但既然十位上没有剩余,那十位上的数还需要观察吗?(我们只需要观察个位上的6根小棒就可以,把它两个两个地分能正好分完)

  用刚才的方法判断5的倍数为什么也只观察个位?(因为一个百被5分完没有余数)

  看来判断2、5不受百位和十位的影响,只需要观察个位上的数就可以。

  通过刚才地研究,我们更加熟练了判断2、5倍数的方法,还知道了为什么只需要观察个位上的数就可以了。

  (2)问:为什么3的倍数特征要看各个数位相加的和呢?

  举例24是不是3的倍数,但是个位4是吗?这是为什么?自己分一分,画一画,看看24为什么是3的倍数?

  一个十3个3个分余1根,第二个余1根,两个各余1根,在和个位继续分,

  138分一分,试一试,看看是不是3的倍数

  一个百3个3个分最后剩1根,三个十3个3个分,每个余1根,所以剩三个一,个位傻上还剩一个8,合起来继续分,12个继续分。

  (2):梳理一下:24、138,分一遍,你发现什么?(剩余就是3的倍数。数位是几,余数就是几)无论百位上是几,3个3个分完,就剩几。

  P:剩余的小棒正好是每个数位加起来的数。(因为这些数位和剩下的数相同,所以可以直接把数位上的数相加,如果和是3的倍数,那么这个数就是3的倍数,如果不是,就不是3的倍数。)

  三、巩固拓展,形成能力(10分钟)

  (一)巩固训练,夯实基础

  1、口头练习:是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是3的倍数,再算一算各个数位上的和是不是3的倍数?

  把一个数各个数位上的数相加是3的倍数……

  2、圈出3的倍数的数:42、78、111、165、655、5988

  3、□2,这是一个两位数,十位被遮盖住了,如果它是3的倍数,猜一猜,这个数可能是几?为什么?

  (预设:生1:1。

  师:可以吗?还有其他答案吗?

  生2:1,4,7都可以。

  师:理由呢?

  生2:1+2=3,4+2=6,7+2=9,3,6,9都是3的倍数,所以填1、4、7都可以。

  师:恭喜你,三种可能都被你们猜中了!

  师:如果它既是2的倍数,又是3的倍数呢?

  生:24。

  师:为什么只有24可以呢?

  生:因为只有24既是2的倍数,又是3的倍数。)

  (二)拓展训练,灵活创新

  以前我们用除法来检验这个数是不是3的倍数,今天我们又学了3的倍数特征,我们只需要求各个数位上的和是3的倍数就可以,但是如果遇到这样的题怎么办?(PPT)

  13689362754、123456789

  老师:如果用各个数位之和是3的倍数,比较麻烦。

  但是我们用划掉3的倍数的方法求,这样即便是很复杂的数也能特别轻易的解决。比如:13689362754,从左开始,1不够,看13,是3的4倍,余1,和6组成16余1,18算完……

  后面的练习我们下课完成,好,这节课不仅发现3的特征,还根据特点发现简便地判断方法,更可贵的发现了背后的道理。学习数学就是这样,不仅要知其然还要知其所以然。希望同学们能在快乐的数学海洋里继续愉快地畅游。这节课我们就上到这里,下课。

  教师巡视,个别辅导。

  (二)同伴讨论,互助共进

  完成学案中“同伴合作,互助共进”内容。

  重点交流学生所举的例子。

  教师巡视,个别辅导。

  设计意图这一环节由学生自学和同伴合作,完成因数倍数的知识的学习。

  四、师生共学,交流分享(5分钟)

  (一)小组展示,彰显风采

  指名小组进行汇报。

  (二)师生完善,共同提高

  1、学生纠正、补充、质疑

  2、教师精讲、点拨、

  在学生讨论比较充分的基础上,教师进行点拨来完善学生对比的认识。

  设计意图通过教师的点拨完善学生对比的认识。

  五、巩固拓展,形成能力(10分钟)

  (一)巩固训练,夯实基础

  先由学生自主完成学案中相应的内容,再同桌交流,完善答案。

  1、是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是是不是3的倍数,再算一算各个数位上的和是不是3的倍数?

  把一个数各个数位上的数相加是3的倍数……

  2、看一看哪些是3的倍数:42、78、111、165、655、5988

  原来判断是用除法,现在用加法。改革了

  3、不用计算,能快速算出来那个式子有余数吗?

  802、3;342、3

  4、下面的数是3的倍数吗?888、555,那这样的三位数都是三的倍数吗?P:777、888,可以想成3个8相乘,像这样的三位数一定是3的倍数

  5、下面都是吗?789、345、654

  都是,有什么特点?相邻、连续三个自然数。

  是不是所有都是呢?举例:123.为什么呢?

  654,把大的给小的,把6给4,三个都是5了,把较大数给叫小叔一个,数字和不变,所以一定是3的倍数。

  6、是吗?363、669、993。是。有简便的方法吗?每个数学都是3的倍数,这个数字和一定是3的倍数。

《3的倍数的特征》教案13

  课题:3的倍数的特征

  教学目标:

  1、让学生找3的倍数,通过活动感悟3的倍数的特征,并用自己的话进行总结 。

  2、通过探索活动,感受数学的乐趣;同时使学生明白数学活动就是找规律。

  教学重、难点:3的倍数的数的`特征。

  教学过程:

  一、出示课题:3的倍数的特征。

  (课件出示课题)

  师:同学们,我们已经知道了2、5的倍数的特征,首先我们来回忆一下,哪位同学来说一说?(大部分同学会举手。)

  (课件展示2 、5倍数的特征)

  那么3的倍数会有什么特征呢?谁能猜测一下?

  (课件出示疑问)

  二、讨论学习

  首先教师预设:个位上是3、6、9的数是3的倍数。

  老师就此让学生讨论。

  教师预设:个位上是3、6、9的数不一定是3的倍数,如23、7 6、109都不是3的倍数。

  师:90、12、21、27、108等数个位上不是3、6、9,但这些数都是3的倍数。

  师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)

  师:出示下列数字,让学生判断是否有因数3

  105 25 372 56 981 42 21 36 89 90 123 48

  再问:是怎么找出来的?能说说3的倍数的特征了吗?如果不能。请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,让学生圈出3的倍数。)

  (课件展示下表,先有数字,根据教学进度再划线)

  三、自主探索,总结3的倍数的特征

  师:先请在表中找出3的倍数,并做上记号。(教师出示百以内数表,并和学生一起勾画。)(如下图)

  师:有规律吗?相互说说看。可能还是无所适从。

  这时候老师不能再为难学生了,提示:把把每位上的数加起来,看看和3有什么关系?

  教师预设:和是3的倍数。

  老师进一步就让学生分组实验:

  一组:1--30以内的

  二组:31--60以内的

  三组:61--100以内的

  学生很快就有了答案:每个数都符合刚才说的特征。

  老师就势让学生口头表述,并加深记忆。

  四、巩固练习

  同桌之间相互出题:各写几个三、四位的数判断是否是3的倍数。

  教师逐个检查练习效果。

  五、课堂小结:全班齐读书上的结论,一个数各位上的数字加起来,和是3的倍数,这个数就是3的倍数。

  六、课外练习:完成相应习题

《3的倍数的特征》教案14

  教学内容:

  教材19页内容,能被3整除的数的特征。

  教学要求

  使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。

  教学重点:能被3整除的数的特征。

  教学难点:会判断一个数能否被3整除

  教学方法:

  三疑三探教学模式

  教具学具:

  课件等。

  教学过程

  一、设疑自探(10分钟)

  (一)基本练习

  1、能被2、5整除的`数有什么特征?

  2、能同时被2 和5整除的数有什么特征?

  (二)揭示课题

  我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?这节课我们就来研究能被3整除的数的特征(板书课题)

  (三)让学生根据课题提问题。

  教师:看到这个课题,你想提出什么问题?(教师对学生提出的问题进行评价、规范、整理后说明:老师根据同学们提出的问题,结合本节内容归纳、整理、补充成为下面的自探提示,只要同学们能根据自探提示认真探究,就能弄明白这些问题。)

  (四)出示自探提示,组织学生自探。

  自探提示:

  自学课本19页内容,思考以下问题:

  1、观察3的倍数,你发现能被3整除的数有什么特征?举例验证。

  2、能被2、3整除的数有什么特征?

  3、能被2、3、5整除的数有什么特征?

  二、解疑合探(15分钟)

  1、检查自探效果。

  按照学困生回答,中等生补充,优等生评价的原则进行提问,遇到中等生解决不了的问题,组织学生合探解决。根据学生回答随机板书主要内容。

  2、着重强调;

  一个数各个数位上的数字之和能被3整除,这个数就能被3整除。

  三、质疑再探(4分钟)

  1、学生质疑。

  教师:对于本节学习的知识,你还有什么不明白的地方,请说出来让大家帮你解决?

  2、解决学生提出的问题。(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)

  四、运用拓展(11分钟)

  (一)学生自编习题。

  1、让学生根据本节所学知识,编一道习题。

  2、展示学生高质量的自编习题,交流解答。

  (二)根据学生自编题的练习情况,有选择的出示下面习题供学生练习。

  1、判断下列各数能不能被3整除,为什么?

  72 5679 518 90 1111 20373

  2、58 115 207 210 45 1008

  有因数3的数:( )

  有因数2和3的数:( )

  有因数3和5的数:( )

  有因数2、3和5的数:( )

  让学生说说怎么找的。

  (三)全课总结。

  1、学生谈学习收获。

  教师:通过本节课的学习,你有什么收获?请说出来与大家共同分享。

  2、教师归纳总结。

  学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。

  板书设计:

  能被3整除的数的特征 一个数各个数位上的数字之和能被3整除,

  这个数就能被3整除。

《3的倍数的特征》教案15

  恩格斯说过:“思维是人类文化历史长河中一朵美丽的浪花。”课堂教学中,有效地引导学生思维,不仅可以启迪智慧,也能激发或抚慰人的情怀,使人赏心悦目、动人心弦,给人以美的享受。3的倍数特征这节课教学中,我让学生在猜想——讨论——验证的过程中感受到数学是形象的、有趣味的和美丽的。在学习过程中,师生共同探讨,开阔学生思维,感受教学的乐趣。

  教学片断一

  一、在知识链接中,激活思维

  师:我们学习了2、5的倍数的特征,谁来说说?

  生1:个位上是0、2、4、6、8的数都是2的倍数。

  生2:个位上是0或5的数都是5的倍数。

  师:那怎样判断一个数既是2的倍数、又是5的倍数呢?

  生3:看这个数的个位是不是0。

  师:请一、二组的同学根据自己的学号说说是不是2、5的倍数。

  生1:我的学号是1,既不是2的倍数,也不是5的倍数。

  生2:我的学号是2,是2的倍数。

  教学片断二

  二、在新知探究中,发展思维

  师:看来我们已经掌握了2、5的倍数的特征,今天我们来学习3的'倍数的特征,(板书)3的倍数的特征怎样呢?是不是和2、5的倍数的特征一样,只要看“个位”呢?请同学们一起来讨论这个问题。

  生1:我认为看个位可以。如:33、36、39它们的个位分别是3、6、9这些数都是3的倍数。

  生2:我认为不能只看个位。如:23、16、29它们的个位虽然也是3、6、9,但这些数不是3的倍数。

  生3:但也有的数它们不是3、6、9,如:24、45,可是这些数都是3的倍数。

  师:那么3的倍数有什么特征呢?你们可以以45为例,在它的前后面添上一个数、两个数、三个数……,老师能很快判断能否是3的倍数。

  生1:前面添上2。 (×)

  生2:后面添上24。 (√)

  生3:前面添上3,后面添上53。 (×)

  师:请们用计算器验证一下,看看老师判断对不对?

  (学生验证后,产生疑惑)

  师:老师判断对不对呀?

  生:(齐答)对。

  师:其实老师也不是圣人,不过知道其中的奥妙,先掌握其中的规律罢了,你们想知道吗?

  生:(异口同声说)想。

【《3的倍数的特征》教案】相关文章:

《3的倍数的特征》教案08-26

《3的倍数的特征》教案07-01

《3的倍数的特征》教案15篇02-27

《3的倍数的特征》教案(15篇)03-07

《3的倍数的特征》说课稿11-09

《3的倍数特征》教学反思04-11

《3的倍数的特征》教学反思02-11

3的倍数的特征教学反思06-10

3的倍数特征教学反思03-19

3的倍数的特征的教学反思02-18