当前位置:育文网>教学文档>教案> 高一数学上册教案

高一数学上册教案

时间:2024-10-25 16:51:47 教案 我要投稿
  • 相关推荐

高一数学上册教案

  作为一名教学工作者,可能需要进行教案编写工作,借助教案可以提高教学质量,收到预期的教学效果。教案要怎么写呢?以下是小编精心整理的高一数学上册教案,仅供参考,欢迎大家阅读。

高一数学上册教案

高一数学上册教案1

  一、等差数列

  1、定义

  注:“从第二项起”及

  “同一常数”用红色粉笔标注

  二、等差数列的通项公式

  (一)例题与练习

  通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

  (二)新课探究

  1、由引入自然的给出等差数列的概念:

  如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

  ① “从第二项起”满足条件; f

  ②公差d一定是由后项减前项所得;

  ③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

  在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:

  an+1—an=d (n≥1) ;h4z+0"6vG

  同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

  1。 9 ,8,7,6,5,4,……;√ d=—1

  2。 0。70,0。71,0。72,0。73,0。74……;√ d=0。01

  3。 0,0,0,0,0,0,……。; √ d=0

  4。 1,2,3,2,3,4,……;×

  5。 1,0,1,0,1,……×

  其中第一个数列公差<0,>0,第三个数列公差=0

  由此强调:公差可以是正数、负数,也可以是0

  2、第二个重点部分为等差数列的通项公式

  在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项 ,公差d,由学生研究分组讨论a4 的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的.通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。

  若一等差数列{an }的首项是a1,公差是d,

  则据其定义可得:

  a2 — a1 =d 即: a2 =a1 +d

  a3 – a2 =d 即: a3 =a2 +d = a1 +2d

  a4 – a3 =d 即: a4 =a3 +d = a1 +3d

  ……

  猜想: a40 = a1 +39d

  进而归纳出等差数列的通项公式:

  an=a1+(n—1)d

  此时指出: 这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——————迭加法:

  a2 – a1 =d

  a3 – a2 =d

  a4 – a3 =d

  ……

  an+1 – an=d

  将这(n—1)个等式左右两边分别相加,就可以得到 an– a1= (n—1) d即 an= a1+(n—1) d (1)

  当n=1时,(1)也成立,

  所以对一切n∈N﹡,上面的公式都成立

  因此它就是等差数列{an}的通项公式。

  在迭加法的证明过程中,我采用启发式教学方法。

  利用等差数列概念启发学生写出n—1个等式。

  对照已归纳出的通项公式启发学生想出将n—1个等式相加。证出通项公式。

  在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求

  接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n—1)×2 , 即an=2n—1 以此来巩固等差数列通项公式运用

  同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。

  (三)应用举例

  这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。

  例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项

  (2)—401是不是等差数列—5,—9,—13,…的项?如果是,是第几项?

  在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an

  例2 在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。

  在前面例1的基础上将例2当作练习作为对通项公式的巩固

  例3 是一个实际建模问题

  建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5。8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?

  这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型——————等差数列:(学生讨论分析,分别演板,教师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用展示实际楼梯图以化解难点)

  设置此题的目的:

  1。加强同学们对应用题的综合分析能力,

  2。通过数学实际问题引出等差数列问题,激发了学生的兴趣;

  3。再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法

  (四)反馈练习

  1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。

  2、书上例3)梯子的最高一级宽33c,最低一级宽110c,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。

  目的:对学生加强建模思想训练。

  3、若数例{an} 是等差数列,若 bn = an ,(为常数)试证明:数列{bn}是等差数列

  此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。

  (五)归纳小结 (由学生总结这节课的收获)

  1。等差数列的概念及数学表达式.

  强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

  2。等差数列的通项公式 an= a1+(n—1) d会知三求一

  3.用“数学建模”思想方法解决实际问题

  (六)布置作业

  必做题:课本P114 习题3。2第2,6 题

  选做题:已知等差数列{an}的首项a1= —24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)

  五、板书设计

  在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。

高一数学上册教案2

  1、知识与技能

  (1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);

  (2)理解任意角的三角函数不同的定义方法;

  (3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;

  (4)掌握并能初步运用公式一;

  (5)树立映射观点,正确理解三角函数是以实数为自变量的函数。

  2、过程与方法

  初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数。引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义。根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号。最后主要是借助有向线段进一步认识三角函数。讲解例题,总结方法,巩固练习。

  3、情态与价值

  任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点。过去习惯于用角的终边上点的.坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解。

  本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数。这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系。

  教学重难点

  重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一)。

  难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解。

高一数学上册教案3

  1、知识与技能

  (1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);

  (2)理解任意角的三角函数不同的定义方法;

  (3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;

  (4)掌握并能初步运用公式一;

  (5)树立映射观点,正确理解三角函数是以实数为自变量的函数.

  2、过程与方法

  初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.

  3、情态与价值

  任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的.对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.

  本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系.

  教学重难点

  重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).

  难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.

高一数学上册教案4

  【学情分析】:

  高一学过了函数的单调性,在引入导数概念与几何意义后,发现导数是描述函数在某一点的瞬时变化率。在此基础上,我们发现导数与函数的增减性以及增减的快慢都有很紧密的联系。本节内容就是通过对函数导数计算,来判定可导函数增减性。

  【教学目标】:

  (1)正确理解利用导数判断函数的单调性的原理;

  (2)掌握利用导数判断函数单调性的方法

  (3)能够利用导数解释实际问题中的函数单调性

  【教学重点】:

  利用导数判断函数单调性,会求不超过三次的多项式函数的单调区间

  【教学过程设计】:

  教学环节

  教学活动

  设计意图

  情景引入过程

  从高台跳水运动员的高度h随时间t变化的函数:

  分析运动动员的运动过程:

  上升→最高点→下降

  运动员瞬时速度变换过程:

  减速→0→加速

  从实际问题中物理量入手

  学生容易接受

  实际意义向函数意义过渡

  从函数的角度分析上述过程:

  先增后减

  由正数减小到0,再由0减小到负数

  将实际的量与函数及其导数意义联系起来,过渡自然,突破理解障碍

  引出函数单调性与导数正负的关系

  通过上述实际例子的分析,联想观察其他函数的单调性与其导数正负的关系

  进一步的函数单调性与导数正负验证,加深两者之间的关系

  我们能否得出以下结论:

  在某个区间(a,b)内,如果,那么函数y=f(x)在这个区间内单调递增;如果,那么函数y=f(x)在这个区间内单调递减

  答案是肯定的

  从导数的概念给出解释

  表明函数在此点处的切线斜率是由左下向右上,因此在附近单调递增

  表明函数在此点处的切线斜率是由左上向右下,因此在附近单调递减

  所以,若,则,f(x)为增函数

  同理可说明时,f(x)为减函数

  用导数的几何意义理解导数正负与单调性的内在关系,帮助理解与记忆

  导数正负与函数单调性总结

  若y=f(x)在区间(a,b)上可导,则

  (1)在(a,b)内,y=f(x)在(a,b)单调递增

  (2)在(a,b)内,y=f(x)在(a,b)单调递减

  抽象概括我们的心法手册(用以指导我们拆解题目)

  例题精讲

  1、根据导数正负判断函数单调性

  教材例1在教学环节中的处理方式:

  以学生的自学为主,可以更改部分数据,让学生动手模仿。

  小结:导数的`正负→函数的增减→构建函数大致形状

  提醒学生观察的点的图像特点(为下节埋下伏笔)

  丢出思考题:“”的点是否一定对应函数的最值(由于学生尚未解除“极值”的概念,暂时还是以最值代替)

  例题处理的目标就是为达到将“死结论”变成“活套路”

  2、利用导数判断函数单调性以及计算求函数单调区间

  教材例2在教学环节中的处理方式:

  可以先以为例回顾我们高一判断函数单调性的定义法;再与我们导数方法形成对比,体会导数方法的优越性。

  引导学生逐步贯彻落实我们之前准备的“心法手册”

  判断单调性→计算导数大小→能否判断导数正负

  →Y,得出函数单调性;

  →N,求“导数大于(小于)0”的不等式的解集→得出单调区间

  补充例题:

  已知函数y=x+,试讨论出此函数的单调区间.

  解:y′=(x+)′=1-1·x-2=

  令>0. 解得x>1或x<-1.

  ∴y=x+的单调增区间是(-∞,-1)和(1,+∞).

  令<0,解得-1<x<0或0<x<1.

  ∴y=x+的单调减区间是(-1,0)和(0,1)

  要求根据函数单调性画此函数的草图

  3、实际问题中利用导数意义判断函数图像

  教材例3的处理方式:

  可以根据课程进度作为课堂练习处理

  同时还可以引入类似的练习补充(如学生上学路上,距离学校的路程与时间的函数图像)

  堂上练习

  教材练习2——由函数图像写函数导数的正负性

  教材练习1——判断函数单调性,计算单调区间

  针对教材的三个例题作知识强化练习

  内容总结

  体会导数在判断函数单调性方面的极大优越性

  体会学习导数的重要性

  课后练习:

  1、函数的递增区间是( )

  A B全品 C D全品

  答案C 对于任何实数都恒成立

  2、已知函数在上是单调函数,则实数的

  取值范围是( )

  A B全品

  C D全品

  答案B在恒成立,

  3、函数单调递增区间是( )

  A B全品 C D全品

  答案C 令

  4、对于上可导的任意函数,若满足,则必有( )

  A B全品

  C D全品

  答案C 当时,,函数在上是增函数;当时,,在上是减函数,故当时取得最小值,即有

  得

  5、函数的单调增区间为 ,单调减区间为___________________

  答案

  6、函数的单调递增区间是___________________________全品

  答案

  7、已知的图象经过点,且在处的切线方程是

  (1)求的解析式;(2)求的单调递增区间

  解:(1)的图象经过点,则,

  切点为,则的图象经过点

  得单调递增区间为

高一数学上册教案5

  经典例题

  已知关于 的方程 的实数解在区间,求 的取值范围。

  反思提炼:1.常见的四种指数方程的一般解法

  (1)方程 的解法:

  (2)方程 的解法:

  (3)方程 的解法:

  (4)方程 的.解法:

  2、常见的三种对数方程的一般解法

  (1)方程 的解法:

  (2)方程 的解法:

  (3)方程 的解法:

  3、方程与函数之间的转化。

  4、通过数形结合解决方程有无根的问题。

  课后作业:

  1、对正整数n,设曲线 在x=2处的切线与轴交点的纵坐标为 ,则数列 的前n项和的公式是

  [答案] 2n+1-2

  [解析] ∵=xn(1-x),∴′=(xn)′(1-x)+(1-x)′xn=nxn-1(1-x)-xn.

  f ′(2)=-n2n-1-2n=(-n-2)2n-1.

  在点x=2处点的纵坐标为=-2n.

  ∴切线方程为+2n=(-n-2)2n-1(x-2)。

  令x=0得,=(n+1)2n,∴an=(n+1)2n,∴数列ann+1的前n项和为2(2n-1)2-1=2n+1-2.

  2、在平面直角坐标系 中,已知点P是函数 的图象上的动点,该图象在P处的切线 交轴于点M,过点P作 的垂线交轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是_____________

  解析:设 则 ,过点P作 的垂线,所以,t在 上单调增,在 单调减, 。

高一数学上册教案6

  一、教材的本质、地位与作用

  对数函数(第二课时)是20xx人教版高一数学(上册)第二章第八节第二课时的内容,本小节涉及对数函数相关知识,分三个课时,这里是第二课时复习巩固对数函数图像及性质,并用此解决三类对数比大小问题,是对已学内容(指数函数、指数比大小、对数函数)的延续和发展,同时也体现了数学的实用性,为后续学习起到奠定知识基础、渗透方法的作用,因此本节内容起到了一种承上启下的作用。

  二、教学目标

  根据教学大纲的要求以及本节课的地位与作用,结合高一学生的认知特点确定教学目标如下:

  学习目标:

  1、复习巩固对数函数的图像及性质

  2、运用对数函数的性质比较两个数的大小

  能力目标:

  1、培养学生运用图形解决问题的意识即数形结合能力

  2、学生运用已学知识,已有经验解决新问题的能力

  3、探索出方法,有条理阐述自己观点的能力

  德育目标:

  培养学生勤于思考、独立思考、合作交流等良好的个性品质

  三、教材的重点及难点

  对数比大小发挥的是承上启下的作用,对前一是复习巩固对数函数的图像和性质,二是对指数中比大小问题的数学思想及方法的再次体现和应用,对后为解对数方程及对数不等式奠定基础。所以确定本节课重点:运用对数函数图像性质比较两数的大小

  教学中将在以下2个环节中突出教学重点:

  1、利用学生预习后的心得交流,资源共享,互补不足

  2、通过适当的练习,加强对解题方法的掌握及原理的理解

  另一方面,学生在预习后上课的情况下,对于课本上知识有了一定的认识,但本节课教师要补充第三类比大小问题———同真异底型,对于学生以小组为单位自主探究有一定的挑战性。所以确定本节课难点:同真异底的对数比大小

  教学中会在以下3个方面突破教学难点:

  1、教师调整角色,让学生成为学习的主人,教师在其中起引导作用即可。

  2、小组合作探索新问题时,注重生生合作、师生互动,适时用语言鼓励学生,增强学生参与讨论的自信。

  3、本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。

  四、学生学情分析

  长处:高一学生经过几年的数学学习,已具备一定的数学素养,对于已学知识或用过的数学思想、方法有一定的应用能力及应用意识,对于本节课而言,从知识上说,对数函数的图像和性质刚刚学过,本节课是知识的应用,从数学能力上说,指数比大小问题的解题思想和方法在这可借鉴,另外数形结合能力、小结概括能力、特殊到一般归纳能力已具备一点。

  学生可能遇到的`困难:本节课从教学内容上来看,第三类对数比大小是课本以外补充的内容,没有预习心得,让学生在课堂中快速通过合作探究来完成解题思路的构建,有一定的挑战性,从学生能力上来看,探索出方法,有条理阐述自己观点的能力还需加强锻炼,知识之间的联系认识上还显不足。

  五、教法特点

  新课程强调教师要调整自己的角色,改变传统的教育方式,在教育方式上,以学生为中心,让学生成为学习的主人,教师在其中起引导作用即可。基于此,本节课遵循此原则重点采用问题探究和启发引导式的教学方法。从预习交流心得出发,到探索新问题,再到题后的回顾总结,一切以学生为中心,处处体现学生的主体地位,让学生多说、多分析、多思考、多总结,引导学生运用自己的语言阐述观点,加强理解,在生生合作,师生互动中解决问题,为提高学生分析问题、解决问题能力打下基础。本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。

  六、教学过程分析

  1、课件展示本节课学习目标

  设计意图:明确任务,激发兴趣

  2、温故知新(已填表形式复习对数函数的图像和性质)

  设计意图:复习已学知识和方法,为学生形成知识间的联系和框架建立平台,并为下一步的应用打下基础。

  3、预习后心得交流

  1)同底对数比大小

  2)既不同底数,也不同真数的对数比大小

  以课本例题为例,交流解题思路,题后总结此类型比大小问题的一般方法,而后通过练习加强理解巩固

  设计意图:通过学生的预习,自己总结方法及此方法适用的题型,有条理的阐述自己的学习心得,老师只需起引导作用,引导学生从题目表面上升到题目的实质,从而找到解决问题的有效方法。

  4、合作探究——同真异底型的对数比大小

  以例3为例,学生分组合作探究解题方法,预计两种:一是利用换底公式将此类型转化为同底异真型,利用之前总结的方法解决此问题。二是利用具体对数的大小关系探究出不同底对数函数在同一直角坐标系中的图像,以此来解决此类型比大小问题。

  设计意图:这一部分是本节课的难点,探究中充分发挥学生的主动性,培养主动学习的意识,同时也锻炼学生各方面能力的很好机会,为以后的探究学习积累经验和方法,充分体现“授之以鱼,不如授之以渔”的教学理念。另外数学问题的解决仅仅只是一半,更重要的是解题之后的回顾,即反思,如果没有了反思,他们就错过了解题的一次重要而有效益的方面。因此,本题解决后,让学生反思明白,要想利用性质解决问题,关键要做到“脑中有图”,以“形”促“数”。

  5、小结

  以学生自主小结的方式总结本节课得收获,教师可引导小结三个方面:所学内容、数学思想、数学方法

  6、思考题

  以20xx高考题为例,让学生学以致用,增强数学学习兴趣。

  7、作业

  包括两个方面:

  1、书写作业

  2、下节课前的预习作业

  七、教学效果分析

  通过本节课的教学实例来看,这种通过课本内容预习,而后课堂交流学习成果的方法效果不错,既能很好的完成教学任务,又能充分发挥学生学习的主动性。在自主探究时,学生分组讨论过程中,我参与小组讨论,对有能力的小组,在探究出一种方法后,可鼓励完成更多的方法探究,对于能力较弱的小组,可给予适当的提示,使学生都能动起来,课堂都有所收获,增强学生自信。另外,对于学生的总结回答,可能会比较慢,我一定会耐心听,及时鼓励,给予学生微笑和语言的鼓励,效果很好。在小结环节中,对于高一学生自己小结的方法,是我一直的教学尝试,由于只训练了半学期,学生只能达到小结知识的程度,在以后的训练中还会加入数学思想、数学方法的小结内容,使这些数学名词让学生不再觉得抽象,而是变成具体的,可操作的、具体的解题工具。

  人教版高一数学教案 2

  1、教材(教学内容)

  本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用、

  2、设计理念

  本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标、

  3、教学目标

  知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题、

  过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用、

  情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、

  4、重点难点

  重点:任意角三角函数的定义、

  难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、

  5、学情分析

  学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念、在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念?

  四、概念的运用

  1、基础练习

  ①口算clipXimage008的值、

  ②分别求clipXimage010的值

  小结:ⅰ画终边,求终边与单位圆交点的坐标,算比值

  ③若clipXimage012,试写出角clipXimage002[2]的值。

  ④若clipXimage015,不求值,试判断clipXimage017的符号

  ⑤若clipXimage019,则clipXimage021为第象限的角、

  例1、已知角clipXimage002[3]的终边过点clipXimage024,求clipXimage026之值

  若P点的坐标变为clipXimage028,求clipXimage030的值

  小结:任意角三角函数的等价定义(终边定义法)

  例2、一物体A从点clipXimage032出发,在单位圆上沿逆时针方向作匀速圆周运动,若经过的弧长为clipXimage034,试用clipXimage034[1]表示物体A所在位置的坐标。若该物体作圆周运动的圆的半径变为clipXimage006[1],如何用clipXimage034[2]来表示物体A所在位置的坐标?

  小结:可以采用三角函数模型来刻画圆周运动

  五、拓展探究

  问题8:当角clipXimage002[4]的终边绕顶点O作圆周运动时,角clipXimage002[5]的终边与单位圆的交点clipXimage039的坐标clipXimage041clipXimage043与角clipXimage002[6]之间还可以建立其它函数模型吗?

  思考:引入平面直角坐标系后,我们可以把圆周运动用数来刻画,这是将“形”转化成为“数”;角clipXimage002[7]正弦值是一个数,你能借助平面直角坐标系和单位圆,用“形”来表示这个“数”吗?角clipXimage002[8]余弦值、正切值呢?

  六、课堂小结

  问题9:请你谈谈本节课的收获有哪些?

  七、课后作业

  教材P21第6、7、8题

高一数学上册教案7

  教学目的:

  (1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;

  (2))能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

  课 型:新授课

  教学重点:集合的交集与并集的概念;

  教学难点:集合的交集与并集 “是什么”,“为什么”,“怎样做”;

  教学过程:

  一、引入课题

  我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?

  思考(P9思考题),引入并集概念。

  二、新课教学

  1、并集

  一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Unin)

  记作:A∪B读作:“A并B”

  即: A∪B={x|x∈A,或x∈B}

  表示:

  说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。

  例题1求集合A与B的并集

  ①A={6,8,10,12} B={3,6,9,12}

  ②A={x|-1≤x≤2} B={x|0≤x≤3}

  (过度)问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。

  2、交集

  一般地,由属于集合A且属于集合B的'元素所组成的集合,叫做集合A与B的交集(intersectin)。

  记作:A∩B读作:“A交B”

  即: A∩B={x|∈A,且x∈B}

  说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。

  例题2求集合A与B的交集

  ③A={6,8,10,12} B={3,6,9,12}

  ④A={x|-1≤x≤2} B={x|0≤x≤3}

  拓展:求下列各图中集合A与B的并集与交集(用彩笔图出)

  说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集

  3、例题讲解

  例3(P12例1):理解所给集合的含义,可借助venn图分析

  例4 P12例2):先“化简”所给集合,搞清楚各自所含元素后,再进行运算。

  4、集合基本运算的一些结论:

  A∩B A,A∩B B,A∩A=A,A∩ = ,A∩B=B∩A

  A A∪B,B A∪B,A∪A=A,A∪ =A,A∪B=B∪A

  若A∩B=A,则A B,反之也成立

  若A∪B=B,则A B,反之也成立

  若x∈(A∩B),则x∈A且x∈B

  若x∈(A∪B),则x∈A,或x∈B

  三、课堂练习(P13练习)

  四、归纳小结:略

  五、作业布置

  1、书面作业:P13习题1.1,第6-12题

高一数学上册教案8

  【学情分析】:

  学生已经掌握了椭圆的概念、标准方程的概念,也能够运用标准方程中的a,b,c的关系解决题目,但还不够熟练。另外对于求轨迹方程、解决直线与椭圆关系的题目,还不能很好地分析、解决。

  【三维目标】:

  1、知识与技能:

  ①进一步强化学生对于椭圆标准方程中a,b,c关系理解,并能运用到解题当中去。

  ②强化求轨迹方程的方法、步骤。

  ③解决直线与椭圆的题目,强化数形结合的运用。

  2、过程与方法:

  通过习题、例题的练讲结合,达到学生熟练解决椭圆有关问题的能力。

  3、情感态度与价值观:

  通过一部分有难度的题目,培养学生克服困难的毅力。

  【教学重点】:

  知识与技能②③

  【教学难点】:

  知识与技能②③

  【课前准备】:

  学案

  【教学过程设计】:

  教学环节

  教学活动

  设计意图

  一、复习、引入

  1、请讲出椭圆的标准方程?并讲出a,b,c之间的关系?

  2、怎样来求动点的轨迹方程,具体的步骤有哪些?

  3、直线与椭圆的关系有哪些种?

  突出本节要复习的内容

  二、例题、练习

  一、椭圆的标准方程及a,b,c之间的关系

  1、方程表示焦点在y轴上的椭圆,则k的取值范围是

  2、、焦点坐标为(0,-4)、(0,4),a=5的椭圆的标准方程

  为

  3、动点M到两个定点A(0,-)、B(0,)的距离的和是,则动点M的轨迹方程是

  4、经过点A(-2,0),B(—1,—)两点的椭圆的标准方程.

  二、求动点的轨迹方程。(重视步骤)

  1、点M(x,y)与定点F(4,0)的距离和它到直线L:的距离的比是常数,求点M的轨迹方程,并说明它是什么曲线?。()

  2、若P(-3,0)是圆x+y-6x-55=0内一定点,动圆M与

  已知圆相内切且过P点,求动圆圆心M的轨迹方程。()

  三、直线与椭圆的关系。(数形结合,关注过程)

  1、k为何止时,直线和曲线有两个公共点?一个公共点?没有公共点?

  分析:利用联立方程组,再利用△进行判断。

  *2、已知椭圆,直线L:,椭圆上是否存在一点,它到直线L的距离最小?,最小距离是多少?()

  利用三组题目,复习相关的三个知识点。

  第一组:先练后评

  第二组:先引导分析再做,后评;

  第三组:与前一节例题呼应,先经过分析,在引导学生写出过程。

  目的:1、使学生在做题的过程中,复习椭圆的相关知识。

  2、强化学生对后两大类题型步骤的掌握。

  三、小结

  本节课对于前面几节课讲过的知识,进行了一次复习。椭圆是高考中常考的知识点,需要同学们对椭圆相关知识足够的熟悉,过程步骤清楚,做题速度足够的'快、准确。

  四、作业

  1、若方程表示的曲线是椭圆,则k的取

  值范围是

  2、与椭圆共焦点,且过点(3,-2)的椭圆

  方程是

  3、若C、D是以F1、F2为焦点的椭圆上的

  两点, CD过点F1,则△F2CD的长 20

  4、已知(4,2)是直线l被椭圆=1所截得的线段的中点,则l的方程是_____

  5、一动圆与圆外切,同时与圆内切,求动圆圆心的轨迹方

  程,并说明它是什么曲线?()

  6、直线l过点M(1,1),与椭圆+=1相交于A、B两点,若AB的中点为M,试求直线l的方程. (3x+4y-7=0)

高一数学上册教案9

  高中一年级的新同学们,当你们踏进高中校门,漫步在优美的校园时,看见老师严谨而热心的教学和师兄、师姐深切的关怀时,我想你们会暗暗决心:争取学好高中阶段的各门学科。在新的高考制度"3+综合"普遍吹散全国大地之时,代表人们基本素质的"3"科中,数学是最能体现一个人的思维能力,判断能力、反应敏捷能力和聪明程度的学科。数学直接影响着国民的基本素质和生活质量,良好的数学修养将为人的一生可持续发展奠定基础,高中阶段则应可能充分反映学习者对数学的不同需求,使每个学生都能学习适合他们自己的数学。

  一、高中数学课的设置

  高中数学内容丰富,知识面广泛,高一年级上学期学习第一册(上):第一章集合与简易逻辑;第二章函数;第三章数列。高一年级下学期学习第一册(下):第四章三角函数;第五章平面向量。高二年级上学期学习第二册(上):第六章不等式;第七章直线和圆的方程;第八章圆锥曲线方程。高二年级下学期学习第二册(下):第九章直线、平面、简单几何体;第十章排列、组合和概率。高二结束将有数学"会考"。高三年级文科生学习第三册(选修1):第一章统计;第二章极限与导数。高三年级理科生学习第三册(选修2):第一章概率与统计;第二章极限;第三章导数;第四章复数。高三还将进行全面复习,并有重要的"高考"。

  二、初中数学与高中数学的差异。

  1、知识差异。初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。如:初中学习的角的概念只是"0-1800"范围内的,但实际当中也有7200和"-300"等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。又如:高中要学习《立体几何》(第九章直线、平面、简单几何体),将在三维空间中求角和距离等。

  还将学习"排列组合"知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法,(=6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答:=3种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了i2=--1,就使-1的平方根为±i.即可把数的概念进行推广,使数的概念扩大到复数范围等。这些知识同学们在以后的学习中将逐渐学习到。

  2、学习方法的差异。

  (1)初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取让全面同学理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂内、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。而高中数学的学习随着课程开设多(有九们课学生同时学习),每天至少上六节课,自习时间三节课,这样各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,数学教师将相初中那样监督每个学生的作业和课外练习,就能达到相初中那样把知识让每个学生掌握后再进行新课。

  (2)模仿与创新的区别。

  初中学生模仿做题,他们模仿老师思维推理教多,而高中模仿做题、思维学生有,但随着知识的难度大和知识面广泛,学生不能全部模仿,即就是学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学成绩也只能是一般程度。现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。如学生在解决:比较a与2a的大小时要不就错、要不就答不全面。大多数学生不会分类讨论。

  3、学生自学能力的差异

  初中学生自学那能力低,大凡考试中所用的解题方法和数学思想,在初中教师基本上已反复训练,老师把学生要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解和大量的训练中,而且学生的听课只需要熟记结论就可以做题(不全是),学生不需自学。但高中的知识面广,知识要全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。另外,科学在不断的发展,考试在不断的改革,高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。

  其实,自学能力的提高也是一个人生活的需要,他从一个方面也代表了一个人的素养,人的一生只有18---24年时间是有导师的学习,其后半生,最精彩的人生是人在一生学习,靠的自学最终达到了自强。

  4、思维习惯上的差异

  初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限,就几何来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格的逻辑思维和判断。代数中数的范围只限定在实数中思维,就不能深刻的解决方程根的类型等。高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密的分析和解决问题。也将培养学生高素质思维。提高学生的思维递进性。

  5、定量与变量的差异

  初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。学生在分析问题时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。如:求解一元二次方程时我们采用对方程ax2+bx+c=0(a≠0)的求解,讨论它是否有根和有根时的所有根的情形,使学生很快的掌握了对所有一元二次方程的解法。另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路和解题所用的.数学思想。

  三、如何学好高中数学

  良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。高考题中与函数思想方法有关的习题占整个试题的60%以上。

  1、有良好的学习兴趣

  两千多年前孔子说过:"知之者不如好之者,好之者不如乐之者。"意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。"好"和"乐"就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的"认识"过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?

  (1)课前预习,对所学知识产生疑问,产生好奇心。

  (2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

  (3)思考问题注意归纳,挖掘你学习的潜力。

  (4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?

  (5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、至交坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能使对概念的理解切实可靠,在应用概念判断、推理时会准确。

  2、建立良好的学习数学习惯。

  习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

  3、有意识培养自己的各方面能力

  数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。

  平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计"智力课"和"智力问题"比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。

  四、其它注意事项

  1、注意化归转化思想学习。

  人们学习过程就是用掌握的知识去理解、解决未知知识。数学学习过程都是用旧知识引出和解决新问题,当新的知识掌握后再利用它去解决更新知识。初中知识是基础,如果能把新知识用旧知识解答,你就有了化归转化思想了。可见,学习就是不断地化归转化,不断地继承和发展更新旧知识。

  2、学会数学教材的数学思想方法。

  数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想作出归纳、概括是十分必要的。概括数学思想一般可分为两步进行:一是揭示数学思想内容规律,即将数学对象其具有的属性或关系抽取出来,二是明确数学思想方法知识的联系,抽取解决全体的框架。实施这两步的措施可在课堂的听讲和课外的自学中进行。

  课堂学习是数学学习的主战场。课堂中教师通过讲解、分解教材中的数学思想和进行数学技能地训练,使高中学生学习所得到丰富的数学知识,教师组织的科研活动,使教材中的数学概念、定理、原理得到最大程度的理解、挖掘。如初中学习的相反数概念教学中,教师的课堂教学往往有以下理解:①从定义角度求3、-5的相反数,相反数是的数是_____.②从数轴角度理解:什么样的两点表示数是互为相反数的。(关于原点对称的点)③从绝对值角度理解:绝对值_______的两个数是互为相反数的。④相加为零的两个数互为相反数吗?这些不同角度的教学会开阔学生思维,提高思维品质。望同学们把握好课堂这个学习的主战场。

  五、学数学的几个建议。

  1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识。

  2、建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

  3、记忆数学规律和数学小结论。

  4、与同学建立好关系,争做"小老师",形成数学学习"互助组"。

  5、争做数学课外题,加大自学力度。

  6、反复巩固,消灭前学后忘。

  7、学会总结归类。可:①从数学思想分类②从解题方法归类③从知识应用上分类

  同学们在高中有优美的学习环境,有一群乐于事业的热心教师,全体教师经验丰富,他们甘愿为你们做铺路石直至你们走进高等学校大门。我们数学组的全体教师一定会使你们成为数学学习的成功。

高一数学上册教案10

  教学目标:

  (1)了解集合的表示方法;

  (2)能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

  教学重点:掌握集合的表示方法;

  教学难点:选择恰当的表示方法;

  教学过程:

  一、复习回顾:

  1、集合和元素的定义;元素的三个特性;元素与集合的关系;常用的数集及表示。

  2、集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系

  二、新课教学

  (一)。集合的表示方法

  我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

  (1) 列举法:把集合中的元素一一列举出来,并用花括号“ ”括起来表示集合的方法叫列举法。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;

  说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考

  虑元素的顺序。

  2、各个元素之间要用逗号隔开;

  3、元素不能重复;

  4、集合中的元素可以数,点,代数式等;

  5、对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为

  例1.(课本例1)用列举法表示下列集合:

  (1)小于10的所有自然数组成的集合;

  (2)方程x2=x的所有实数根组成的集合;

  (3)由1到20以内的所有质数组成的集合;

  (4)方程组 的解组成的集合。

  思考2:(课本P4的'思考题)得出描述法的定义:

  (2)描述法:把集合中的元素的公共属性描述出来,写在花括号{ }内。

  具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

  一般格式:

  如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;

  说明:

  1、课本P5最后一段话;

  2、描述法表示集合应注意集合的代表元素,如{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{x|整数},即代表整数集Z。

  辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

  例2.(课本例2)试分别用列举法和描述法表示下列集合:

  (1)方程x2—2=0的所有实数根组成的集合;

  (2)由大于10小于20的所有整数组成的集合;

  (3)方程组的解。

  思考3:(课本P6思考)

  说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

  (二)。课堂练习:

  1、课本P6练习2;

  2、用适当的方法表示集合:大于0的所有奇数

  3、集合A={x| ∈Z,x∈N},则它的元素是 。

  4、已知集合A={x|-3

  归纳小结:

  本节课从实例入手,介绍了集合的常用表示方法,包括列举法、描述法。

  作业布置:

  1、 习题,第题;

  2、 课后预习集合间的基本关系。

【高一数学上册教案】相关文章:

高一数学教案11-08

高一数学教案07-21

关于高一数学的教案08-27

高一数学上册教学计划03-20

高一上册语文教案11-24

高一数学必修一教案02-06

高一语文上册《琵琶行》教案12-27

初一数学上册的教案06-10

初一数学上册教案09-21