当前位置:育文网>教学文档>教案> 《长方体和正方体的认识》教案

《长方体和正方体的认识》教案

时间:2024-07-14 09:23:04 教案 我要投稿

《长方体和正方体的认识》教案

  作为一位不辞辛劳的人民教师,总不可避免地需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。教案应该怎么写呢?下面是小编为大家整理的《长方体和正方体的认识》教案,欢迎大家分享。

《长方体和正方体的认识》教案

《长方体和正方体的认识》教案1

  【教材分析】

  苏教版课程标准教材编写的《长方体和正方体的认识》以学生已有的观察物体的丰富经验为基础,先明确长方体有几个面,从不同的角度观察一个长方体最多能同时看到几个面等知识,自然地由实物图抽象出直观图。在介绍棱和顶点的概念后,引导研究有几条棱、几个顶点,接着研究面和棱的特征。教材力图沟通棱、顶点和面之间的联系,引导学生用看一看、量一量、比一比的方法,在合作交流中探究长方体的特征。

  在以往的教学中,我们大多注重用“直观实证”的方式研究长方体的特征,而对面、棱、顶点之间关系的认识更多停留在定义所描述的层次。这也就限制了这一内容对发展学生空间观念的作用。事实上,学生在以往的学习和日常生活的经验中,已经积累了关于长方体和正方体的一些认识。如何在此基础上,系统地、深层次构建对长方体特征的认识是值得研究的问题。学生学习“体”的困难往往在于缺少从面到体过渡的桥梁,从点、线、面到体的认识发展需要充分地在“体”上寻找点、线、面之间的联系,实现认知结构的顺应,这是空间观念建立的关键。

  【教学片段】

  师:刚才,同学们动脑筋有条理地数出了长方体有──

  生(齐):6个面,12条棱,8个顶点。

  师:我们的研究不能满足于“是什么”,还要探究“为什么”。

  (学生疑惑地用眼神告诉我:这有什么“为什么”?事实就是这样嘛!)

  师:没问题?我先来说一个,长方体有6个面,每个面都是(长方形),长方形有4条边,这些边就是长方体的(棱)。那长方体就应该有6×4=24条棱,可为什么只有12条棱呢?

  (学生仔细打量眼前的长方体模型,积极探索着答案。)

  生:(跑到黑板前指着直观图)就拿这条棱来说,它既是上面的一条边,又是前面的一条边。所以,在计算时,同一条棱算了两次。其他的棱也是这样。

  师:那应该怎样算呢?

  生(齐):6×4÷2=12条棱。

  师:你现在也能提一些“为什么”的问题吗?

  生1:长方体的6个面,每个面上有4个顶点,能算出24个顶点,为什么只有8个顶点?

  师:问得好!你有答案吗?

  生1:我有答案,但想让其他同学回答。

  生2:(指着直观图上的一个顶点)这个顶点既是上面的一个顶点,又是前面的一个顶点,还是右面的一个顶点。也就是说这个顶点计算时被算了3次。其他顶点也一样。所以应该用6×4÷3=8个顶点。

  师:真是太好了!刚才我们是由面的个数,根据面与棱、顶点之间的关系推算出棱的条数、顶点的个数。你还想研究什么问题?

  生1:能不能由棱的条数推算出顶点的个数、面的个数?

  生2:由顶点的个数是不是也能推算出面的个数和棱的条数?

  师:真会提问题!同学们有兴趣研究吗?

  (学生兴致勃勃地研究并汇报了两个问题。)

  师:观察一下这6道算式,在利用面、棱、顶点之间关系推算时,有什么规律?

  生1:都先算出了24。这是为什么?

  (学生陷入了沉思,不一会儿,陆续举起手。)

  生2:这儿的24表示的是24条边(棱)或者24个顶点。因为长方体是由6个长方形围成的立体图形。这6个长方形一共有24条边、24个顶点。

  生3:推算时,就要先算出24条边或24个顶点,再看看与要求的面、棱、顶点之间的数量关系,计算出最后的结果。

  师:老师也没想到,同学们通过自己的积极思考,弄清楚了这么多“为什么”。

  ……

  师:同学们通过看一看、量一量、比一比等多种方法发现了长方体面和棱的特征。除此之外,有没有其他方法研究面和棱的特征?

  生:通过重叠比较,我们发现长方体相对的面完全相同。两个长方形完全一样,也就是它们的长和宽分别相等。所以,长方体相对的棱长度相等。

  师:反过来呢?

  生:通过测量,我们发现相对的棱长度相等。而相对面的长和宽分别是两组相对的棱,长和宽分别相等的长方形完全相同。

  师:真厉害!看来,研究长方体的特征不仅可以通过操作来发现,更可以运用所学的知识思考来发现。

  【教学反思】

  一、数学学习是经验的,也是推理的

  新课程注重向学生提供充分的从事数学活动的机会,使学生获得广泛的数学活动经验,这符合学生的认知规律和心理特征。但如今的课堂上不乏学生的观察、操作、猜测、验证等活动,但很少运用数学知识进行简单的推理。有人说,推理是中学的事。其实不然,推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。如果忽视学生推理能力的培养,会在很大程度上阻碍数学思维的发展。所以,重视学生在具体、丰富的活动中经历数学知识的形成过程,获得体验的同时,更要注重学生从已有的数学事实出发,展开合情推理和演绎推理。小学几何常被称为“经验几何”,这并不意味着几何教学无须承担发展推理能力的重任。对于六年级学生来说,已经积累了相当丰富的研究平面图形的知识经验,已经初步认识了立体图形,并且积累了丰富的观察物体的经验,这些知识经验基础使学生探索长方体的特征没有任何障碍。因此,从已有的知识经验出发,更好地发展学生的空间观念理应成为教学的诉求。实践表明:从学生熟悉的面(长方形)的数量和特征出发,联系面围成体的活动经验,对棱的条数、顶点的个数及棱的`特征展开验证性推理是非常有价值的。这其中有凭借经验和直觉,通过归纳和类比进行的推测,也有依据已有的某个事实,按照逻辑和运算进行的推理。形式化结果的解释也蕴含着丰富的推理,由面到棱和由棱到面的特征推断让我们看到了证明的雏形。这些都促进了学生数学思维的发展。

  二、空间观念是具象的,也是关系的

  一般认为,小学阶段几何图形教学承载的空间观念目标主要是能进行实物和图形间转换。这种空间观念是相对“具象的”。实践表明:要实现实物与图形间的转换,学生的认知结构中必须建立准确的模型。这就要求,对图形的认识不能停留于直观建构,而要适度抽象为头脑中的模型,这种模型的稳固形成依赖于对图形基本元素关系的理性思辨。否则,学生头脑中的模型依然是模糊的,不能随时顺利提取和准确利用。引导六年级的学生有意识地思考长方体的基本元素——面、棱、顶点之间关系,不仅必要而且可行。这种关系的找寻以棱和顶点的概念为出发点,以各自数量之间的关系、面和棱的特征联系为主要研究对象。教师引导学生以长方体的模型和直观图为依托,首先考量面的个数与棱的条数之间的关系,深化了对“两个面相交的线叫做棱”这一概念的认识;接着由面的个数到顶点的个数的推算则从面的角度揭示了顶点的形成;后来又逆向地从棱到顶点、棱到面、顶点到棱、顶点到面等角度全方位、深刻揭示了各元素之间的内在联系:三条棱相交的点叫做顶点,四条棱围成了一个面,一条棱的两个端点就是两个顶点,一个长方形四个角的顶点就长方体的顶点等。教者还引导学生从面的特征推理出棱的特征、从棱的特征推理出面的特征,这也深刻揭示着面和棱之间的密切联系,沟通了面与体的内在联系。这些元素关系的建立极大地明晰了学生认知结构中的长方体模型,为后面学习长(正)方体展开图、长方体的表面积等知识提供了坚实的观念基础。

  三、课堂思考是个体的,也是群体的

  学生独立思考的能力是在教师的引导和与同伴的思维碰撞中逐渐形成和发展的。课堂中学生要进行独立思考,但个体思维的成果也需要与同伴的交流和碰撞。这其中,教师是促进个体思维深入、群体思维共享的组织者和引导者。当个体思维依靠自身的力量不能打开或难以实现转换时,教师的示范和引导便成为重要的源头。正如学生面对由对面、棱、顶点的“是多少”向“为什么”的思考跃进时,教师示范提出了“为什么”的问题,将思维聚焦于利用关系推算数量,从而搭建起一个对原有信息整理分类、分析关系的思维桥梁。这也激活了学生自主提问和思考的方向,学生的思维随着有价值的问题的提出不断展开,个体思维的丰富成果不断被演化和推广。在由此及彼的类比处,教师适时的点拨:“刚才我们是由面的个数,根据面与棱、顶点之间的关系推算出棱的条数、顶点的个数。你还想研究什么问题?”再次打开学生的思路,促进自主提问和思考的深入。在研究似乎可以告一段落时,教师画龙点睛式的追问“有什么规律”,再次引发群体思维的风暴。而后,学生群体水到渠成地“证明”棱的特征、面的特征,更展现出思维的无限潜力。这么丰富的思辨成果只有在教师的引导和点拨下通过群体的思维才能不断地展现。

《长方体和正方体的认识》教案2

  教学目标

  通过观察实物和动手操作等教学活动,使学生掌握长方体的特征,形成长方体的概念,发展学生的空间观念。

  教学重点、难点

  重点:长方体的特征。

  难点:

  教具、学具准备

  ①教师准备:实物,铁丝制作的长方体框架、投影仪。②学生准备:收集一些长方体开头的小纸盒

  教 学过程

  备 注

  一、 复习引入:

  1、我们已经学过这些图形,你能说出它们的名称吗?

  2、你能将这些学过的图形分类吗?(平面立体)

  3、揭示课题:长方体也好、正方体也好都是立体图形,这节课我们继续研究“长方体的认识”

  二、探索实践

  1.让学生拿出准备好的一个长方体的纸盒来观察它们的特征。

  (1)认识长方体的面。(让学生分组讨论)

  ①用手摸一摸它有几个面(注意培养学生有顺序地观察)

  ②每个面是什么形状?(注意出示也有两个相对的面是正方形)

  ③哪些面完全相等?(演示给学生看)

  再根据学生的发言用投影归纳出:

  长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形)相对的面的形状、大小完全相同。

  (2)认识长方体的棱。

  让学生用手摸一摸长方体每两个面相交的地方(有意引导学生有顺序地摸)。这些地方我们给它起个什么名字呢?(学生按自己的想法来做,最后统一为“棱”)

  再让学生分小组去数和量:

  ①数:长方体有多少条棱?(要说出数的方法)

  ②量:动手量一量每条棱的长度,看哪些棱的长度相等?(有什么规律?)

  根据学生的发言归纳出:(投影显示)

  长方体有12条棱,相对的4条棱的长度相等。

  (3)认识长方体的'顶点。

  让学生拿一个长方体纸盒,用手摸长方体每三条棱相交的地方,并提问:

  教学过程

  备 注

  ①你们知道它叫什么吗?(顶点)

  ②长方体有几个顶点?(8个)

  (4)拿一个长方体放在讲台上让学生观察。

  最多能看到几个面?(3个面)

  讲:所以我们通常把长方体画成这样。

  (5)用填空的形式小结长方体的特征。(投影显示)

  长方体是由个长方形(特殊情况有两个相对的面是形)围成的图形。在一个长方体中,相对的两个面,相对的棱的长度。

  2、教学长方体的长、宽、高。

  让学生分组讨论如下的两个问题:

  (1)它的12条棱可以分成几组?怎样分?

  (2)相交于同一个顶点的三条棱长度相等吗?

  找几名代表将测量结果告诉大家。

  想一想:

  (1)你知道相交于一个顶点的三条棱的长度分别叫做长方体的什么吗?(长、宽、高)

  (2)长方体的长、宽、高的长短与这个长方体有没有关系?(投影显示出几个长、宽、高不同的长方体)

  结论:长方体的大小和形状是由它的长、宽、高决定的。

  三、课堂实践

  1.量一量教科书的长、宽、高。

  2.练习的第2题。

  3.练习的第3题。

  五、课堂小结

  由学生小结今天学习的内容。

  口诀:

  长方体立体形,8顶6面十二棱;

  棱分长、宽、高,每组四条要记好;

  6个面对着放,对应面都一样。

  六、课外延伸

  在家里找一个自己喜欢的长方体玩具或物体,仔细观察一下它的面、棱、顶点;或是找一些材料自己做一个长方体并涂上或画上喜欢的图案。

  课后反思:在课堂教学过程中,让学生动手去,摸、碰,说长方体、正方体各个部分特征,学生是学习的主体,他们总会有“创新的火花”在闪烁,教师应当充分肯定学生在课堂上提出的一些独到的见解,这样不仅使学生的好方法、好思路得以推广,而且对他们也是一种赞赏和激励。同时,这些难能可贵的见解也是对课堂教学的补充与完善,可拓宽教师的教学思路。很遗憾这个环节处理的不是很好。

《长方体和正方体的认识》教案3

  教材分析

  “长方体和正方体的认识”这部分内容是在学生过去初步认识长方体和正方体的基础上,进一步教学的。这是学生比较深入地研究立体几何图形的开始。由研究平面图形扩展到研究立体图形,是学生发展空间观念的一次飞跃。长方体和正方体是最基本的立体几何图形。通过学习长方体和正方体,可以使学生对自己周围的空间和空间中的物体形成初步的`空间观念,是进一步学习其他立体几何图形的基础。

  为了使学生较好地掌握长方体和正方体的特征,逐步形成空间观念,教材强调要学生自己多动手。除了让学生通过看一看,摸一摸,数一数,量一量,来认识长方体和正方体的特征以外,还要求学生动手用硬纸板做一长方体和正方体,这样既巩固了所学的知识,也为后面学习长方体和正方体的表面积和体积做了准备。

  学情分析

  学生通过以前的学习,已经能识别长方体和正方体,本节课是在此基础上进一步认识它们的特征。立体图形的具体研究,学生是第一次,所以首先要让学生了解立体图形与平面图形的区别;然后再引导学生通过感受、观察、比较,认识到长方体和正方体的特征、以及它们二者的关系。平面图上的立体图形,学生接受比较困难,在教案设计中,安排实物观察、动画图像的生动演示,来加深学生对图上虚实线画法的理解,这样能更好地帮助学生初步形成立体图形的空间观念,提高学生看立体图的能力。

  教学目标

  情感、态度目标:

  1.在合作中发现长方体的特征,使学生感受到学习的乐趣。

  2.通过寻找生活中的长方体,使学生感受到数学来源于生活,并应用于生活中。

  知识、技能目标:

  1.使学生知道长方体的面、棱、顶点的含义。

  2.通过观察、操作等活动掌握长方体、正方体的特征,知道它们之间的关系,认识长方体的长、宽、高(正方体的棱长)。

  过程、方法目标:

  1.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。

  2.渗透子集思想,并进行辩证唯物主义的启蒙教育。

  教学重点和难点

  探索、发现长、正方体的特征及长、正方体的关系,认识长方体的长、宽、高(正方体的棱长)。

  教学过程

《长方体和正方体的认识》教案4

  教学目标

  1、使学生通过观察、操作等活动认识长方体、正方体的侧面展开图。强化对长方体面和棱特征的认识。

  2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。

  教学重点与难点:

  认识长方体的侧面展开图。

  教学过程:

一、复习引入

  谈话:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?

  指名说说,全班交流补充。

  二、探究新知

  (1)除了同学们说的这些,长方体和正方体还有什么特征呢,这节课我们就继续来进行学习。

  出示正方体纸盒:

  你能够沿着这个正方体的棱把这个正方体纸盒剪开吗?

  要求:剪的时候要沿着沿着棱剪,冰且各个面要互相联在一起。

  学生尝试操作。

  小组里交流。

  (2)这个长方体纸盒你也能够沿着棱把它剪开吗?

  学生独立操作。

  看看长方体的展开图,你有什么发现?引导学生观察交流。

  追问:你能从展开图中找到3组相对的面吗?

  (3)完成练一练第1题

  标注完后引导学生具体说说思考的过程。

  (4)完成练一练第3题

  先引导学生通过想象进行判断,在此基础上再动手操作进行验证。

  三、巩固练习

  1、完成练习三第6题

  学生小组交流,独立操作验证。

  2、完成练习三第7题

  学生独立完成,全班交流,指名说说自己连现实的.思考过程。

  3学有余力时可完成思考题

  启发学生思考:要围成一个长方体或正方体需要几张硬纸片,这几张硬纸片的形状的大小有什么联系?

  让学会僧通过操作逐步掌握其中的规律。

  三、全课总结

  通过这节课的学习你有哪些收获?你认为今天学习的内容什么是重点?

  四、作业

  自己动手制作一个长方体纸盒。

《长方体和正方体的认识》教案5

  教学目标

  1、掌握长方体和正方体的特征,理解两者之间的联系,初步学会看立体图。

  2、培养学生有序观察能力,发展空间观念,并在充分的探究验证活动中获得一些学习方法。

  3、感受所学知识的应用价值,并能初步解决一些实际问题。

  教学重点空间观念的发展及对长方体的棱和面的特征的探究

  教学难点有序、有效地开展探究、验证活动

  教学准备

  教具:课件、长方体(正方体)模型、尺子、有2个面是正方形的长方体

  学具:每组一个学习包(包内有长方体盒子、剪刀、尺子、白纸、小棒、铅笔、电线等)

  教学过程

  一、预热铺垫

  同学们,上课之前老师想和大家玩个简单的游戏,考考大家的反应能力,敢接受挑战吗?教师举起左手掌,问:另一只手掌如果要和它“相对”,该怎么举?现在老师站在这里,谁愿意上来和老师“相对”而站?请一生上来,然后教师通过转动身体考考该生的反应能力。最后,教师通过变换手势考全班同学对“相对”的理解和反应能力。

  二、初步感知

  1、课件出示:

  这三个分别叫什么图形?可以统称为什么图形?课件出示:平面图形

  2、下面,老师要给同学们表演一个变形魔术,想看吗?请同学们想象一下,如果我把这个圆放平,然后向上平移,会得到一个什么形体?学生回答后教师课件演示由圆向圆柱的演变过程。

  3、如果把长方形也向后平移,会得到一个什么形体?课件演示。

  4、教师将一个两端是正方形的长方体藏在衣服里面,只露出一个正方形面,你们猜猜看,老师衣服里面藏的是什么形体?学生猜测后教师出示,问:这个长方体有什么特别的地方?

  5、我们一起再来欣赏一下这个变形魔术。教师课件演示先得到正方体,再演变成长方体之后又回到正方体的过程。

  6、通过刚才的这几个变形魔术,你能大胆地猜猜看长方体和正方体之间有怎样的关系吗?你能用圆圈集合图的方式表示出两者的关系吗?指名板演,其余同学画在本子上。

  7、现在这些图形还是平面图形吗?课件出示:立体图形。

  三、探究验证

  1、今天这节课,我们就来研究长方体和正方体的奥秘,你觉得研究哪一个更具有挑战性?

  2、对于长方体,你已经知道了哪些有关它的特征?学生如果回答不出来,教师可引导学生先摸摸面、棱、顶点,并结合课件初步揭示面以及两个面相交的边叫做棱、三条棱相交的点叫做顶点。

  3、对于前几个特征,郑老师深信不疑。但对于“相对的面相等,相对的棱长度相等”这两句话却是半信半疑。老师要在这两句话后面打上大大的问号,接下来,老师就要看看,谁能用实实在在的证据证明你们的发现是正确的,从而让郑老师乖乖地把问号擦掉。

  桌面上的材料你都可以用,比比看,哪个组的方法最多,最精彩!(学生实验,教师巡视参与)

  4、反馈交流。已经证明了“相对的面相等”的小组向老师招招手,你们组找到了几种方法?哪个组愿意先上来交流?

  已经证明了“相对的棱长度相等”的小组给老师一个成功的微笑,你们组找到了几种方法?哪个组愿意把你们的发现与大家共享?

  5、同学们真是表现得太精彩了!老师再也不半信半疑了,而是坚信不疑地认为应该把这个问号给擦掉,你们高兴吗?

  6、教师用课件再次演示长方体面、棱的特征后问:现在你能把长方体的特征完整地说一遍吗?小组内互相说说,然后指名上讲台拿着模型描述。

  7、前面我们有一个大胆的猜测:正方体是一种特殊的长方体,那么它到底特殊在哪里呢?教师板书正方体特征,然后指名上黑板验证6个面面积都相等,12条棱长度都相等。

  8、假如不准你用桌面上的材料,你能用我们以前学过的知识来证明长方体和正方体的面、棱特征吗?

  9、为了我们后面学习的`方便,我们把从长方体的一个顶点出发的三条棱分别叫做长方体的长、宽、高(课件演示),大家观察一下,正方体的长、宽、高有什么特点?(课件演示正方体长、宽、高相等)。

  四、练习拓展

  1、填空:(先由师生共同填写,然后学生安静阅读一遍。)

  长方体和正方体的共同点有:都有()个面、()条棱、()个顶点。

  不同点有:

  1)长方体6个面是()形,也有可能有两个相对的面是()形,而正方体6个面都是()形;

  2)长方体()的面面积相等,而正方体6个面面积();

  3)长方体()的棱长度相等,而正方体()条棱的长度()。

  3分米

  2、右图长方体的长、宽、高分别是5分米、2分米、3分米,如果要把这个长方体的隐藏部分

  2分米

  补出来,你需要借哪些长度的棱?课件演示补全后

  5分米

  问:如果要把每个面都贴上彩纸,你会用剪刀剪出

  那些形状的长方形?

  3、下面图形沿着虚线拼折,能恰好拼出长方体或正方体吗?

  前两幅图学生思考后演示,第二幅详细研究对面,第三幅思考后教师用课件演示,然后问:如果要使它能恰好折成正方体,这个多余的面应该放在哪里?学生想象猜测后教师用纸片演示。

  4、如果老师要在你们面前的盒子中装入一件礼物,寄给我的好朋友,为了安全和保密,我想在盒子外面包上一层彩纸,你能用上今天所学的知识帮助算一算,最少要用多少面积的彩纸吗?计算之前,要先干什么?测几条长、几条宽、几条?

  五、互动小结

  上了这么长的时间,老师也觉得累了。接下来,老师和再和大家一起做一个猜哑谜游戏好吗?老师做动作,你们以最快的速度把老师心中想说的话喊出来好吗?

  1、教师摸长方体的相对面;

  2、教师摸长方体的相对棱;

  3、教师摸正方体的6个面;

  4、教师摸正方体的12条棱;

  5、教师数长方体的12条棱,又数正方体的12条棱;

  6、教师做动作表扬并感谢同学们,并表示下课。

  设计意图:

  要谈本节课的设计意图,我觉得首先要思考一个话题:在新课改的背景下,如何认识“空间与图形”教学。

  我们都知道,《新课程标准》的一个重要特征之一,就是将以往的“几何”拓展为现在的“空间与图形”,这决不仅仅是语言表述上的变化,而是有着其丰富的社会背景的。由于受欧几里德公理体系的影响,传统的几何教学非常重视学生的演绎推理能力的培养,而事实上,推理既有演绎推理,又有合情推理,随着80年代以来数学与计算机技术的发展以及经济和社会发展对培养新人的时代要求,几何教学已经从过多的演绎推理转向更多地强调从具体情境或前提出发进行合情推理;从强调几何的推理价值转向更全面地体现几何在发展学生空间观念,以及观察、探索、合情推理等方面“过程性”的教育价值。

  正是基于上述对“空间与图形”教学的认识,所以我在本节课的设计中关注了以下几点。

  1、学生原有认知是发展学生空间观念的基础。

  学生的空间知识来自丰富的现实原型,这是他们理解和发展空间观念的宝贵资源。就拿长方体和正方体知识来说,学生几乎从出生以来天天都要和这些形体打交道,加之在第一学段时学生已经初步认识了长方体、正方体、圆柱等立体图形。因此,我在教学中力求避免由教师一步步带领学生认识面、棱、顶点的“问答”式的教学方式,而是先让学生说说看:对于长方体,你已经知道了有关它的那些特征?这样结合观察,将学生大脑中对长方体特征的感性化、模糊化认识初步挖掘、梳理出来。从而也为后续的、充满趣味性与活动性的探究验证活动做好了准备。

  2、通过多种途径凸现对空间观念培养的重视。

  空间观念是从现实生活中积累的丰富几何知识经验出发,从经验活动的过程中逐步建立起来的,发展学生的空间观念的途径应当多种多样。在本节课中,我先演示从二维到三维空间的转换初步培养空间观念,然后又通过挖掘学生原有认知激活学生对“长方体”的初步认识,之后通过学生一系列的实物观察、动手操作、想象、描述等途径丰富学生对空间观念及长方体、正方体特征的认识。在这当中,优质的多媒体课件有时甚至其到了实物所不能达到的效果。在关注这些感性化的途径的同时,我并没有让学生的认知仅仅停留这一层面上,而是再次引导学生通过观察,结合以往对长方形和正方形特征的认识,通过分析和推理进一步从理性的高度认识了它们的特征。

  3、体现所学知识的应用价值。

  对于长方体和正方体知识的应用价值,仅仅停留在“生活当中有许多物体的形状都做成长方体、正方体”是远远不够的。从教材编排中可以看出,教材是将认识和求表面积分为两节课进行的。试想一下,学生如果学完了整整40分钟,结果还不知道自己所学的知识到底有什么用,那学生的学习在很大程度上将是盲目的、被动的。因此,我在课堂将结束时设计了让学生尝试求出包装纸的最小面积的练习,从而使学生恍然大悟:原来今天学的知识这么有用。当然这里并不需要展开对面积的具体探究,因为学生中有很多求的是面积,也有一部分求成了体积,而这恰恰是留给下一节课学生开展辩论的很好素材。

《长方体和正方体的认识》教案6

  教学内容:

  P1-2例1、例2、“练一练”、练习一第1—3题。

  教学目标:

  1、使学生通过观察实物、动手操作等活动认识长方体、正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征。

  2、使学生在活动中通过建立图形的表象的过程,进一步积累空间与图形的学习经验,增强空间观念。

  教学重点:认识长方体、正方体的面、棱、顶点以及长、宽、高(棱长)的含义。

  教学难点:长方体和正方体的特征。

  教学过程:

  一、引入新课

  1、由平面图形引到立体图形。

  出示一张长方形的纸,让学生说出它的形状,然后把许多这样的纸摞在一起,问学生还是长方形吗?

  接着电脑演示由面到体的过程,揭示课题:“长方体的认识”。

  2、引导学生认识什么是立体图形。

  让学生用手摸长方体的纸盒的面,使学生感觉它很平,再用两只手握一握长方体的.纸盒。问:有什么感觉?为什么会有这种感觉呢?

  指出它占有一定的空间,像这样占有一定空间的物体的形状就是立体图形。

  问:这些物体的形状都是什么图形呢?在这里面哪些物体的形状是长方体的呢?

  3、举例。

  让学生举出日常生活中见过的长方体的物体实例。

  师:要知道这些物体为什么都是长方体,就要研究长方体的特征。

  二、引导探究

《长方体和正方体的认识》教案7

  教学目标:

  1.掌握长方体和正方体的特征,认识它们之间的关系。

  2.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。

  3.渗透事物是相互联系,发展变化的辩证唯物主义观点。

  教学重、难点:

  1.长方体和正方体的特征。

  2.立体图形的识图。

  教学设计:

  一、已有知识引入:

  师:我们以前学过哪些图形?请每人画出其中一个?再请用手摸一摸有什么感觉?(平的)教师明确:这些图形都在一个平面上,叫平面图形。请同学们看老师带来的这些物体(出示:牙膏盒、粉笔盒等)各部分还在一个平面上吗?这些物体不在一个面上,都是立体图形。生活中这样的图形到处都是,你能举个例子吗?

  生:冰箱、楼房等

  师:他们给我们的感觉是立体的,他们的轮廓可以看做什么形体?

  生:长方体、正方体

  师:今天这节课我们要认识长方体和正方体(揭题:长方体和正方体的认识),学习之前,你对它是不是已经有所了解了?有怎样的了解呢?学生就已经知道的知识进行介绍

  二、自主探究——在观察讨论中了解长方体、正方体面的特点

  1、请同学们取出自己准备的长方体,观察一下,小组合作,运用数一数、看一看、量一量的方法。说一说它们是怎么构成的?它们有什么特点?(学生观察讨论特点,作记录)

  (1)教师巡视指导并总结学生认识情况

  (2)汇报

  2、具体知识点:

  师:用数一数、摸一摸等方法集体合作认识具体知识点并板书。

  (1)顶点——三条棱交叉的点。——长方体、立方体都有8个定点

  (2)棱——两个平面交叉的线段。

  长方体有12条棱,分三组,每组长度相等——分别成为长、宽、高

  正方体12条棱,所有棱都相等——棱长

  怎样证明你的观察是正确的?

  生:量一下手上物体的长宽高或者棱长。

  (3)面——长方体6个面,6个面都是长方形,相对的面大小相等。

  立方体6个面,6个面都是正方形,所有面大小相等。

  师:怎样证明?

  生:(a)可以通过度量长和宽算出面积。

  (b)可以把一个面用剪刀剪下来与相对的面去比。

  (c)也可以把一个面描在纸上,再用相对的.面去比。

  (4)师:长方体和正方体有什么关系?

  生:讨论得出(长方体、正方体的关系——正方体是特殊的长方体。——做集合图。)(教师板书)

  3、试完成表:

  把你现在认识的长方体的顶点、棱、面的这些特点填在下面的表格中。

  4、画长方体、正方体

  那么怎样把长方体或者立方体画在纸上呢?

  师:刚才我们认识的这些长方体,如果把它们画下来该是什么样的呢?下面我们就来研究如何画图表示长方体。

  师:请同学们拿起自己的长方体,从不同角度进行观察,看最多能看到它的几个面?

  学生观察后发现:最多能看到它的三个面。

  师:现在你们把自己的长方体放在课桌的左上角进一步观察,你看到了哪三个面?哪三个面看不到?

  师:(出示一个长方体)我们把这个长方体如果放在左前方观察,所看到的这个长方体如果画下来就是这样的。(媒体演示)在这个图中你看到了哪几个面?哪几个面看不到?

  教师结合媒体演示告诉学生,看不到的面我们用虚线表示。(屏幕出现)

  师:这叫做长方体的立体图。看图的时候,同学们要注意,上、下、左、右这四个面画的是平行四边形,但实际上表示的却是长方形。

  三、巩固练习:

  1、量出你的数学课本长、宽、高各是多少厘米?然后指出上面长、宽各多少?

  2、猜一猜小动物的后面藏着什么图形。(说明:有两只小动物,小刺猬后面躲的看似是长方体,实际上是完全展现后不是一个长方体;小猫后面躲的看似一个立方体,实际上是一个是长方体,另一个是立方体。)

  3、试想象出长方体的样子。

  学生正确回答后电脑将长方体完整画出来。

  看到相交于同一顶点的三条棱,你想到了什么?

  这个长方体的长、宽、高各是多少?长方体中最大的面是哪两个面?最小的面是哪两个面?想到了这个长方体如果画下去,看到的是哪三个面,看不到的是哪三个面

  3、如图,这个盒子前面什么形状?长和宽各多少?和它相同面是哪个?右面什么形状?长和宽各多少?和它相同面是什么形状?

《长方体和正方体的认识》教案8

  教学目标

  1、掌握长方体和正方体的特征,认识它们之间的关系。

  2、培养学生动手操作、观察、抽象概括的能力和初步的空间观念。

  3、渗透事物是相互联系,发展变化的辩证唯物主义观点。

  教学重点

  1、长方体和正方体的特征。

  2、立体图形的识图。

  教学难点

  1、长方体和正方体的特征。

  2、立体图形的识图。

  教具准备

  教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;电脑动画软件。

  学具:长方体和正方体纸盒。

  教学设计

  一、复习准备

  1、同学们我们已经学过哪些平面图形?(长方形、正方形、梯形、三角形)

  2、教师摆出长方体、正方体、圆柱、圆台、长方台、墨水瓶盒等。

  平面图形的面都在一个平面上?大家请看这些物体的各部分都在一个面上吗?(不是)

  教师明确:这些物体的各部分不在一个面上,它们都是立体图形。

  在这些物体中这个(拿一个长方体)叫什么名字你们知道吗?

  这个物体(拿一个正方体)呢?

  在生活中有哪些物体是长方体或正方体形状的?

  3、引入:今天这节课我们要进一步认识长方体和正方体有什么特征

  教师板书:长方体和正方体的认识

  首先我们来学习长方体。

  二、学习新课

  1、比较立体图形与平面图形的区别,画直观图

  老师提问:长方体是立体图形,画在纸上如何与平面图形区别呢?

  请观察,你能看到几个面?哪几个面?

  教师介绍长方体的画法:

  看不见的棱画在图纸上用虚线表示,最后面画出的是长方形,其它的面画出的是平行四边形。

  (一)长方体的特征。

  2、请同学取出自己准备的长方体。

  教师提问:请用手摸一摸长方体是由什么围成的?

  请用手摸一摸两个面相交处有什么?

  请摸一模三条棱相交处有什么?

  教师板书:面、棱、顶点

  同桌相互指出你手中长方体的面、棱、顶点。

  3、我们已经知道长方体的各部分名称,下面我们参考讨论提纲来研究长方体的特征。

  讨论提纲:

  结合你手中的长方体学具,通过看一看、量一量、比一比,完成以下问题,并将你得出的答案在组内交流。

  ①长方体有几个面?每个面都是什么形状?哪些面完全相同,你是怎么知道的?

  ②长方体有多少条棱?量一量每条棱的长度,哪些棱的长度相等?

  ③长方体有多少个顶点?

  教师板书:长方体:

  面:6个,长方形(也可能有两个相对的面是正方形),相对的面完全相同。

  棱:12条,相对的棱长度相等。

  顶点:8个。

  教师板书:请完整地说一说长方体的特征?

  4、出示长方体框架观察。

  教师提问:框架上的12条棱可以分几组?怎样分?

  相交于一个顶点的三条棱长度相等吗?

  教师明确:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

  请同学们拿出你准备的长方体,量出它的长、宽、高。

  (二)正方体特征。

  1、如果老师把这个长方体的长、宽、高都变成一样长,会是什么样的图形呢?

  教师提问:看一看新得到的长方体与原来长方体比较有什么变化?

  (长、宽、高变为相等,六个面都变成了正方形,长方体变为正方体)

  2、请你观察你手中的.正方体,你能看到几个面?哪几个面?

  教师介绍长方体的画法:

  看不见的棱画在图纸上用虚线表示,最后面画出的是长方形,其它的面画出的是平行四边形。

  3、请同学们对照长方体的特征,自己研究正方体的特征,并在组内交流。

  学生讨论、归纳后,教师板书:正方体:

  面:6个完全相同的正方形。

  棱:12条棱长度都相等。

  顶:8个。

  3、拿出准备的正方体,请你量出它的棱长是多少?

  4、学生讨论比较长方体和正方体的特征

  相同点:面、棱、顶点的数量上都相同;

  不同点:在面的形状、面积、棱的长度方面不相同。

  教师提问:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。(正方体是特殊的长方体)

  教师板书集合图:

  三、巩固反馈

  1、根据图中数据口答填空。

  (1)长方体的长是()厘米,宽()厘米,高()厘米,12条棱长的和是()厘米。

  (2)这幅图中的几何体是()体,12条棱长的和是()分米。

  3、判断。正确的在括号里画√,错误的画×.

  (1)长方体的六个面一定是长方形;()

  (2)正方体的六个面面积一定相等;()

  (3)一个长方体(非正方体)最多有四个面面积相等;()

  (4)相交于一个顶点的三条棱相等的长方体一定是正方体。()

  四、课堂总结

  谁来说一说长方体和正方体的特征和它们之间的关系?如何看图纸上的立体图?

  五、课后作业

  练习三中习题

  六、板书设计

《长方体和正方体的认识》教案9

  教学目标:

  1、通过实物认识长、正方体,通过学生的观察、对比、小组讨论,了解长、正方体的特点。

  2、在操作中认识长、宽、高和正方体的棱长。

  3、培养学生的空间想象能力和空间观念。

  教学重难点:

  通过实物认识长、正方体,了解长(正)方体的特征。

  教学过程:

  一、复习提问

  请同学们回忆一下,我们已经学过哪些平面图形? 长方形和正方形各有什么特征?这两种平面图形之间有什么关系? 我们以前学过的这些图形都是平面图形,今天我们要认识两种立体图形——长方体和正方体。(板书课题:长方体和正方体的认识)

  二、探究新知

  (一)新课引入:指着各种形体的教具提问,哪些物体的形体是长方体?请学生把长方体挑出来。在日常的生活中你还见过哪些物体的形状是长方体的?学生举例。 我们为什么把这些形状称做长方体呢?长方体有什么特征呢?下面我们一起来研究。

  (二)认识长方体。

  1.教师拿出火柴盒的模型,说明面、棱和顶点。

  2.学生拿学具小组讨论,并出示小组讨论提纲,同时讨论后填写操作实验报告。

  面 棱 顶点 长方体 数量 形状 大小 数量 长度 数量 位置

  (1)探究完成实验报告。

  (2)汇报讨论结果。

  (3)认识长方体的长、宽、高。

  4.引导学生 指出自己手中学具的长、宽、高,改变学具的位置,在指出长、宽、高。向学生说明长、宽、高根据长方体所摆的位置不同而改变。

  5.练习: 要求根据特征判断下面图形是不是长方体?并说出长方体立体图形的'长、宽、高是多少厘米。

  (教具)

  (三)认识正方体

  1.学生找出正方体实物来独立观察,观察后按提提纲独立回答问题,独立填写实验操作报告。 独立观察提纲:

  (1)数一数,正方体有几个面?每个面是什么形状?相对的面的形状、大小有什么特点?

  (2)摸一摸,正方体有多少条棱?它们的长度相等吗?

  (3)找一找,正方体有几个顶点? 独立填写实验操作报告: 面 棱 顶点 正方体 数量 形状 大小 数量 长度 数量 位置 1.班集体讨论,订正学生独立完成的实验报告,并完成教师板书,注意启发学生自己总结正方体的特征 2.比较长方体和正方体有何异同? 相同点:6个面、12条棱、8个顶点。 不同点:形状、大小、长短不同,正方体有6个面都是正方形,面积都相等,12个棱长都相等。 3.引导学生认识长、正方体的关系:

  (四)新课小结

  这结课我们学习了什么内容?你还有什么问题?

  三、看书质疑(略)

  四、巩固练习

  (1)长方体和正方体都有6个面,12条棱,8个顶点。( )

  (2)长方体的六个面都是长方形。( )

  (3)正方体是由六个正方形组成的图形。( )

  (4)正方体是特殊的长方体。( )

《长方体和正方体的认识》教案10

  活动目标:

  1.认识长方体与正方体,能区分长方体与正方体。

  2.感受行与体的不同,发展空间知觉。

  3.培养动手动脑及合作的能力。

  4.通过各种感官训练培养幼儿对计算的兴致及思维的准确性、敏捷性。

  5.了解数字在日常生活中的应用,初步理解数字与人们生活的关系。

  活动准备:

  1.长方体纸盒若干个、画有花的长方形若干;2.正方体、长方体物品若干;3.幻灯片。

  活动过程:

  一、认识长方体

  1.观察桌面上的操作材料小朋友们,你们看看桌子上有什么呀?今天老师要请小朋友用这些东西来玩个"找朋友"的游戏。

  2.教师讲解操作要求这个纸盒老师给它们穿上了漂亮的衣服,等会儿请小朋友们先将纸盒的衣服"脱"下来,数一数它总共有几件衣服,再帮衣服找出和它自己同样大小的衣服做好朋友,然后请你把这对好朋友身上的花涂上相同的颜色,涂好后再将这些衣服穿回到纸盒的身上。

  3.幼儿操作,教师指导。

  4.分析幼儿操作结果

  (1)将每组幼儿的长方体展示在上面,教师与幼儿一起来观察。

  (2)刚才我们小朋友都将纸盒的衣服"脱"下来过了,你们说它有几件衣服呀?(6件)我们来看看到底是不是6件。教师逐一将衣服"脱"下展示在黑板上。那你们说这个纸盒有几个面啊?

  (3)你们看看这6个面谁和谁是好朋友?也就是它俩的大小是一样的?(教师将6个面是一对的两两放在一起)

  (4)现在我将它们都穿回去,这个面在这里,这个面……

  (5)上下两个面是一样大的,左右两个是一样大的,前后两个是一样大的。

  5.教师小结:像纸巾盒、牛奶盒这样的盒子,有6个面,每个面都是长方形,相对的两个面大小一样的形体我们叫长方体(出示字体:长方体)

  二、认识正方体

  1.(教师出示正方体)小朋友们,你们看这个是长方体吗?是的请举手。

  2.那它倒底是不是呢?我们来看看,一起数数它有几个面?(6个),它每个面都是正方形,这6个正方形它们的大小都一样,像这样有6个面,每个面都是正方形,而且这6个正方形的大小都一样,这样的.形体我们叫正方体(出示正方体字体),正方体也是长方体。

  三、区分正方体和长方体

  1.小朋友们,刚才我们认识了长方体和正方体,老师在后面为小朋友们准备了很多的物体,请你到后面去挑选一个长方体或是正方体,看哪个小朋友能又快又好的挑来回到自己的座位上来。

  2.提问个别小朋友他挑了什么,是什么体?

  3.请幼儿将手中的长方体和正方体分别放入两筐子。

  四、寻找生活中长方体和正方体

  1.在生活中你还见过哪些物体也是长方体或者是正方体?

  2.观看放映幻灯片。

  五、延伸活动(教师出示有两个面是正方形的长方体)老师这里还有一个长方体,这个长方体它这两个面是正方形,请小朋友回去后可以为它也去穿穿衣服,你也会发现一个秘密。

  教学反思:

  本活动的知识点多,都是概念性的,巩固学习时,幼儿易产生厌倦情绪,为此,教者改变了传统方式,根据教学目标另行设计了以幼儿熟识的实物为载体,使幼儿在看一看、摸一摸、动一动及游戏中,不知不觉地得到了发展。通过学习长方体和正方体,可以使幼儿更好地以数学的眼光观察、了解周围的世界,形成初步的空间观念;从而对周围的事物产生好奇心,培养幼儿愿意探索的习惯。

《长方体和正方体的认识》教案11

  活动目的:

  1、能叫出长方体和正方体的名称,认识它们的主要特征。

  2、进一步巩固对正方形和长方形的认识,了解平面和立体的不同。

  活动准备:长方体、正方体积木、纸盒

  正方形和长方形的硬纸片,正方形和正方体的一个面的面积相等,长方形和长方体的一个面的面积一样大 活动过程:

  1、复习巩固认识正方形和长方形。

  教师分别出示正方形和长方形,让幼儿说出它们的'相同和不同的特征。

  2、出示长方体、正方体,告诉幼儿长方体和正方体的名称。

  3、发给幼儿(每组)长方体、正方体、正方形、长方形各一个,让幼儿随意摆弄,摸一摸、看一看,比一比它们有什么不同与相同。

  4、教师与幼儿一起比较、总结:按顺序数一数,长方体有六个面,它的每一个面一般都是长方形,正方体也有六个面,每个面都是正方形(用正方形和正方体的每个面重叠比较)它的六个面一样大。

  5、让幼儿说出生活中见过哪些物体是长方体。哪些物体是正方体。

《长方体和正方体的认识》教案12

  教学目标:

  1、知识技能目标:掌握长方体和正方体的特征,理解长方体和正方体的关系。

  2、能力目标:指导启发学生运用观察、测量等方法,探究长方体和正方体的有关特征,开发学生智能。

  3、情感态度目标:通过观察、摆弄实物帮助学生建立起空间观念。

  教具学具:

  教师准备:墨水盒、牙膏盒、魔方、乒乓球等。

  学生准备:边长1厘米的小正方体(每组至少8个)、长方体和正方体实物。

  教学手段:多媒体辅助教学

  教学过程:

  一、导入新课

  师:请同学们来回忆:我们学过了哪些平面图形?(生答)这些图形都是由什么围成的?(线段)。课前老师曾让同学们把数学书最后两页的组合图形纸板沿虚线内折,然后围起来,你围成了什么形体?举起来让大家看看。(长方体和正方体)长方体和正方体与我们学过的平面图形有什么不同?(它们是由面围成的,有一定的厚度。)

  师:像这样由面围成的图形,都占有一定的空间,我们把他们叫做立体图形。比如:(出示实物)墨水盒、魔方、牙膏盒、皮球、灯罩等这些物体的形状都是立体图形。你能不能举出几个形状是长方体或正方体的例子?(学生举例)

  那么长方体和正方体都有哪些特征呢?这节课,我们就来认识长方体和正方体。(板书课题)

  二、探究新知

  1、认识长方体各部分名称

  师:长方体有什么特征呢?要探讨这个问题,首先让我们来认识一下长方体各部分的名称。请同学们拿出准备的长方体学具或实物,用手摸一摸,你摸到了长方体的哪一部分?然后打开书20页,看看你摸到的部分在长方体中叫什么?看谁最先找到答案。(根据学生回答板书:面、棱、顶点)

  师:请同学们放下书,看老师的演示,边看边用手摸摸长方体学具,感觉一下长方体的面、棱、顶点。(电脑演示长方体的面、棱、顶点)

  2、认识长方体的特征(分组合作学习)

  师:认识了长方体的面、棱、顶点,下面我们就来研究长方体的这几部分各有什么特征?(出示学习提纲):1、长方体有几个面?这些面是什么图形?相对的面面积有什么关系?2、长方体有几条棱?每组相对的棱长度有什么关系?3、长方体有几个顶点?请同学们根据学习提纲自由选择方法合作学习21页内容。看看你用了哪些方法,都学会了什么?(研讨)

  师:谁能把你们的学习结果汇报一下。

  生:长方体有6个面,每个面都是长方形,也可能有两个相对的面是正方形。

  师:你有这样的长方体吗?(有,出示)哪是相对的面?有几组?(指实物回答)

  生:长方体相对的面面积相等。

  师:你怎么知道的`?

  生:我用剪子把相对的面剪下来比较。(师电脑演示“相对面相等”)

  师:说说棱的特点。

  生:长方体有12条棱。

  师:可以分成几组?

  生:可以分成3组,每组有4条,每组的4条棱长度相等。(教师演示“相对棱相等”)

  师:你用什么办法来证明相对的棱长度相等?

  生1:用尺子量的。

  生2:(出示:长方体棱的框架)如果相对棱不相等,这个长方体就会变形了。

  师:噢,你用的是反证法来说明。

  生:老师我把长方体的棱分成了4组,每组有3条,就是从一个顶点引出的3条棱。

  师:这种分法也是正确的,而且很独特。谁再说说长方体的顶点?(长方体有8个顶点)(演示“顶点”)

  1、认识长方体的长、宽、高

  师:刚才我们把三条棱相交的一点叫做顶点,这也就是说过长方体的一个顶点有三条棱,这三条棱的长度分别叫什么?请同学们看书后回答。

  2、认识长方体直观图

  师:下面请同学们再次拿出长方体学具,将它放在眼前的不同方位,观察:你看到了长方体的几个面?都是什么图形?

  生:(1个、2个、3个)都是长方形的。

  生:不对,从我这里看,它的左面和上面就是平行四边形。

  师:同学们观察的非常细致。(电脑演示直观图)我们在作图时,除了前面和后面外,其它各面都画成平行四边形,但实际上是长方形。(师边说边作图,并强调看不见的棱用虚线来表示)

  3、自学正方体

  师:想一想:如果将长方体的长、宽、高调整,使长、宽、高相等,会得到什么形体呢?(教师演示将长方体变成一个正方体)它也叫立方体。出示魔方:它有什么特征呢?(出示自学提纲):1、正方体有几个面?大小怎样?2、正方体有几条棱?长短有什么关系?3、正方体有几个顶点?请同学们边观察边自学22页。(汇报、板书)

  4、比较二者的异同

  师:同学们观察学具看板书,谁能说说长方体和正方体的有什么相同之处和不同之处。(学生叙述,师用两种色笔分别圈画。)通过以上比较,你发现了什么?(长方体的所有特征正方体都具有,而正方体的特征长方体不一定全有。由此,我们可以得出结论:正方体是一种特殊的长方体。)我们可以用这样的图来表示它们之间的关系。(师演示集合图)

  三、过渡:这节课,我们认识了长方体和正方体的实物与图形,归纳了长方体和正方体的特征,还分析了二者的关系。下面我们来做做练习,检验自己是否对长方体和正方体有了明确的认识。

  四、巩固应用(电脑出示)

《长方体和正方体的认识》教案13

  [教材简析]

  长方体和正方体是最基本的立体图形,从研究平面图形到研究立体图形,是学生空间观念发展的一次飞跃。学生在低年级虽然接触过长方体和正方体,但只是直观形象的认识,本节课就是要在学生初步认识长方体和正方体的基础上,引导学生进一步探索长方体和正方体的特征,为继续学习长方体和正方体的表面积和体积奠定基础。

  [教学目标]

  1.学生通过观察、操作等活动认识长方体和正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征,理解它们之间的关系。

  2.学生在活动中进一步积累探索经验,增强空间观念,发展数学思考。

  3.学生体会立体图形学习与实际生活的联系,感受其价值,增强数学学习的兴趣和学好数学的自信心。

  [教学重点]探索长方体特征。

  [教学难点]理解长方体直观图;理解长方体和正方体之间关系。

  [教学准备]每生带一个长方体实物;课件。

  [教学过程]

  一、创设情境,激发兴趣

  1.请观察日常生活中常见的、典型的物体(课件呈现),提问:哪些物体的形状是长方体?

  2.说说生活中还有哪些物体的形状是长方体?

  [说明:通过观察激活学生已有的关于长方体的直观经验,通过交流不断积累长方体表象。]

  二、自主探究、合作交流

  1.观察物体,理解直观图。

  (1)师激疑:从不同角度观察一个长方体,最多能同时看到几个面?

  生试着从不同角度观察自己带来的长方体实物。

  汇报交流,达成共识:不论从哪个角度观察,最多只能同时看到3个面。

  相机呈现长方体直观图(动画演示:先画出能够看到的面,再勾出不能看到的面)。

  (2)认识面、棱、顶点。

  观察直观图,说说从一个角度看到了哪些面?哪些面不能看到?

  结合长方体直观图,师向学生介绍:两个面相交的线叫做棱,三条棱相交的点叫做顶点。(课件同时在图中作出标注)

  结合直观图中棱和顶点,说说它们分别是由哪些面(或棱)在此相交得到的?

  在小组里互相摸一摸,指一指长方体物体的面、棱和顶点。

  [说明:让学生在观察物体的基础上,借助多媒体演示,理解长方体的直观图,认识它的面、棱和顶点,这样既遵循了他们的认识规律,又有利于培养他们的空间观念。]

  2.探究长方体特征。

  (1) 分小组研究长方体特征,填写长方体的认识研究报告单。

  长方体的认识研究报告单

  面

  棱

  顶点

  研究小组:

  看一看,量一量,比一比,并在小组里交流。(课件出示研究提纲)

  ①长方体每个面都是什么形状?哪些面完全相同?

  ②长方体有几条棱?哪些棱的长度相等?

  ③长方体有几个顶点?

  (2)展示成果,交流方法。

  师提问:

  ①面怎样数不重复不遗漏?你们是如何发现长方体相对的面完全相同?

  ②棱怎样数不重复不遗漏?你们又是如何发现相对的棱的长度相等的?

  ③顶点怎样数不重复不遗漏?

  学生交流方法,同时配课件演示。

  引导小结:长方体有6个面,12条棱,8个顶点,每个面都是长方形,相对面完全相同(也可能有两个相对面是正方形),相对的棱长度相等。

  (3)认识长、宽、高

  师:长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高,通常把水平方向的两条棱分别叫做长和宽,把竖直方向的一条棱叫做高。(课件演示)

  拿长方体模型横放、竖放、侧放,并让学生指出在不同摆放的情况下的长、宽、高,告诉学生不管相交于哪个顶点的三条棱,都可以叫做这个长方体的长、宽、高。

  完成练一练和练习三第1题。

  [说明:学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试,让学生带着问题去观察操作,目标明确,任务具体。交流反馈时老师又一次提醒学生是怎样数的、如何发现的,目的是把握一切机会教学生学会学习方法。]

  3.探究正方体特征。

  课件演示长方体渐渐变成正方体,认真观察,发现了什么?

  (师述:长、宽、高都相等的长方体叫正方体(也叫做立方体)由于长、宽、高都相等所以称棱长)

  根据刚才研究的方法,请你们小组讨论研究出正方体的特征,填写正方体的认识研究报告单。

  展示成果,交流方法。

  归纳小结:正方体的6个面是完全相同的正方形,正方体的12条棱长度相等。

  [说明:让学生把学习长方体的'特征的学习方法迁移到学习正方体的特征上来,使他们又对又快地达到学习目标。]

  4.比较长、正方体的特征,说说它们的相同点和不同点。

  老师引导学生按照面、棱、顶点的次序,引导学生找出它们的相同点和不同点并整理成表格。

  形体

  相同点

  不同点

  面

  棱

  顶点

  面的形状

  面积

  棱长

  长方体

  6个

  12条

  8个

  6个面都是长方形(特殊情况有两个相对的面是正方形)

  相对的面的面积相等

  每一组互相平行的四条棱的长度相等

  正方体

  6个

  12条

  8个

  6个面都是正方形

  6个面的面积都相等

  12条棱的长度都相等

  练习三第3题。

  独立完成每小题,再交流反馈。

  [说明:学生已经基本掌握了长方体、正方体各自的特征,所以可以引导学生按照面、棱、顶点的顺序,通过讨论交流,来总结和概括它们的相同点和不同点,最后整理成表格,使学生明确正方体是特殊的长方体,渗透子集思想。表格的设计把本节的重点内容以图文表结合的形式生动形象直观地展现出来,给人铭刻记忆,融会贯通。]

  三、巩固运用 拓展创新

  1.练习三第2题。

  借助直观图,根据图中标注的数据先同桌有条理地指一指、说一说每个面的长和宽,说说相关面之间的关系再独立把有关面的形状和长、宽有条理地写下来。

  2.练习三第4题。

  (1)先判断课本中摆出的几个图形中分别是长方体还是正方体,再同桌互相指一指每个图形中长、宽、高(或棱长)的位置,说说它们分别是多少厘米。

  (2)每个学生用棱长1厘米的正方体摆一个长方体或正方体,在小组内互相说说摆出的长方体(正方体)的长、宽、高(棱长)。

  3.练习三第5题。

  [说明:练习内容丰富,多样,既加强了基础知识的训练,又提高学生的思维能力。]

  四、梳理知识 反思总结

  你认为本节课,你最大的收获是什么?

  [总说明]

  1.现代学习心理学认为,知识并不能简单地由教师或其他人传授给学生,而只能由每个学生依据自己已有的知识和经验主动地加以建构。所以在本节课中,从学生的已有经验出发,让学生亲身经历数学知识的再发现、再创造过程,调动学生的学习主动性和积极性,在学知识过程中既发展了空间观念,又培养了能力;既培养独立思考能力,又培养了合作交流的能力,让学生感受到成功的喜悦。教师只是起着组织者、引导者、合作者的作用。

  2.把教学数学知识(特征及其相互关系)、数学方法(观察、数、发现的方法)、数学思想(子集思想)三者有机地结合起来,使学生既学数学知识,又学数学方法和数学思想。

《长方体和正方体的认识》教案14

  一、操作引疑:

  师:土豆块是不是长方体?同学们,你们已预习过课本,现在把你们手中的土豆块切成一个长方体。想一想:①切一刀,摸一摸,有什么感觉?

  生1:平的,叫做“面”。

  师:②再切一刀呢?

  生2:两个面相交的边,叫做“棱”。

  师:③再切一刀呢?

  生3:出现三个面,三条棱,三条棱相交的点,叫做“顶点”。

  师:再把土豆切成一个长方体,比一比谁切得最像。

  二、研究长方体究竟有什么特征:

  学习小组合作研究:

  出示的研究题1-----3题,并把研究的数据填入表格中。

  研究题1:

  长方体和正方体的面、棱、顶点各有多少?每个面分别是什么形状?

  集体交流:

  师:你是怎样数“面”、“棱”的?哪种数法比较好?

  生:

  面:前后、左右、上下(2+2+2或2×3)

  棱:有三组不同方向“棱”(4+4+4或4×3)

  师:观察本组同学的长方体土豆块,每个面都是长方形,有特殊情况吗?

  生:我们小组土豆块,有两个相对面是正方形。

  最后教师总结,并引导学生体验有序思考的优点。

  研究题2:

  你觉得长方体的棱和面还有什么特征?用尺子量一量,看看自己的想法是否正确,并填入表格中。

  学生动手操作,小组讨论交流,共同探究。

  师:请每个小组把研究结果汇报,或有什么问题要质疑?

  生1:我们小组发现相对的两个面形状一样,面积相等。

  生2:请问你们小组是怎样知道?

  生3:我们小组是动手量相邻两条边知道的。

  生4:我们小组是动手算出它的面积知道的。

  生5:我们小组是动手剪开比一比知道的。

  师:每个小组都能想出好办法,如果老师想做这个(实物演示)长方体框架共需要多少长的铁丝?大家有什么方法来解决吗?

  生6:只要量出一个顶点引出三条不同的方向棱的长度。再乘以4,就得铁丝长。

  生7:量出红颜色棱的长度,再乘以4;接着量蓝颜色的棱长,再乘以4;最后量黄颜色的棱长,再乘以4;把三次积加起来就是铁丝长。

  研究题3:

  正方体有什么特征?为什么说正方体是特殊长方体?把数据填入表格中。

  师:长方体和正方体有什么相同点和不同点?

  生1:我们小组研究认为正方体和长方体的面、棱和顶点的数目是一样。

  生2:我们小组研究发现正方体每条棱长都相等这点与长方体不同。

  生3:我们小组归纳出:把正方体说成是长、宽、高都相等的长方体,所以它是一种特殊长方体。

  三、实践应用:

  1、请同学们用橡皮泥和小棒制作一个长方体(或正方体)框架。老师为大家准备了不同长度的小棒(出示数据),请小组成员先交流,商量需要哪种长度的小棒,各多少根?再派成员上来领取。

  小组同学动手操作,并展示、交流。

  师:同学们的“作品”真漂亮!老师想请教一下,你们小组刚才用了几根小棒?使用小棒拼成框架什么特别的要求?另外用橡皮泥捏了几个点呢?

  2、你们能像教师这样,给长方体框架穿上“衣服”吗(出示一个用纸做面,包好了的长方体)想想看,应用剪刀剪出怎样的纸片?再比较它们每个面的异同。

  小组同学操作、汇报、交流。

  [评析]

  通过这节课的教学活动给我的启发和反思是:

  1、让学生主动参与,亲身实践,合作探究,实现学习方式变革。

  充分利用学生已有的生活经验,从观察实物------土豆,来丰富表象,再让学生动手操作------切成长方体,来提高感性认识,最后通过交流、反思等活动中逐步让学生体会数学知识的产生形成和发展过程,学生在观察中理解,在操作中感知,不仅拓宽了思路,获取了新知识,而且沟通了知识的内涵,领悟了学习方法,转变学习方式,激活学习热情,达到全员主动参与“学数学”目的,培养了学生的学习能力。

  2、让学生经历“学数学”过程,要发挥好教师的“主导”作用。

  本案例教学中,教师始终把学生置于主体地位,积极引导学生通过看、摸、想、议、切、说等学习过程,让学生亲身经历数学知识的“再发现”、“再创造”过程,调动学生的'学习主动性和积极性,在学知识过程中既发展了空间观念,又培养了能力;既培养独立思考能力,又培养了合作交流的能力,让学生感受到成功的喜悦。教师起着组织者、指导者、帮助者和促进者的作用。

  3、让学生经历“学数学”的过程,其核心问题是“学会思考”

  让学生学会数学地思考,是数学课程的重要目标之一,而积极有效的思考依赖于合适的、富有挑战性的问题。依据知识自身的重点和学生已有的知识经验,改呈现知识为呈现问题,能吸引学生充分参与数学学习过程,自觉调动已有的知识经验和心智技能,从而促使数学学习活动有效地展开并不断深入。

  苏霍姆林斯基说过,在人的内心深处都有一种根深蒂固的需要这就是希望自己是一个发现者、研究者、探索者,在儿童精神世界中,这种需要特别强烈。因此,数学教学要努力创建有利于学生主动探索的数学教学环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的数学知识和技能的同时。在情感、态度和价值等方面得到充分发展,立生积极的情感体验,进而创造性地解决问题

  用《数学课程标准》来教学,必须让孩子们体会到数学的价值,学会运用数学的思维方式去观察、分析现实社会,解决日常生活中的问题,形成勇于探索、勇于创新的精神。总之,数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。真正体现新的课程理念,让学生“学数学”是一个生动活泼的、主动的富有个性的过程。

《长方体和正方体的认识》教案15

  教学目标

  1.掌握长方体和正方体的特征,认识它们之间的关系.

  2.培养学生动手操作、观察、抽象概括的能力和初步的空间观念.

  3.渗透事物是相互联系,发展变化的辩证唯物主义观点.

  教学重点

  1.长方体和正方体的特征.

  2.立体图形的识图.

  教学难点

  1.长方体和正方体的特征.

  2.立体图形的识图.

  教具准备

  教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;动画.

  学具:长方体和正方体纸盒.

  教学设计

  一、复习准备.

  1、请同学们自己画一个已经学习过的平面图形;再请每位同学用手摸一摸画出的图形;老师明确:这些图形都在一个平面上,叫做平面图形.

  2、教师摆出长方体、正方体、圆柱、圆台、长方台、墨水瓶盒等.

  教师提问:这些物体的各部分都在一个面上吗?(不是)

  教师明确:这些物体的各部分不在一个面上,它们都是立体图形.

  3、引入:今天这节课我们要进一步认识长方体有什么特征.

  教师板书:长方体的认识

  二、学习新课.

  (一)长方体的特征.

  1、请同学取出自己准备的长方体.

  教师提问:请用手摸一摸长方体是由什么围成的?

  请用手摸一摸两个面相交处有什么?

  请摸一模三条棱相交处有什么?

  教师板书:面、棱、顶点

  2、参考讨论提纲来研究长方体的`特征.【演示动画长方体的特征】

  讨论提纲:

  ①长方体有几个面?面的位置和大小有什么关系?

  ②长方体有多少条棱?棱的位置、长短有什么关系?

  ③长方体有多少个顶点?

  教师板书:长方体:

  面:6个,长方形(也可能有两个相对的面是正方形),相对的面完全相同.

  棱:12条,相对的4条棱长度相等.

  顶点:8个.

  教师:请完整地说一说长方体的特征.

  3、比较立体图形与平面图形的区别.

  老师提问:长方体是立体图形,画在纸上如何与平面图形区别呢?

  请观察,你能看到几个面?哪几个面?

  你能看见几条棱?哪几条棱?

  教师介绍长方体的画法:

  看不见的棱画在图纸上用虚线表示,最后面画出的是长方形,其它的面画出的是平行四边形.

  4、出示长方体框架观察.

  教师提问:框架上的12条棱可以分几组?怎样分?

  相交于一个顶点的三条棱长度相等吗?

  教师明确:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高.

  (二)正方体特征.

  1、【演示动画正方体的特征】

  教师提问:看一看新得到的长方体与原来长方体比较有什么变化?

  (长、宽、高变为相等,六个面都变成了正方形,长方体变为正方体)

  2、对照长方体的特征学生自己研究正方体的特征.

  学生讨论、归纳后,教师板书:正方体:

  面:6个完全相同的正方形.

  棱:12条棱长度都相等.

  顶:8个.

  3、学生讨论比较长方体和正方体的特征.

  相同点:面、棱、顶点的数量上都相同;

  不同点:在面的形状、面积、棱的长度方面不相同.

  教师提问:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系.

  (正方体是特殊的长方体)

  教师板书集合图:

  三、巩固反馈.

  1、量一量自己手中的长方体的长、宽、高,说出每个面的长和宽是多少?

  2、根据图中数据口答.

  (1)长方体的长是厘米,宽厘米,高厘米, 12条棱长的和是厘米.

  (2)这幅图中的几何体是体,12条棱长的和是分米.

  (3)如图一个长方体,它的长、宽、高分别是9厘米,3厘米和2。5厘米.它上面的面长是厘米,宽厘米,左边的面长厘米,宽厘米,相交于一个顶点的三条棱长和是厘米.

  3、判断.正确的在括号里画,错误的画.

  (1)长方体的六个面一定是长方形;

  (2)正方体的六个面面积一定相等;

  (3)一个长方体(非正方体)最多有四个面面积相等;

  (4)相交于一个顶点的三条棱相等的长方体一定是正方体.

  四、课堂总结.

  谁来说一说长方体和正方体的特征和它们之间的关系?如何看图纸上的立体图?

  五、课后作业 .

  1、拿一个火柴盒,量一量它的长、宽、高各是多少?然后说一说每个面的长和宽各是多少?

  2、说出下图表示的物体是什么形状,并且说明:

  它的上面是什么形?长和宽各是多少?

  它的右侧面是什么形,长和宽各是多少?

  它的前面是什么形?长和宽各是多少?

  它的下面和后面是什么形?长和宽各是多少?

  六、板书设计

【《长方体和正方体的认识》教案】相关文章:

长方体和正方体的认识教案03-01

《长方体和正方体的认识》教案02-18

《长方体和正方体的认识》教案设计08-25

《长方体和正方体的认识》教案15篇03-04

认识长方体正方体的教案03-09

长方体、正方体的认识教案08-30

认识长方体、正方体教案06-24

《长方体和正方体的认识》教案设计范文08-25

长方体和正方体的认识教案精华[15篇]02-21