《组合图形的面积》教案
作为一名教师,就不得不需要编写教案,教案有助于顺利而有效地开展教学活动。那么你有了解过教案吗?下面是小编精心整理的《组合图形的面积》教案,仅供参考,希望能够帮助到大家。
《组合图形的面积》教案1
教学内容:教科书第6页
教学目标:
1、通过观察、分析,弄清图形的组合关系,利用割、补的方法,求组合图形的面积。
2、通过实践操作,培养学生观察、分析以及合理解决问题的能力。
3、在运用数学知识解决实际问题的过程中,让学生体验到成功的乐趣,体会数学的价值。
教学重难点:能正确合理地求组合图形的面积,弄清图形的组合关系,准确判断分割后图形的尺寸。
教学准备:简单图形的纸片、剪刀、多媒体课件
教学过程
一、复习引入
1、课件出示:长方形和正方形。
师:这是我们学过的长方形和正方形。
师:现在要求它们的面积必须知道什么呢?
生:要知道长方形的长和宽,以及正方形的边长。
2、标上相应尺寸。
师:求图形的面积必须要有相应的尺寸,请看!课件出示:
师:现在能算了吗?左右同学各口算一题。
生汇报:长方形的面积=长×宽
=10×5
=50(dm2)
正方形的面积=边长×边长
=4×4
=16(dm2)
[复习长方形、正方形的面积的计算公式,为求组合图形的面积作铺垫,同时让学生体会求图形的面积必须知道相应的尺寸。]
二、新知探究
1、把引入部分的长方形和正方形合二为一
课件出示:
师:这个图形是由我们学过的图形组合而成的',这样的图形叫组合图形。(出示部分课题:组合图形)
2、课件出示一些组合图形。
让学生仔细观察图形的特点后,以小组为单位互相说说它们是由哪些图形组合而成的,然后汇报。
图①
图②
图③
学生可能有其它想法,教师根据学生汇报后小结。
3.小结:①组合图形的组合关系,可以是几个图形的“和”(一般用“割”的方法)。也可以是几个图形的“差”(一般用“补”的方法)。②图形的组合关系,由于观察、分析思考的方法不同,可以有不同的组合关系。
[这一层次设计,让学生弄清图形的组合关系,学会一般的“割”“补”方法,为后一层次找相应尺寸,计算面积作铺垫。]
4、组合图形的面积计算
(1)师:刚才,我们尝试着弄请组合图形的组合关系,下面我们来探究求组合
图形的面积。(将课题补充完整)组合图形的面积 课件出示:
瞧!这是小胖家小区游乐场的平面图,它有多大呢?我们和小胖一起来算一算。你们桌上都有一张按比例缩小的游乐场平面图,想一想该怎么算,小组里可以讨论讨论。
(2)小组合作、动手操作、并汇报
师:(学生若出现第三种割法教师应予以肯定。)如果分割出的简单图形个数越多,计算时的步骤就越多,反而显得麻烦。因此在进行分割的时候,分成两个简单图形就能解决的问题不要分成三个简单图形去解决。
*第五种
移:S=长×宽 用移的方法,移过去边和边拼合部分必须数据
=(8+2)×3 相等。也就是说通过“移”的方法能将原来的
=10×3 图形转化成我们学过的简单图形。
=30(m2)
* 第六种
分割成5块长为3cm,宽为2cm的长方形。
3×2×5
=6×5
=30(m2)
(第五、第六种可视班级情况进行教学。重在培养学生的数感。)
(3)小结:
①求组合图形面积的基本方法是通过“割”、“补”、转化成我们学过的图形
来计算,先割后加,先补后减。
②分割的图形尽量要少。
③我们无论用“割”或“补”的方法,关键必须找到相应的尺寸。
[通过学生动手操作,探究求组合图形面积的多种方法。此环节关键引导学生合理进行“割”或“补”,必须找到相应的尺寸,计算各个简单图形的面积。]
三、及时练习
1、课件出示小胖家的平面图:
小胖想在他家客厅铺木地板,需要买多少平方米的木料?(单位:米)选你喜欢的方法算。
2、课件出示花园放大图:小胖想把花园布置成一个阳光休闲区,请问需要铺多少面积的草地?(单位:米)
[除了常用的割、补方法,同时也可引导学生分割成3个同样的长为6m,宽为2m的小长方形。]
[让学生体会到虽然3个被挖去的图形所占的位置不同,但最后剩余面积是相同的,从中渗透“变”与“不变”的辨证关系。]
四、总结
师:通过今天的学习,你有什么收获呢?
五、作业设计
求下面组合图形的面积
六、教后反思
《组合图形的面积》教案2
一、教材内容:
九年义务教育六年制小学教科书第九册第三单元第五节《组合图形面积的计算》。即P90---91页的例题和练习题。
教学要求:
使学生初步了解组合图形面积的计算方法,会计算一些较简单的组合图形的面积。
使学生掌握组合图形常用的割补方法。
教学重点、难点:
教学重点:利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
教学难点:
根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。
教学过程:
以寻标追源为教学模式,以目标教学为基本教学形式,以尝试法为主要教学手段。
前置回顾,展示目标;
在发散思维中探究新知,精讲点拨,完成目标;
概括总结,反馈矫正。
㈠、引标:创设情境,引导探索
⒈旧知辅垫,诱发注意
电脑显示单车、榨栏、阶梯组合图,标出几种已学过的三角形、平行四边形、长方形、梯形,让学生说出名称和面积计算字母公式。
(这里通过实物感知,了解各平面图形的特征,说出面积公式,加深对旧知识的复习,沟通新旧知识的联系,为学习新知识做好铺垫。)
设景感知,激活思考
电脑显示一幅美丽的画面,一位小天使对一面墙提出问题:你能计算这幢房的侧面墙的面积吗?从而揭示课题《组合图形面积的计算》。
(这样通过直观并带有趣味的引导,使学生产生好奇心,引起学习动机,迫切试一试的愿望。从而吸引了学生的注意力,激发了学生的求知欲,从这里打开学生通道,促使学生想方设法去找组合图形面积的计算方法。)
(二)寻标:提出问题,寻找目标
叫学生齐读课题后,问:读了课题,你们想知道组合图形的什么知识?(组合图形面积如何计算)好,请同学们看书P90---91页,能否自己解决这些知识,看看它对这些知识是怎样讲的。
(在这里老师先不做讲解,让学生带着求知欲看书,这是根据尝试原则,让学生在自我评价中获取新知识,它是教学的一种有效尝试。)
(三)探标:追源问底,引导发现
提出问题:为了求组合图形的面积,书上是如何讲的?、除了书上的分割方法外,你还有别的分割方法来求这个组合图形的面积吗?从而引发学生的发散思维。
电脑显示学生可能想到的分割方法:
①分成一个三角形和一个长方形;
②分成两个梯形;
③分成三个三角形。
其它方法给予口头定正正误。
2.展示各种想法,得出组合图形面积的求法。
⒊发散引导,找出新的解法:
让学生观察分的方法后,提出问题:刚才所讲的都是把组合图形分成几个已学过的.平面图形,那还有除了分以外的别的方法吗?
电脑显示补的方法,并指出平面组合图形求面积的方法,常用的方法就是分、补两种方法。
(这里有目的运用迁移规律,启发引导学生,教给学生获取知识的方法,以旧探新,引导学生看书、讨论、进行观察比较、概括,找到解决问题的方法,培养学生的探索精神。也有利于发挥学生的主体作用,同时使学生在探索规律的过程中发展思维能力。)
《组合图形的面积》教案3
教学内容:
《义务教育课程标准实验教科书数学》(人教版)五年级上册 “组合图形的面积”
教学目标:
1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
教学重点:
在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
教学难点:
根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。
教学准备:
课件、图片等。
教学过程:
一、 创设情境,引导探索
师:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。 (指名回答)
生1:这枝铅笔的面是由一个长方形和一个三角形组成的。
生2:这条小鱼的面是由两个三角形组成的。……
师:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?
【设计意图:根据学生已有的知识经验和生活经验,让学生在课前进行搜集生活中的组合图形的图片,学生热情高涨、兴趣盎然。通过学生查、拼、摆、画、剪、找等活动,使学生在头脑中对组合图形产生感性认识。】
二、探索活动,寻求新知
师:生活中有许多组合图形,老师准备了3幅,大家观察一下,这些组合组图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?
图一 图二 图三 课件逐一出示图一、图二、图三,让学生发表意见。
生1:小房子的表面是由一个三角形和一个正方形组成的。
生2:风筝的面是由四个小三角形组成的。
生3:队旗的面是由一个梯形和一个三角形组成的。……
师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形? 生1:由两个或两个以上的图形组成的是组合图形。
生2:有几个平面图形组成的图形是组合图形。……
师小结:组合图形是由几个简单的图形组合而成的。
图一:是由三角形、长方形、加上长方形中间的正方形组成的,
面积 = 三角形面积+长方形面积-正方形面积
图二:是由两个三角形组成的。
面积 = 三角形面积+ 三角形面积
图三:作辅助线使它分成一个大梯形和一个三角形。
方法一:是由两个梯形组成的。
师:为什么要分成两个梯形?怎样分成两个梯形?
引导学生说出将它转化成以学过的简单图形以及在图中作辅助线。
师:是的,可以用作辅助线的方法将它转化成以前学过的简单图形来计
(板书:转化)。大家想想,用辅助线的方法还有不同的作法吗?
方法二:作辅助线补成一个长方形,使它变成一个大长方形减去一个三角形。
方法三:作辅助线使它分成一个大梯形和一个三角形。
(课件分别演示这三种方法)
分割法 添补法
师:数学中我们习惯用分割法或添补法,用辅助线来把一个复杂的组合图形转
变成比较简单的图形,为计算带来简便。画辅助线时要注意画虚线,以及用铅笔和直尺作图。
板书:分割法或添补法(转化):分解成简单图形。
师:请你找一找生活中哪些地方的表面有组合图形呢?(学生自由回答,对学生们正确的回答要给予好的评价,特别是要鼓励不爱举手的学生讲一讲。注意座在后排的学生表现)
师:同学们认识组合图形了,那么大家还想了解有关组合图形的哪些知识? 生1:我想了解组合图形的周长。
生2:我想知道组合图形的面积怎样计算。……
这节课我们重点学习组合图形的面积。
【设计意图:“方法是数学的行为、思想是数学的灵魂”, 既然它们是由几个简单图形组合而成的,那么分解它们的组成,就可以来个“原路返回”——分解成几个简单图形的和或差。培养学生灵活的分析问题解决问题的能力,帮助学生独立分析问题。潜意识的教学思想中既重“方法”又重“思想”。 体现数学知识从“行为”到“灵魂”的内化过程。同时形成强烈的求知欲。】
三、探讨例题,学习新知
师:同学们的表现真了不起。老师家这几天装修房子,要刷新墙体。刷新墙体的工人工资是平方米来计算的,请你们帮我算一算。(课件出示例4)
例4:右图表示的是一间房子侧面墙的形状。它的面积是多少平方米?
师:怎样才能计算出这个组合图形的面积呢?
先让学生思考,再动手计算。
交流汇报
方法一:把这个组合图形一分为二,一个是正方形,另一个是三角再分别算出正方形和三角形的面积,最后算出它们的面积和,就可以求出这个图形的面积。
师:这是一个不错的想法。要算每个简单图形的面积分别需要哪些条件?请找一找,并标出来。
指名学生找相应的条件。
在实物投影仪上展出示学生的答案
①5×5=25 (平方米)
②5×2÷2=5(平方米)
③25+5=30 (平方米)
答:房子侧面墙的面积是30平方米。
(注意检查做错的同学,找出错的.原因。)
师:除了这种方法,还有同学用别的方法吗?
方法二:先把这个图形补上两个三角形,看作一个长方形,先算出长方的面积后,再减去两个小三角形的面积。
师:能找出每个简单图形的已知条件吗? 让学生找相应的条件。 展示学生答案
长方形:长:5+2=7米、宽:5米; 三角形:底是2米,高是2.5米。 5×(5+2)-2.5×2÷2×2
=35-5 =30(平方米)
答:房子侧面墙的面积是30平方米。
方法三:把这个图形从顶点向下作一条垂线,就分成两个梯形,这两个梯形面积是相等的,所以只要求出一个梯形的面积再乘以2,就得到这个组合图形的面积。 同样让学生找出计算梯形面积的相应已知条件。
展示学生的答案
(5+7)×2.5÷2×2=30(平方米) 答:房子侧面墙的面积是30平方米。
让学生发表意见。
小结:使用了分割法或添补法,作辅助线把组合图形转化成简单图形来计算面积。(也就是先把组合图形分解成已经学过的图形,然后分别求出它们的面积再相加。)
师:非常感谢大家为我解决了难题,在日常生活中,到处都有组合图形,我们计算面积时,根据“图形位移,面积不变”的道理,用辅助线把它进行割、补、拼转化成简单的图形,再计算出该组合图形的面积就方便多了,这些方法中有的简单,有的繁琐,如果没有要求多种方法的,我们尽量选择最简单的方法来计算。
【设计意图:对于例题的教学,由于学生有了新课开始的拼组基础,每个学生
对求它的面积会有一定的思考,把自己所知道的方法在小组内说一说,通过四人小组一起来分一分、算一算,给学生充足的探索时间和机会,让学生进一步理解和掌握组合图形的计算方法,并引导学生寻找最简方法,实现方法的化。培养学生小组合作能力、空间想象能力,从而提高学生解决的能力。能充分利用刚学的学习方法解决实际问题。】
四、利用新知,解决生活中的问题。
做一做
刚才同学们帮老师算了刷新墙的面积,客厅大概是下图这种形状。准备铺上地板砖,大家能帮老师计算一下客厅的总面积吗?小组合作,讨论完成,教师参与小组活动。
方法一:把组合图形分割成两个 长方形。 4×3+3×7 =12+21 =33(cm2)
方法二:分割成一个长方形和一个正方形。 4×6+3×3 =24+9 =33(cm2)
第三种方法:分割成两个梯形。 (3+7)×3÷2+(3+6)×4
7×6-3×3 =42-9 =33(cm2)
让学生说一说试用了什么方法?前三种使用了分割法,最后一种使用了添补法。
练习过程如上,分解图形如下。同学们真了不起,老师很感谢大家。 2、孩子们利用今天所学的知识 ,做个助人为乐的学生,好吗?
现在你能帮工人叔叔算算这
个指示路牌的面积吗?
【设计意图:1、开放式练习,把枯燥无味的面积计算,溶入到丰富多彩的数学活动中,让学生知道数学与生活的密切联系,利用数学知识解决生活中的实际问题,同时对学生进行德育教育。2、前边的练习后进生可能出现错误,有失败感。自己选择习题,可能选到自己会做的,从而能体会一些成功。对于优生,可能不满足前边练习的深度,自主选择较深的题目,能拓展新知。】
五、课堂评价
师:这节课你学到了什么?
结束语:同学们在这节课表现非常出色!计算组合图形的面积,一般是把它们分割或添补成我们学过的简单图形,如长方形、正方形、三角形、梯形、平行四边形等,要注意根据已知条件分或补,再计算它们的面积。
【设计意图:以板书来表现,学生通过试做汇报、交流观察。体现了重视学生的思维过程,将思维过程充分的暴露出来,体现了算法多样性,为学生提供了充分的参与空间;体现了对学生思维能力的培养,发展了学生的空间观念,提高了学生解决问题的能力。】
课堂检测A
1、这是我们学校将要开辟的一块草坪,如下图。由哪些简单图形组成的?你能算出它的面积吗?
现在有两家公司联系,A公司说种一平方米草要5元,B公司说种同样的草一共需要
2500元。如果让你决定,你会选择哪家公司?
2、同学们,我们学校少先大队准备给每个班做一面“中队旗”,不知道该用多少布,想请大家帮忙,你们愿意吗?我们已经知道“中队旗”也是一个组合图形,现在请同学们根据图中提供的数据,选择自己喜欢的方法计算出用布的面积。我们比一比谁的方法更新颖、更快捷!
课堂检测B
1、在一块梯形的地中间有一个长方形的游泳池,其余的地方是草地。草地的面积是多少平方米?
想种上红花、黄花和绿草。一种设计方案如图。你能分别算出红花、黄花、绿草的种植面积吗?
答案:课堂检测A
1、50×33+35×12÷2
=1650+210
=1860(厘米)
2、33×26-26×13÷2
=758+169
=927(厘米)
课堂检测B
1、(40+70)×30÷2-30×15
=1650-450
=1200(厘米)
2、长方形地的面积:18×12=216(平方米) 绿草面积(一半):216÷2=158(平方米) 黄花面积:216÷4=58(平方米) 红花面积:216÷4=58(平方米)
《组合图形的面积》教案4
教学目标:
使学生初步了解组合图形面积计算的方法,会计算一些较简单的组合图形的面积。
教学过程:
一、复习
1、提问:是什么?面积怎么计算?(生答师板书出面积公式)
2、这些图形的面积我已经会算了,但在实际生活中,有些图形是由几个简单的图形组合而成的.。这种组合图形的面积该怎么计算呢?今天我们来学习这个内容。出示课题:组合图形面积的计算
二、新课教学
1、教学例题
师:组合图形就是由我们学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。在实际生活中有时需要计算这些组合图形的面积。例如房子侧面墙的形状是这样的:(出示图)
⑴、计算这个图形的面积我们学过吗?
⑵、小组讨论能否把它分成几个我们学过的图形?
⑶、汇报:这个图形分成了一个三角形和一个正方形,它的面积就是这两个图形的和。
⑷、学生在书上完成,集体订正。
⑸、:在实际生活中见到的物体,有很多是由我们学过的这些基本图形组合而成的。计算组合图形的面积,应鸹把它分成简单图形,分别计算各块的面积,再把它们合起来就行了。
2、试一试
90页“做一做”
⑴、看图,说说这个图形由哪些图形组合成?
⑵、独立练习
⑶、订正
三、巩固练习
第二题出示中队旗
小组讨论有几种解法。
独立做
汇报:说说你的想法。
第四题理解题意
独立思考,小组交流
做出来
四、作业
练习二十一(1、2)
板书设计:
组合图形的面积计算
教后感:
《组合图形的面积》教案5
教学内容:
教材P99例4及练习二十二第1~6题。
教学目标:
知识与技能:
结合生活实际认识组合图形,并掌握用分解法或添补法求组合图形的面积。
过程与方法:
根据各种组合图形的自身条件,选择有效的计算方法进行面积计算。
情感、态度与价值观:
能运用组合图形的知识,解决生活中组合图形的实际问题。
教学重点:
理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的条件。
教学难点:
根据组合图形的条件,有效地选择汁算组合图形面积的方法。
教学方法:
动手实践、自主探索、合作交流。
教学准备:
师:多媒体、各种平面图形。
生:七巧板、简单图形学具、少先队中队旗实物。
教学过程
课前预习案
1、判断
(1)两个完全相同的梯形可以拼成一个平行四边形,拼成的平行四边形的面积是梯形的2倍。 ( )
(2)梯形的面积比平行四边形的面积小。 ( )
(3)一个面积是80平方厘米的平行四边形,分割成两个完全一样的梯形,每个梯形的面积是40平方厘米。 ( )
一、谈话导入
师:我们一起来复习前面学过的图形的面积公式:
正方形的面积=边长×边长
长方形的面积=长×宽
平行四边形的面积=底×高
三角形的面积=底×高÷2
梯形的面积=(上底+下底)×高÷2
二、自主探究:
1.探究活动一:组合图形的分解:
(1)观察课本99页的四幅主题图,说说它们分别是由哪些简单图形组成的?
(2)一个组合图形我们可以把它分割成已学过的几个图形,试着把下面的图形分一分。
(3)同一个图形,我们从不同的角度认识,也可以分成几个不同的基本图形。分一分,看看我们的队旗可以分成哪些不同的基本图形?
(4)找一找生活中的组合图形。
2.探究活动二:计算组合图形的面积。
(1)出示例题,讨论交流:怎样计算这面墙的面积?
(2)一个组合图形我们可以分成已经会计算面积的几个简单图形,分别计算出它们的面积,再求和。
(3)尝试解答:
方法一:这面墙的.形状可以分成一个( )和一个( )。
把组合图形分成一个三角形和一个正方形,先分别算出三角形和正方形的面积,再相加。
教师可将学生的分法用多媒体展示:
并根据学生回答板书:
5×5+5×2÷2
=25+5
=30( m2)
方法二:这面墙的形状可以分成两个相同的( )形。
把这个组合图形分成两个完全一样的梯形。先算出一个梯形的面积,再乘2就可以了。
教师可将学生的分法用多媒体展示:
并根据学生回答板书:
(5+5+2)×(5÷2)÷2×2
=12×2.5÷2×2
=30(m2)
教师鼓励学生算法的多样化,并选择自己喜欢的方法计算。
三、课堂达标
1.判断。
(1)任何一个平行四边形都可以分割成两个完全一样的梯形。( )
(2)等底等高的两个三角形可以拼成一个平行四边形。 ( )
2.一个三角形的面积是22.5平方分米,与它等底等高的平行四边形的面积是多少平方米?
3.练习十八的第1题,先让学生对组合图形分一分,说一说是如何分割的,再计算。
学生可能会把组合图形分成一个平行四边形和一个三角形,也有的可能分成两个三角形和一个梯形。这时要让学生对这两种方法进行比较,从而选择较简便的方法解决问题。
4.练习十八的第2题
本题图形是队旗,在例题里已经对其进行了简单的分析,这里可以让学生思考“能用几种方法计算”,拓展学生的思维。
学生可能会想到:把队旗分成两个梯形,求两个梯形面积的和;或者把队旗分成一个长方形和两个三角形,求它们的面积之和;或者用一个长方形的面积减去一个三角形的面积求队旗的面积。
(1)由中队旗引入 (2)算出它的面积。(单位:厘米)--可能有下面几种情况
S总=S梯×2 S总=S长-S
5.练习二十二的第3题。
先独立思考如何计算,再自主算一算。通过这两道题的练习,让学生知道计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。
6.练习十八的第4、5题,生独立完成。
四、课堂小结
师:这节课你学会了什么?有哪些收获?
引导总结:
1.由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
2.求组合图形的面积时,可以把它分割成我们学过的简单图形,计算出简单图形的面积后再相加。
3.计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。
作业布置:
板书设计:
组合图形的面积
由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
5×5+5×2÷2 (5+5+2)×(5÷2)÷2×2
=25+5 =12×2.5÷2×2
=30(m2) =30 (m2)
《组合图形的面积》教案6
教材分析
1.课标中对本节内容的要求是:在探索活动中认识组合图形,归纳并运用不同的方法计算组合图形的面积,从而解决相应的实际问题。教材把这一内容安排在平行四边形、三角形和梯形面积计算之后学习,让学生知道在进行组合图形面积计算中,要把一个组合图形分解成已学过的平面图形并进行计算,这样可以巩固对各种平面图形特征的认识和面积公式的运用,又有利于发展学生的空间观念。因此本课在本单元中起着承上启下的作用,从简单的图形向不规则图形和组合图形的知识转化。
2.本节课的核心内容的功能和价值主要体现在两个方面:一是感受计算组合图形面积的必要性,也是日常生活中经常需要解决的问题。二是针对组合图形的特点强调学生学习的自主探索性,每个学生可以根据自己的经验思考与解决习惯去思考如何解决相应的实际问题,从而培养学生个性化解决问题的能力。
学情分析
1.本班共41名学生,从过去的学习情况来看,整体基础比较扎实,学习能力较强。最为关键的'是:本班学生有85%的学生都酷爱数学这门课程(具体调查统计过)。只有部分学生对数学喜欢程度一般。总体上学生思维活跃,好动、好学已经具备了一定的自学能力。且通过之前的作业反馈、师生交流及我班特色“每天三问”的反馈对本班教学也有一定的指导意义。
2.本课的授课对象是五年级的学生,学生通过之前的学习,对于平面图形直观感知和认识上已有了一定的基础,也掌握了一些基本图形面积的计算方法。作为五年级的学生,应进一步提高知识的综合运用能力,在学习中去探索掌握解决问题的思考策略。
3.学生认知障碍点:拓展学生采用不同的方法来解决问题的能力方面是本节课最主要的障碍点。
教学目标
1、知识目标
(1)认识简单的组合图形,会把组合图形分解成已学过的平面图形并计算出它的面积。
(2)能运用所学的知识,解决生活中有关组合图形面积的实际问题。
2、技能目标
(1)在观察、列举中认识简单的组合图形,在尝试、交流中探索组合图形面积的计算方法。
(2)学会用分割法、填补法计算组合图形的面积。
3、情感目标
(1)结合具体的题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。
(2)渗透转化的数学思想和方法。
教学重点和难点
重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个小图形所需的条件。
难点:如何选择有效的计算方法解决问题。
《组合图形的面积》教案7
一、知识要点
在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
二、精讲精练
【例题1】求图中阴影部分的面积(单位:厘米)。
【思路导航】如图所示的特点,阴影部分的面积可以拼成 圆的面积。
62×3.14× =28.26(平方厘米)
答:阴影部分的面积是28.26平方厘米。
练习1:
1.求下面各个图形中阴影部分的面积(单位:厘米)。
2.求下面各个图形中阴影部分的面积(单位:厘米)。
3.求下面各个图形中阴影部分的面积(单位:厘米)。
【例题2】求图中阴影部分的面积(单位:厘米)。
【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。
从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。
3.14× -4×4÷2÷2=8.56(平方厘米)
答:阴影部分的面积是8.56平方厘米。
练习2:
1.计算下面图形中阴影部分的面积(单位:厘米)。
2.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。求长方形ABO1O的面积。
【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。所以3.14×12×1/4×2=1.57(平方厘米)
答:长方形长方形ABO1O的面积是1.57平方厘米。
练习3:
1.如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。
2.如图所示,直径BC=8厘米,AB=AC,D为AC的中点,求阴影部分的面积。
3.如图所示,AB=BC=8厘米,求阴影部分的面积。
【例题4】如图19-14所示,求阴影部分的面积(单位:厘米)。
【思路导航】我们可以把三角形ABC看成是长方形的一部分,把它还原成长方形后(如图所示)。
I和II的面积相等。
因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的两组三角形面积分别相等,所以
6×4=24(平方厘米)
答:阴影部分的面积是24平方厘米。
练习4:
1.如图所示,求四边形ABCD的面积。
2.如图所示,BE长5厘米,长方形AEFD面积是38平方厘米。求CD的长度。
3.图是两个完全一样的直角三角形重叠在一起,按照图中的已知条件求阴影部分的面积(单位:厘米)。
【例题5】如图所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=30度,求阴影部分的面积(得数保留两位小数)。
【思路导航】阴影部分的面积等于平行四边形的面积减去扇形AOC的面积,再减去三角形BOC的面积。
半径:4÷2=2(厘米)
扇形的圆心角:180-(180-30×2)=60(度)
扇形的面积:2×2×3.14×60/360≈2.09(平方厘米)
三角形BOC的面积:7÷2÷2=1.75(平方厘米)
7-(2.09+1.75)=3.16(平方厘米)
答:阴影部分的面积是3.16平方厘米。
练习5:
1.如图所示,∠1=15度,圆的周长位62.8厘米,平行四边形的面积为100平方厘米。求阴影部分的面积(得数保留两位小数)。
2.如图所示,三角形ABC的面积是31.2平方厘米,圆的直径AC=6厘米,BD:DC=3:1。求阴影部分的面积。
3.如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。
4、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。
组合图形面积计算(二)
一、知识要点
对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。有些图形可以根据“容斥问题“的原理来解答。在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积。
二、精讲精练
【例题1】如图所示,求图中阴影部分的面积。
【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米
[3.14×102×1/4-10×(10÷2)]×2=107(平方厘米)
答:阴影部分的面积是107平方厘米。
解法二:以等腰三角形底的中点为中心点。把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。
(20÷2)2×1/2-(20÷2)2×1/2=107(平方厘米)
答:阴影部分的面积是107平方厘米。
练习1:
1.如图所示,求阴影部分的面积(单位:厘米)
2.如图所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。求红蓝两张三角形纸片面积之和是多少?
【例题2】如图所示,求图中阴影部分的面积(单位:厘米)。
【思路导航】解法一:先用长方形的面积减去小扇形的面积,得空白部分(a)的面积,再用大扇形的面积减去空白部分(a)的`面积。如图所示。
3.14×62×1/4-(6×4-3.14×42×1/4)=16.82(平方厘米)
解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积。
3.14×42×1/4+3.14×62×1/4-4×6=16.28(平方厘米)
答:阴影部分的面积是16.82平方厘米。
练习2:
1.如图所示,△ABC是等腰直角三角形,求阴影部分的面积(单位:厘米)。
2.如图所示,三角形ABC是直角三角形,AC长4厘米,BC长2厘米。以AC、BC为直径画半圆,两个半圆的交点在AB边上。求图中阴影部分的面积。
3.如图所示,图中平行四边形的一个角为600,两条边的长分别为6厘米和8厘米,高为5.2厘米。求图中阴影部分的面积。
【例题3】在图中,正方形的边长是10厘米,求图中阴影部分的面积。
【思路导航】解法一:先用正方形的面积减去一个整圆的面积,得空部分的一半(如图所示),再用正方形的面积减去全部空白部分。
空白部分的一半:10×10-(10÷2)2×3.14=21.5(平方厘米)
阴影部分的面积:10×10-21.5×2=57(平方厘米)
解法二:把图中8个扇形的面积加在一起,正好多算了一个正方形(如图所示),而8个扇形的面积又正好等于两个整圆的面积。
(10÷2)2×3.14×2-10×10=57(平方厘米)
答:阴影部分的面积是57平方厘米。
练习3:
1.求下面各图形中阴影部分的面积(单位:厘米)。
2.求下面各图形中阴影部分的面积(单位:厘米)。
3.求下面各图形中阴影部分的面积(单位:厘米)。
【例题4】在正方形ABCD中,AC=6厘米。求阴影部分的面积。
【思路导航】这道题的难点在于正方形的边长未知,这样扇形的半径也就不知道。但我们可以看出,AC是等腰直角三角形ACD的斜边。根据等腰直角三角形的对称性可知,斜边上的高等于斜边的一半(如图所示),我们可以求出等腰直角三角形ACD的面积,进而求出正方形ABCD的面积,即扇形半径的平方。这样虽然半径未求出,但可以求出半径的平方,也可以把半径的平方直接代入圆面积公式计算。
既是正方形的面积,又是半径的平方为:6×(6÷2)×2=18(平方厘米)
阴影部分的面积为:18-18×3.14÷4=3.87(平方厘米)
答:阴影部分的面积是3.87平方厘米。
练习4:
1.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。
2.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。
3.如图所示,正方形中对角线长10厘米,过正方形两个相对的顶点以其边长为半径分别做弧。求图形中阴影部分的面积(试一试,你能想出几种办法)。
【例题5】在图的扇形中,正方形的面积是30平方厘米。求阴影部分的面积。
【思路导航】阴影部分的面积等于扇形的面积减去正方形的面积。可是扇形的半径未知,又无法求出,所以我们寻求正方形的面积与扇形面积的半径之间的关系。我们以扇形的半径为边长做一个新的正方形(如图所示),从图中可以看出,新正方形的面积是30×2=60平方厘米,即扇形半径的平方等于60。这样虽然半径未求出,但能求出半径的平方,再把半径的平等直接代入公式计算。
3.14×(30×2)×1/4-30=17.1(平方厘米)
答:阴影部分的面积是17.1平方厘米。
练习5:
1.如图所示,平行四边形的面积是100平方厘米,求阴影部分的面积。
2.如图所示,O是小圆的圆心,CO垂直于AB,三角形ABC的面积是45平方厘米,求阴影部分的面积。
3.如图所示,半圆的面积是62.8平方厘米,求阴影部分的面积。
《组合图形的面积》教案8
【教学内容】
义务教育课程标准实验教科书(人教版)小学《数学(第九册)》第92-93页。
【教学目标】
1、在熟悉所学图形面积计算公式的基础上,通过拼一拼、找一找、分一分,并结合生活实际,会把组合图形分解成学过的的基本图形,计算出面积。
2、能运用所学的知识解决生活中的组合图形的实际问题。
3、培养学生动手操作能力,合作交流能力和空间想象能力。
【教学重点】
初步掌握组合图形面积的计算方法。
【教学难点】
正确、灵活地把组合图形转化为所学过的基本图形。
【教学准备】
多媒体课件、学生准备各种图形的卡片。
一、
展示汇报,建立概念。
(一)拼图游戏,初步感知组合图形。
师:师:课前老师发给了同学们一些图形,请你说说老师发给你的是什么图形,你能说出计算这个图形的面积公式吗?
生:自由汇报。
师:你们同桌商量下,利用这些图形拼成最美丽的图案,并说在复习所学的基本图形面积计算的基础上,通过学生拼一拼,说一说的活动,使学在头脑中对组合图
说它们分别是由哪几个简单图形组合而成的。
结合学生拼出图形有针对性的展示几组组合图形,预设下图:
师:四人小组互相看一看、说一说,你们拼的'这个图形分别是由哪些图形拼成的?
师总结:像这样由几个简单的图形组合而成的图形叫组合图形。(板书:组合图形)
(二)找一找,说一说。
师:其实生活中处处都有组合图形,现在你能说出课本P92页的组合图形是由哪些简单图形组合而成的吗?
同桌互相说一说。
师:老师还搜集了一幅生活情境中的图片,(课件出示主题图)请同学们找一找,在这幅图什么地方有组合图形?
生认真观察后并指名回答。
师:我们认识了组合图形,那么你们还想学习有关组合图形的哪些知识?
学生畅所欲言......
师:这节课我们重点学习组合图形的面积。(板书:面积)
(一)小组活动,自主探索。
师:请同学们观察下刚才拼得图形中哪个组合图形最像我们形产生感性的认识。
为下面学习求组合图形的面积打下基础。学生在对组合图形的概念初步了解的基础上,引导学生找生活情境中的组合图形,由具体的实物抽象出几何图形,学生不但加深了对组合图形概念的理解,而且对数学知识与生活的紧密联系有了一定的认识。
二、
在探索过程中,寻求计算方法。
主题图中房子的侧面墙的图?(课件出示例题)
师:如何求这个组合图形的面积呢?先独立想想再小组交流。
小组讨论:
①这个图形有哪些简单图形组合而成的?
②求这个组合图形的面积就是求哪几个图形的面积?
③怎样求?
小组讨论,教师巡视并指导。
小组汇报:
小组1:把组合图形分成一个三角形和一个正方形。(教师在课件中演示分的过程)先分别算出三角形的面积和正方形的面积,再相加。(板书如下)
=S三+S正
小组2:把这个组合图形分成两个完全一样的梯形。(教师在课件中演示分的过程)先算一个梯形的面积,再乘以2。(板书如下)
=S梯×2
(二)引导学生总结方法。
师:想想我们刚才是怎么求这个组合图形的面积的?
学生自由回答。
师:你认为哪种方法简单呢?
学生说自己的想法。
对于例题的教学,由于学生有了新课伊始的拼组基础,每个学生对求它的面积会有一定的思考,把自己所知道的方法在小组内说一说,通过四人小组一起来分一分、算一算,给学生充足的探索时间和机会,让学生进一步理解和掌握组合图形的计算方法。培养学生小组合作能力、空间想象能力,从而提高学生解决的能力。
引导学生根据自己小组讨论的结果,总结求组合图形的方法,让每个学生都参与数学活动。
三、
利用新知,解决生问题。
师总结:在计算组合图形面积时,先把组合图形分解成已学过的图形,然后分别求它们的面积再相加。但是,方法多种多样,同学们要认真观察,多动脑筋,选择自己喜欢而又简单的方法。
师:请同学们打开数学书把例题补充完整。
(三)质疑
师:对于今天所学的新课你有什么疑难地方?计算面积时,还要注意些什么?
学生根据自己的想法回答。
以“你想利用今天所学的知识,做个()学生。”为主线完成以下练习。
A、助人为乐的学生。现在你能帮工人叔叔算算这个指示路牌的面积吗?(课件出示,即课本P95页6)
B、爱动脑筋的学生。要做一面这样的队旗需要多少布?你能想出几种方法?(课本P94页第2题)
(先独立思考,再小组合作交流,最后师生共同分析,提升较简单的方法。)
C、学会欣赏的学生。欣赏利用组合图形拼成的图案及其在生活中的应用。(课件出示)
D、有创新精神的学生。利用所学过的简单图形,设计一幅美丽的图案,量出有用数据,并求出它的面积。
鼓励学生用不同的方法进行计算,并引导学生寻找最简的方法,实现方法的最优化。
以“你想利用今天所学的知识做个什么样的学生。”为主线出现不同层次的练习,把枯燥无味的面积计算,溶入到丰富多彩的数学活动中,让学生知道数学与生活的密切联系,利用数学知识解决生活中的实际问题,同时对学生进行德育教育。
《组合图形的面积》教案9
1. 教学目标
1、运用适当的分割拼补的方法明 确图形的组合关系。
2、利用已经学过的'基本图形面积计算公式正确计算出组合图形的面积。
2. 教学重点/难点
教学重点:
将组合图形分割、拼补成几个基本图形,而这些基本图形是能用图形中标出的长度计算出面积的。
教学难点:
合理 利用图形中标出的长度找出简单合理 的分割拼补方法,以使组合图形面积计算便捷。
3. 教学用具
教学课件
4. 标签
教学过程
一、 复习引入
1、 我们已学过哪些平面图形?
2、 说出它们的面积计算公式 ?
3、 谁能用上面两个或三个拼成一个图形?
4、 揭题:组合图形的面 积
二、 探究新知
1、 出示:下面是一个组合图形,你会求它的面积吗?
1、 小组讨论
2、 小组汇报,集体交流
三、 巩固练习
1、求组合图形的面积
课堂小结
总结
这节课你有什么收获?
课后习题
作业设计
《组合图形的面积》教案10
组合图形面积的计算在义务教育教材中是选学内容。现在放在多边形面积计算最后学习,有利于综合运用平面图形面积计算的知识,进一步发展学生的空间观念。
1. 识组合图形。
编写意图
由于实际生活中,我们见到的物体表面,许多是由我们已学过的正方形、长方形、平行四边形、三角形及梯形组合成的图形,所以教材紧密结合生活实际认识组合图形。
首先教材提供了几个生活中具体物品:中队旗、房屋的一面墙、风筝、由七巧板拼成的一个长方形,通过在这些物品的表面中找图形,使学生认识组合图形是由几个简单图形组合而成的。然后要求学生在自己的生活中找一找组合图形,以巩固对组合图形的认识。
教学建议
(1)教学中,可以使用教材中的实例,也可以应用学生身边的实例。有条件的地方可以做成幻灯片或多媒体课件,方便学生观察和讨论。着重让学生观察这些物品的表面有哪些我们学过的图形,建立组合图形的概念,同时为学习组合图形面积的计算打下基础。
(2)观察实物注意从易到难,例如教材中的房子和七巧板,比较容易找到组成它们的图形,而中队旗学生可能就会有不同的看法,可以看成有两个梯形,也可以看成有一个长方形和两个三角形,还可以看成有一个梯形和一个三角形。要鼓励学生发表不同的看法。
(3)找生活中的组合图形时,要强调从物体的表面上找,不要与立体组合图形混淆。
2.例4及“做一做”。
编写意图
例4是学习组合图形面积的计算,因为限于简单的组合图形,教材主要安排2~3个简单图形的组合。由于一个组合图形可以有不同的分解方法,教材展示了两种计算方法。
“做一做”主要巩固组合图形面积计算,图示已经把菜地分解成一个平行四边形和一个三角形,只需分别计算出它们的面积,再求和。
教学建议
(1)教学例4时,可先组织学生讨论:怎样才能计算出这面墙表面的面积?明确计算组合图形面积的基本思路,即可以把组合图形分成我们已经会计算面积的简单图形,分别计算出它们的面积,再求和。
(2)在讨论的基础上,让学生试做。鼓励学生用不同的方法去计算,然后交流各自的算法。还可以结合学生提出的方法,让学生比较一下,哪种方法比较简便。通过试做、交流、讨论,使学生进一步理解和掌握组合图形面积的计算方法,认识到要根据已知条件对图形进行分解,不是任意分解都能计算的;分解图形时要考虑尽量用简便的方法计算。
(3)“做一做”可由学生独立完成,再说说是怎样算的。同时可以检查学生对平行四边形和三角形面积计算公式掌握的情况。
3. 关于练习十八一些习题的说明和教学建议。
第1题和第2题图形形状是相同的,只是给出的条件不同,都可以用不同的方法计算。第2题提出了“你能想出几种算法?”可以结合第2题进行讨论。一般有以下几种算法。
①求两个梯形面积的和(下左图)
[(80-20+80)×30÷2]×2
= (80-20+80)×30
= 4200(cm2)
②求一个长方形和两个三角形面积的和(下中图)
(80-20)×(30+30)+(30×20÷2)×2
=(80-20)×(30+30)+30×20
= 3600+600
= 4200(cm2)
③用一个长方形的面积减去一个三角形(下右图)
的面积
80×(30+30)-(30+30)×20÷2
=4200(cm2)
第3、4、5题的.思考方法是一样的。通过这几题的练习,使学生知道计算组合图形的面积,不仅做加法,有时也要用一个图形面积减去另一个图形的面积。可以选一道题让学生讨论计算的方法,再独立完成其他几题。第5题要指导学生看图,它不是两幅图,而是一个组合图形的分解图。
第8*题是选作题。根据长方形的长与宽,可以求出它的面积。
18×12 = 216(m2)
红花、黄花和绿草的种植面积,可以根据它们各自占长方形面积的几分之几来计算。
从设计图可以得到:
绿草的面积占长方形面积的1/2,所以绿草种植面积是216÷2=108 (m2)。
红花和黄花的面积各占长方形面积的1/4,所以红花和黄花的种植面积各是216÷4 = 54(m2)。
《组合图形的面积》教案11
课前准备
教师准备 PPT课件
教学过程
⊙谈话揭题
1.谈话。
(1)我们学过哪些平面图形?你知道它们的周长、面积的计算公式吗?
预设
生1:我们学过三角形、长方形、正方形、平行四边形、梯形、圆和环形等平面图形。
生2:三角形的面积计算公式是“底×高÷2”。
……
(2)你们学过哪些立体图形?你们知道它们的表面积、体积的计算公式吗?
预设
生1:我们学过长方体、正方体、圆柱、圆锥。
生2:长方体的表面积……
2.揭题。
我们曾经学过的这些图形,一般称为基本图形或规则图形,这节课我们来复习组合图形、不规则图形的相关知识。
⊙回顾与整理
1.提问:如何求组合图形、不规则图形的周长或面积?
(一般通过“割补”“平移”“旋转”等方法,将它们转化成求基本图形周长或面积的和、差等)
2.提问:如何计算立体组合图形的表面积或体积?
(1)学生分组讨论。
(2)指名汇报。(学生自由回答,合理即可)
(3)教师小结。
在计算立体组合图形的表面积时,可以把每个面的面积进行累加,也可以借助视图来求表面积。
在计算立体组合图形的体积时,有的要把几个物体的体积相加来求体积,有的要从一个物体的体积里减去另一个物体的体积,这要根据具体情况而定。
无论是分割还是添补,都是把复杂的图形转化成简单的图形。
⊙典型例题解析
1.课件出示典型例题1。
(1)求阴影部分的面积。(单位:cm)
分析 本题考查学生求组合图形面积的能力。
因为阴影部分是不规则图形,所以可以采用阴影部分的面积=长方形的面积-大三角形的面积-小三角形的面积的方法来求面积。
解答 20×16-12×20÷2-8×16÷2=136(cm2)
(2)下面是两个完全相同的直角三角形,其中一部分重叠在一起,求阴影部分的面积。(单位:cm)
分析 从图中可以看出,阴影部分是一个梯形,但梯形的上、下底和高都不知道,所以无法直接求出它的面积。
观察图形可以看出:阴影部分的面积加上三角形EFC的面积等于大三角形DEG的面积,而梯形ABEF的面积加上三角形EFC的面积等于大三角形ABC的面积,且两个大三角形的面积相等,所以阴影部分的面积与梯形ABEF的面积相等,只要求出梯形ABEF的面积就可以求出阴影部分的面积。
解答 (8-3+8)×6÷2=39(cm2)
2.课件出示典型例题2。
将高都是1 m,底面半径分别是5 m、3 m和1 m的三个圆柱组成一个物体,求这个物体的表面积。
分析 本题考查的.是求立体组合图形表面积的能力。
如图,这个物体由三个圆柱组成,仔细观察可以发现:向上的露在外面的三个面的面积之和(两个圆环和一个圆)正好等于大圆柱一个底面的面积(或者说相当于大圆柱上底面的面积)。
物体的表面积=大圆柱的表面积+中圆柱的侧面积+小圆柱的侧面积
解答 2×3.14×52+2×3.14×5×1+2×3.14×3×1+2×3.14×1×1
=157+31.4+18.84+6.28
=213.52(m2)
《组合图形的面积》教案12
教学内容:
北师大版教科书第九册第75~76页的内容
教学目标:
1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
4、在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。
重点、难点
重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个小图形所需的条件。
难点:如何选择有效的计算方法解决问题。
教具准备:
多媒体课件和组合图形图片。
教学过程:
一.引出概念,揭示主题。
1.你能看出以下图形是由那些基本图形组成的吗?
2.像这样由两个或两个以上基本图形组合而成的图形我们把它称为组合图形(板书“组合图形”)画一画,分一分。
二.新授。
这是我家的'客厅平面图!(课件出示客厅的平面图。)
1、估计地板的面积
师:请同学们先估一估这个地板的面积有多大呢?
2、探索不同方法。
师:同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证。请同学们观察这个图形,咱们学过怎样求它的面积?(停顿)那我们该怎么办?请把你的想法用虚线在图中表示出来。
生动手画图。
教师有选择的展示方法。
3.师总结分割法和添补法。
其实不管是用分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成以学过的平面图形。
4.计算:
现在你会计算这个组合图形的面积吗?
要算每个小图形的面积分别需要哪些条件?请找一找,并标出来。
生独立计算。
5.汇报计算方法及结果。
6.辨析及总结。
(1)同学们为什么不选择分割五个或十个小图形的方法来计算面积呢?
分成的图形越少,计算面积时就越简便,所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。
(2)刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。
三.巩固练习。
1.根据条件算一算引入中两个图形的面积。2.动手做。根据你的方法测量你需要的数据进行计算。
四.小结:谈谈你的收获!
五.板书:
组合图形面积
图11.转化
图22.找条件
图33.计算图
《组合图形的面积》教案13
教学内容:
课本第92页到第93页的教学内容
教学目标:
1、认识组合图形、会把组合图形分解成已学过的平面图形。
2、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。
3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。
4、通过拼组图形,使学生感受教学与现实生活的密切关系,体会数学带给大家的生活美。
重、难点与关键
1.探索并掌握组合图形的面积计算方法。
2.理解并掌握组合图形的组合及分解方法。
教具准备
教学用三角尺或教学挂图、PPT课件。
教学过程
一、复习导入
1.复习。
你们已经学会了计算哪些平面图形的面积?说一说这些图形的面积计算公式?
长方形的面积=长×宽;正方形的面积=边长×边长
平行四边形的面积=底×高;三角形的面积=底×高÷2
梯形的.面积=(上底+下底)×高÷2
2.导入。
3.大家学会的知识可真多。为了奖励你们,老师请你们去欣赏一些美丽的图案,请同学们欣赏时认真想想:你们发现了什么?
二、新授课
1.认识组合图形。
出示课本第92页的四幅图。
认真观察这四幅图,它们分别是由哪些简单图形组成的?请同学们打开课本第92页,先找一找,然后在四人小组内互相讨论。比比看哪一个小组的分法最简单?
(1)四人小组讨论。
(2)小组各自展示各种分法。
(3)让学生举例说说生活中的组合图形。
同学们,开动脑筋想象:生活中哪些地方还有组合图形
2.探索组合图形面积的计算方法。
教师引导:大家真了不起,知道生活中存在着这么多的美丽组合图形,那如果我们想知道这些组合图形有多大,实际上是求什么?现在我们就来探讨组合图形的面积计算方法。
板书课题:组合图形的面积
(1)出示例题4(电子教材)
(2)学生独立解答。
学生解答时,让他们思考还有其他解法吗?如果有困难,可以在小组内互相帮助。
(3)学生汇报。
解法一:5×5+5×2÷2
解法二:(5+7)×2.5÷2×2
=25+5 =12×2.5÷2×2
=30(m2) = 30(m2)
学生在汇报时,教师提问:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。
师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同,所以请同学们想想。求组合图形面积时关键是做什么?(图形分解)
三、巩固练习
完成课本第93页的“做一做”。
问:这块地是由哪些简单的图形组成的?
1.学生独立计算。
2.学生汇报,展示思路。
四、课堂小结
通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的?有哪些不明白的地方?
在小结过程中,不仅让学生小结这节课学到的知识,而且让学生学会评价,学会评价自己和他人。
五、布置作业
这是我们学校将要开辟的一块草坪,如下图。你能算出它的面积吗?现在有两家公司联系,A公司说种一平方米草要5元,B公司说种同样的草一共需要2500元。如果让你决定,你会选择哪家公司?
《组合图形的面积》教案14
一、教材分析
《组合图形面积》是冀教版九年义务数学教科书五年级上册的重要内容。学生在以前已经认识了面积与面积单位,知道长方形、正方形面积计算的方法,在本册又学习了平行四边形、三角形、梯形的面积的计算,在此基础上学习组合图形的面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生综合能力。学生还要在六年级学习圆面积的计算方法。
二、创新点
(1)让学生通过在掌握多种方法解决问题的基础上,分类整理,进行比较,优化出解决问题最简单的方法。
(2)练习题体现层次性,不仅发散了思维,还为后续的学习进行了渗透。
三、教学目标以及重难点
有了以上的思考,我制定了如下教学目标和教学的重难点。教学目标:
1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
过程与方法:
能根据各种组合图形的条件,初步有效地选择计算方法并进行正确的解答。情感态度与价值观:
能运用所学的知识,初步解决生活中组合图形的实际问题。教学重点:
在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形所需的条件。
教学难点: 根据组合图形的条件,有效地选择计算方法。教学准备:
七巧板、ppt课件、简单图形学具、少先队中队旗实物
1、七巧板拼图游戏,初步感知组合图形。
用准备的七巧板,动手摆一个图案,并说说你的图案用了哪些简单图形?选取几个有创意的图案在实物投影仪上展示和让学生汇报。
2、自主探究,汇报交流。让学生在探索活动中寻找计算方法。这个环节的教学是整节课的重点。
设计意图:在教学过程中我尽量给学生创设更多的动手操作机会,提供丰富的材料,使他们可以亲自去发现解决问题。
出示例题:出示几个图形让学生先商量出计算方法。目的:把数学与应用紧密结合在一起,不仅发展了学生的空间观念,而且培养了学生灵活解决实际问题的能力。接着教师抛出问题:如何准确计算出这个客厅的面积呢?引导学生将组合图形转化成学过的基本图形。用你喜欢的方法求一求它的面积?看谁的方法多。
为了体现教学的实效性,我采取先让学生独立思考,在纸上分割这个组合图形,再动笔算一算它的面积。这时教师巡视,目的是对不同层次的学生的做法做到心中有数。接着在小组中交流你的做法,并选择你们最满意的方法说给大家听。
汇报时先汇报分的`方法,追问:你们为什么要对图形进行分割呢?从而使学生理解分割成我们学过的图形就能计算面积了。
接着汇报补的方法:提问:为什么要补上一块?你是怎么想的?从而让每个学生都理解这一计算方法。
习惯培养:在汇报方法时,生生质疑、评价,适时对学生进行认真倾听别人发言的习惯的培养。
我没有仅仅停留在汇报多种方法上,而是进一步追问:根据不同的方法,请学生给这些方法分一分类。紧接着我又提出问题引发学生的思考:这么多的方法,你喜欢哪种?请说说你的理由。我抓住时机让学生自己进行归纳,并感受到在运用分割法解决问题时,分割图形越简洁,其解题的方法也将越简单。
这两种方法出来有一定的困难。对于这两种方法的处理,我想如果会有学生出现这个方法,就让他给大家讲一讲,生生质疑。如果没有孩子出现这种方法,我就会说:老师这里还有这样一个方法:你们来看一看。这样处理,就给不同的学生提供了不同的发展空间。
最后老师小结:其实不管是用分割法、添补法还是割补,都是为了一个共同的目的,那就是把这个组合图形转化为已学过的平面图形。
3、综合应用,巩固提高。
练习是学生掌握知识,形成技能,发展智力的有效手段。这里我设计了书中例题采取学生独立解决与合作交流的形式
A、可以任意分割
B、分割为最少的学过的图形
C、可以适当添上相关条件分割,要求分割的合理,能计算分割后的面积。
4、回顾反思,自我评价。
通过本节课的学习,你有什么收获?借助这个环节来引导学生在总结上有所提升,不管是知识方面,还是数学方法和数学思想方面都有收获。
《组合图形的面积》教案15
第6单元 多边形的面积
第7课时 组合图形的面积
【教学内容】:教材P99例4及练习二十二第1~6题。
【教学目标】:
知识与技能:结合生活实际认识组合图形,并掌握用分解法或添补法求组合图形的面积。
过程与方法:根据各种组合图形的自身条件,选择有效的计算方法进行面积计算。
情感、态度与价值观:能运用组合图形的知识,解决生活中组合图形的实际问题。
【教学重、难点】
重 点:理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的
条件。
难 点:根据组合图形的条件,有效地选择计算组合图形面积的方法。
【教学方法】:动手实践、自主探索、合作交流。
【教学准备】:
师:多媒体、各种平面图形。
生:七巧板、简单图形学具、少先队中队旗实物。
【教学过程】
一、情境导入
1.创设情境导入:同学们都玩过七巧板吧,在七巧板里都有哪些图形呢?(长方形、三角形、平行四边形……)
2.你能用七巧板拼出什么图形来?指几名学生用七巧板拼出图形,并展示。
通过学生拼出的图形引出组合图形的定义:由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
3.这节课我们就一起来学习求组合图形的面积。(板题:组合图形的面积)
二、互动新授
l.谈话:在实际生活中,有许多图形都是由几个简单的图形组合而成的。出示教材第99页的各种图形。
这些组合图形里有哪些是学过的图形?同学们试着找一找。
小组合作,尝试找出情境图中的组合图形是哪些图形组成的,并交流汇报。
汇报时学生可能对相同的图形有不同的组合方法,特别是对队旗的组成,在此要鼓励学生发表不同的看法。
学生可能会想到:队旗是由两个梯形组成,或是由一个长方形和两个三角形组成,还可以看成由一个梯形和一个三角形组成。小房子的表面是由一个三角形和一个正方形组成的。风筝的面是由四个小三角形组成的,2.说一说:在生活中还有哪些地方有组合图形?请同学们说一说。
学生可能会想到:厨房里的三角架、房子的分布图、桌子等。
3.引导思考:关于组合图形,你还想研究它的什么知识?
学生可能想到研究它的周长,也可能想到研究它的面积。
适时点拨:它们的周长就是围成图形的所有线段的长度。这节课我们重点研究组合图形的面积。
4.出示教材第99页例4:一间房子侧面墙的形状图。
引导学生观察图并思考:怎样计算出这个组合图形的面积?
组织学生小组合作学习,说一说是怎样分的,然后再算一算。
集体汇报,学生可能会想到两种方法:
(1)把组合图形分成一个三角形和一个正方形,先分别算出三角形和正方形的面积,再相加。
教师可将学生的分法用多媒体展示:
并根据学生回答板书:
5×5+5×2÷2
=25+5
=30( m2)
(2)把这个组合图形分成两个完全一样的梯形。先算出一个梯形的面积,再乘2就可以了。
教师可将学生的分法用多媒体展示:
并根据学生回答板书:
(5+5+2)×(5÷2)÷2×2
=12×2.5÷2×2
=30(m2)
教师鼓励学生算法的多样化,并选择自己喜欢的方法计算。
三、巩固拓展
1.完成教材第101页“练习二十二”第1题。
先让学生对组合图形分一分,说一说是如何分割的,再计算。
学生可能会把组合图形分成一个平行四边形和一个三角形,也有的可能分成两个三角形和一个梯形。这时要让学生对这两种方法进行比较,从而选择较简便的方法解决问题。
2.完成教材第101页“练习二十二”第2题。
本题图形是队旗,在例题里已经对其进行了简单的分析,这里可以让学生思考“能用几种方法计算”,拓展学生的思维。
学生可能会想到:把队旗分成两个梯形,求两个梯形面积的和;或者把队旗分成一个长方形和两个三角形,求它们的.面积之和;或者用一个长方形的面积减去一个三角形的面积求队旗的面积。
3.完成教材第101页“练习二十二”第3题。
先独立思考如何计算,再自主算一算。通过这两道题的练习,让学生知道计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。
四、课堂小结
师:这节课你学会了什么?有哪些收获?
引导总结:
1.由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
2.求组合图形的面积时,可以把它分割成我们学过的简单图形,计算出简单图形的面积后再相加。
3.计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。
五、作业:教材第101页练习二十二第4、5、6题。
【板书设计】:
组合图形的面积
由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
5×5+5×2÷2 (5+5+2)×(5÷2)÷2×2
=25+5 =12×2.5÷2×2
=30(m2) =30 (m2)
【《组合图形的面积》教案】相关文章:
组合图形的面积教案08-25
《组合图形的面积及体积》教案07-27
组合图形的面积说课稿06-10
《组合图形的面积》说课稿07-02
说课稿:《组合图形面积》12-17
组合图形的面积教学反思03-27
《简单组合图形的面积》教学反思02-22
《组合图形面积的计算》教学反思02-23
《组合图形的面积》说课稿经典(15篇)07-03