当前位置:育文网>教学文档>教案> 小学平均数教案

小学平均数教案

时间:2024-11-14 07:11:06 教案 我要投稿

小学平均数教案

  作为一位杰出的老师,很有必要精心设计一份教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么问题来了,教案应该怎么写?以下是小编收集整理的小学平均数教案,欢迎大家分享。

小学平均数教案

小学平均数教案1

  一、学习目标及重、难点:

  1、理解把算术平均数的简便算法看成加权平均数的道理,进一步加深对加权平均数的认识。

  2、能根据频数分布表利用组中值的方法计算加权平均数。

  3、掌握利用计算器计算加权平均数的方法。

  重点:能根据频数分布表利用组中值的方法应用公式计算加权平均数。

  难点:对算术平均数的'简便算法与加权平均数算法一致性的理解。

  二、自主学习:

  (一)知识我先懂:算数平均数:

  (二)自主检测小练习:

  1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表

  部门ABCDEFG

  人数1124225

  每人创得利润20xx。521.51.51.2

  该公司每人所创年利润的平均数是多少万元?

  三、新课讲解:

  例1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表

  所用时间t(分钟)人数

  0<t≤104

  10<t≤6

  20<t≤20xx

  30<t≤4013

  40<t≤509

  50<t≤604

  (1)第二组数据的组中值是多少?

  (2)求该班学生平均每天做数学作业所用时间

  分析:你知道上面是组中值吗?课本128页探究中

  有,你快看看吧!

  (1)在数据分组后,一个小组的族中值是指:这个小组两端点数的数。

  (2)各组的实际数据可以用组中值来代替,各组数据的频数可以看作这组数据的。

  解:

  (1)第二组数据的组中值是()=

  (2)=

  答:

  例2、某班40名学生身高情况如下图,请计算该班学生平均身高

 四、小试身手

  1、教材P129练习第1,2题。

  2、八年级一班有学生50人,八年级二班有学生45人。期末数学测试中,一班学生的平均分为81.5分,二班学生的平均分是83.4分,这两个班的平均分是多少?

  五、课堂小结:

  算术平均数:一般的:在求n个数的算术平均数时,如果出现次,出现次,…出现次(这里++…=n)那么着n个数的算术平均数是=。也叫这k个数的加权平均数。其中,…。分别叫的权。

  六、课堂检测:

  年龄频数

  28≤X<304

  30≤X<323

  32≤X<348

  34≤X<367

  36≤X<389

  38≤X<4011

  40≤X<422

  1、下表是截至到20xx年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖

  得主获奖时的平均年龄?

 七、课后作业:必做题:教材129页1;

  教材130页练习

  选做题:练习册对应部分习题

  八、每课一首诗:平均数学习要注意,计算准确是关键;

  只要用心与努力,学会应用很容易;

  九、学习小札记:

  写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!

小学平均数教案2

  一、 复习铺垫,导入新课

  小明利用五一假期,查找了一些有关小动物寿命的数据,并制作成了下面这张统计表。请同学们看大屏幕。

  出示动物寿命统计表:

  小猫老鼠大象乌龟

  寿命/年6251152 提问:看了这张统计表,你发现了什么?(乌龟的寿命最长,老鼠的寿命最短。)

  谈话:借助统计,我们常常能发现一些有趣的现象和规律。今天我们继续研究统计。(板书:统计)

  【说明:利用动物寿命统计表这一学生感兴趣的材料,复习相关旧知,导入新课,自然贴切,有利于调动学生学习的积极性和主动性。】

  二、 创设情境,自主探索

  1. 呈现套圈情境。

  多媒体演示“套圈比赛”的场景。

  谈话:三年级第一小组的男、女生在进行套圈比赛,每人套15个圈,这两张统计图分别表示男生和女生套中的个数。

  2. 引入平均数。

  出示男、女生套圈成绩统计图。

  ①提问:从统计图中,你知道了什么?

  结合学生的想法,相机进行引导。

  想法一:男生有4人,女生有5人。(为比较总数预设)

  想法二:男生每人套中的个数,谁来介绍女生没人套中的个数。

  ②男生套得准一些还是女生套得准一些?你有什么方法?

  和你的同桌说说自己的想法。

  想法一:女生套得准一些,因为套中的最多的是吴燕。

  追问:那套中的个数最少是男生还是女生,所以套中最多的是女生,套中最少的也是女生。用一个人的成绩代表整个队的成绩,这样合适吗?还有其他的方法吗?

  想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。

  ③追问:这种想法的可取之处是已经注意到从整体的方面去比较,但是他们两队人数不相等,这样比公平吗?因为参与套圈的人数不相等,比较总数,是不公平的。

  可以怎么办呢?

  想法三:分别求出男、女生平均每人套中的个数,哪个队平均每人套中的个数多,哪个队就套得准。(比平均数)。

  追问:这样比公平吗?(公平)我们就用这种方法试一试。

  【说明:富有启发性的“追问”,旨在引导学生认识到用原有认知结构中数据处理的方式,如比最多、比总数等解决这一问题并不合适,从而引出平均数,并在这一过程中初步感受平均数能表示一组数据的整体水平。】

  4. 理解平均数。

  ④操作:你知道男生平均每人套中多少个圈吗?

  请同学们仔细观察统计图,先在小组里讨论怎样找出每个队的.平均成绩,再试一试。看哪些小组想的办法又多又好。

  学生可能出现两种方法:一是移多补少;二是先求和再求平均数。

  ⑤引入:男生中谁套中得最多?谁套中得最少?根据这个信息,你有什么好方法求出男生平均每人套中多少个圈?

  可以把张明套中的一个移给李小刚,另一个移给陈晓燕。——移多补少

  反馈时,学生边讲解移多补少的过程,教师利用课件动态演示。

  ⑥还有其他的方法吗?

  引导列式:6 + 9 + 7 + 6 = 28(个)⑦28表示什么?

  28 ÷ 4 = 7(个)⑧7表示什么意思?(图中的红色线条就表示了男生套中的平均数)

  ⑨你能看出,7比谁套中的个数多?比谁套中的个数少?

  小结:平均数比最大的数小,比最小的数大

  【说明:将学生对平均数的探求发端于操作,让学生在活动中获得有关平均数的多种求法。】

  ⑩提问:根据你的发现,谁能猜一猜女生队平均每人套中的个数一定在什么范围之内?(在5~9之间)可以通过哪些方法来验证?

  ⑾谈话:女生平均每人套中多少个圈呢?你是怎样知道的?请你独立完成在书上。10+4+7+5+4=30(个)

  30÷5=6(个)

  ⑿说说为什么要除以5而不除以4?(女生有5人,要用5人的总数平均分成5份)

  ⒀现在求出女生平均每人套中6个圈,是不是女生每人都套中6个呢?为什么?

  仔细观察女生套圈成绩统计图,得出结论:平均数代表的是一个整体水平。

  提问:现在你能判断男生套得准还是女生套得准吗?

  ⒁在解决男生、女生平均套中多少个圈这两个问题,有什么相同和不同?

  相同:⑴求平均数的方法,得出数量关系。(板书:总数÷份数=平均数)

  ⑵平均数比最大的数小,比最小的数大大。

  ⑶平均数都是代表了一个整体的水平。

  不同:总数不同,人数不同,平均数也不同。

小学平均数教案3

  师:好的同学们,不知不觉,就要下课了,你们告诉我,你们学的开心吗?你们有收获吗?还有遗憾的地方吗?(指名说)李老师也有收获,我发现我们三(5)班的'同学表现都很出色,有的同学善于思考问题,有的同学集体合作意识强,有的同学善于倾听别人的发言,这都是很好的学习习惯,我相信,你们以后会做得更好。最后让我们把最热烈的掌声送给在座的每一位同学吧!(好),下课!

小学平均数教案4

  大家都听过小猫钓鱼的故事吧?今天老师也要讲一段小猫钓鱼的故事。

  一、小猫钓鱼认识平均数

  1、在一个天气晴朗的午后,大虎、二虎和小虎三位猫兄弟到河边钓鱼。两个小时以后他们每人数了数自己的鱼,大虎钓到7条鱼,二虎也钓到6条鱼,只有小虎才钓到2条鱼,你能用圆形代替鱼,摆出他们钓鱼的条数吗?(竖排或横排摆都可以)

  2、小虎一看自己钓得这么少就哭起来了,原来猫妈妈说,今天谁钓鱼钓得最少就不能去观看森林卡拉OK大赛了,于是小虎就拼命哭,怎么哄也哄不好。这时二虎突然说我有主意了,你知道二虎想出什么主意能让三个人一起去观看卡拉OK比赛呢?

  3、怎样才能让每个人的鱼同样多呢?用圆片摆一摆再在小组内说说你的方法。

  方法一:把三个人的鱼合到一起再平均分,每个人也可以得到5条鱼,这种方法叫做先合并再平均分。这种方法你能列出算式吗?

  方法二:大虎拿出两条鱼给小虎,二虎拿出1条鱼给小虎,这样每个人都有5条鱼,这种方法叫做移多补少。

  5条是大虎钓鱼的条数吗?是二虎和三虎钓鱼的条数吗?我们给他起个名字,5条就是大虎、二虎、小虎钓鱼的平均数,我们可以说他们平均每人钓了5条鱼。

  二、进一步理解平均数

  1、大虎、二虎、小虎在回家的路上遇到花花姐妹,原来她们也去钓鱼了,花花姐妹可是钓鱼的高手。大虎:“你们平均每个人钓了多少条鱼?”

  2、这是花花姐妹钓鱼的条数,你估计一下花花姐妹平均每人大约钓到多少条鱼?

  3、你能算出花花姐妹到底平均每人钓了多少条鱼呢?

  三、歌唱比赛,理解平均数的必要性。

  1、森领卡拉OK大赛就要开始了,许多小动物都赶着去观看比赛呢!

  2、森林里好多鸟类都参加了比赛,最后的决赛是在黄鹂和百灵鸟之间进行的,让我们来看看决赛成绩。这是四位评委为黄鹂打出的分数,分别是96、85、90、93,当最后一位选手百灵鸟登台演出的时候,评委之一的猫先生因家中有急事由评委席退出,于是只剩下3位评委为百灵鸟打分,他的得分是93、89、94。 比赛结束了,组委会正在做最后的颁奖准备,

  3、你知道谁是这次比赛的冠军吗,想一想、算一算,然后在小组里说说你的理由。

  4、黄鹂是4位评委打出的分数,而百灵鸟是3位评委打出的分数,因为评委的人数不同,所以算总分是不公平的.,这个时候只有算平均分才公平。在现实生活中你知道哪些比赛是取平均分来决定比赛成绩的。

  四、生活中灵活应用平均数

  看完卡拉OK比赛,三位猫兄弟觉得天气太热,就派大虎到小熊冷饮店买冰糕。咦!小熊遇到什么难题了?(小熊:星期四该进多少雪糕呢?)

  这是小熊冷饮店本周前三天卖出冰糕的情况,小熊星期四该进多少箱冰糕合适呢?

  五、平均数的应用

  看完卡拉OK比赛,虎虎三兄弟回到家里看电视,突然他们被一则招聘启示吸引住了,(读招聘启示)森领国王足球队可是森林里最好的足球队,作为狂热的足球爱好者,大虎、二虎和小虎当然都想加入森林国王足球队啦,这是三兄弟最近5个赛季的进球数,你认为他们当中谁更有可能被森林国王足球队选中?

小学平均数教案5

  一、教学过程

  (1)谈话导入

  师:统计表的相关知识你了解多少?

  预设

  生1:把收集到的数据进行整理后制成表格,用来分析情况、反映问题,这种表格叫作统计表。

  生2:统计表一般包括名称、项目、数量、单位等基本信息。

  生3:统计表也分为单式统计表和复式统计表。

  生4:制作步骤:一是收集整理数据;二是设计表格;三是填写数据。

  师:我们在以前的学习中都接触过哪些统计图?(条形统计图、折线统计图、扇形统计图)

  这些统计图的特点同学们还记得吗?这节课我们就来共同复习一下条形统计图的相关知识。(板书课题:条形统计图和平均数)

  二、回顾与整理

  1、条形统计图的特点。

  提问:请同学们回忆一下,我们以前学过的条形统计图有哪些特点?

  (学生小组讨论后进行汇报)

  教师根据学生的汇报情况进行小结并板书

  条形统计图的特点:能够清楚地看出数量的多少。

  2、条形统计图的分类。

  提问:条形统计图可以分为几类?

  在学生充分讨论的基础上指名回答。

  预设

  生1:条形统计图按照形式来分,可以分为横向条形统计图和纵向条形统计图。

  生2:条形统计图按照实际需要可以绘制成单式条形统计图和复式条形统计图,前者只表示1个项目的数据,后者可以同时表示多个项目的数据。

  3、条形统计图的绘制方法。

  (1)提问:同学们在制作条形统计图时应注意些什么?

  (2)学生充分讨论后指名回答。

  预设

  生1:注意直条的宽窄应一致。

  生2:要注意单位长度。

  生3:还要注意美观。

  生4:应先在格子图上画出纵轴和横轴,并分别标上名称。

  生5:还应在横轴上确定直条的间隔,在纵轴上确定每格代表的数量。

  生6:如果是复式条形统计图,不同类别要用不同的颜色或形式的直条加以区分,便于比较。

  生7:还要写统计图的`名称、日期、单位等。

  师:下面就请同学们根据绘制条形统计图的注意事项,结合下面提供的数据信息绘制一幅条形统计图。(学生以小组为单位在方格纸上尝试完成条形统计图,教师巡视指导)

  (3)课件出示数据信息:希望小学和光明小学六年级各班人数统计表。

  (4)学生绘制出条形统计图后在全班展示,并说出自己的绘制方法。

  (5)教师根据学生的汇报总结绘制条形统计图的方法:

  ①根据纸张的大小,画出两条互相垂直的射线,作为纵轴和横轴。

  ②在横轴上适当分配直条的位置,确定直条的宽度和间隔。

  ③在纵轴上确定单位长度,并标出数量和计量单位。

  ④用不同的图例区分两组数据。

  ⑤根据数据的大小,画出长短不同的直条,并标上统计图的名称、制图日期和图例。

小学平均数教案6

  [教学内容]苏教版〈义务教育课程标准实验教科书·数学〉三年级下册第92-94页。

  [教学目标]

  1.在具体问题情境中,理解平均数的意义。

  2.探索求平均数的方法,鼓励解决问题策略的多样化。

  3.联系实际,灵活运用平均数解决些问题,培养学生学好数学的信心。

  [教学过程]

  一、创设情境,激趣导入

  师:小猴子最喜欢吃桃了,一天,猴妈妈摘了一些又大又红的桃子,分给它的3个孩子,老大2个,老二3个,老三4个。(贴图片)同学们,你对猴妈妈的分法有什么看法呢?

  生:不公平,老大少了,老三多了。

  师:那怎样就公平呢?生把这些桃合起来再平均分给3个孩子,每人3个。

  生:老大少了,老三多了,把老三的桃拿一个给老大。

  师:谁愿意上来分一分?

  (教师根据学生的移动过程板书:)

  师:大家看,现在就——(公平了),平均每个孩子——(3个桃)。这个“3”,在数学上就叫2,3、4这一组数的平均数。在生活中经常要用到平均数,同学们,我们今天就来探索研究平均数。

  评析:从故事情境中引入学习内容,既符合学生的年龄特点和认知心理规律,又让学生在已有知识经验的基础上初步感悟到平均数的意义。这样的导入,不仅激活了学生想学平均数的欲望,焕发了学习情智,而且为一节课的顺利进行创设了良好的环境。

  二、自主探究,理解新知

  师:三年级第一小组的4个男生和5个女生进行套圈比赛,每人套15个圈,把套中的个数用统计图表示出来。(屏幕显示例题图)看一看,你从图中知道了什么?

  生……

  师:你们都有双善于发现的眼睛,真了不起!既然是比赛,老师就想问:是男生套得准一些,还是女生套得准些?猜猜看。

  生:女生。

  师:都说是女生,可是猜想毕竟是猜想,到底事实情况怎样?我们必须想个方法来验证,请你们开动脑筋,有了想法后相互交流。(交流中出现了两种意见)

  意见l算出女生共套中多少个和男生一共套中多少个,进行比较。

  意见2算出男生平均每人套中多少个,女生平均每人套中多少个,然后再比较。 (两种不同的方法,引发了争论……)

  师:在刚才的争论中,我们明白了参加比赛的人数不样多,算总数不好比,也不公平,就不能用这种方法,只有求出男生平均每人套中多少个圈,女生平均每人套中多少个圈,才能一比胜负。

  评析:以学生喜欢的有着活动经验的比赛情境作为背景,设计有趣的问题,引导学生讨论、争论、辩论,最终得出求平均数是解决问题的行之有效的方法,让学生感受到学习平均数的作用,体验了自主学习过程的快乐。

  师:男生平均每人套中多少个圈呢?先独立思考,然后交流。

  生:把张明的9个移1个给李小钢,1+6=7,张明还有8个,再移1个给程晓杰,1+6=7,最后大家都是7个。

  师:想到这种方法或在他的启发下明白了这种方法的请举手。(都举起了手)都很了不起|这是一种好方法,老师把它写下来:

  通过把多的移一些补给少的,使平均每个人都一样多。谁能给这种方法起个名字,让我们记住这种方法?

  生:移多补少。

  师:多形象啊!还有不样的方法吗?

  生;6+9+7+6=28 (个),28+4=7(个)。

  师:这种方法是先求出什么,再怎样的?

  生:先求出总数,再除以人数,得到平均每人套中的个数。

  师:我们把这种方法叫做"先求和再平均分"。(齐读)

  师:不管用什么方法,最后都求出了男生平均每人套中7个圈,反映了男生套中的'平均水平。那么女生平均每人套中多少个圈呢?请你们独立解决。

  生:1+4+7 + 5+4=30(个),30+5=6(个)。

  师:刚才男生中用总数除以4,到了女生中,怎么就除以57呢?

  生:因为女生是5个人。

  师;一语中的,解释得真好1因为女生是5个人套中的个数相加,所以要除以5。都是这样做的吗?为什么不用移多补少的方法呢?

  生:不好移。

  师:是啊|刚才我发现有几位同学开始想用移多补少的方法,可是移来移去不好移,后来又选择了先求和再平均分的方法。确实,数学的思考要从实际出发,灵活选择解决问题的方法。

  师,女生平均每人套中6个圈。这个6表示每个女生真的都套中6个吗?

  (生摇头)

  师:都摇头,认为不是,那你怎么理解这个6的意思呢?

  生:6是平均数。

  师:6确实不表示每个女生真的都套中6个圈,是1、4、 7、5、4这一组数的平均数,反映了女生套中的平均水平。通过算平均成绩,现在你能比较出是男生套得准些还是女生套得准一些了吧|

  生:男生。

  师:什么理由?

  生:因为7>6。

  师:同学们,回想这道题,由于参加比赛的人数不等,算总数不好比,也不公平,后来是谁帮了我们的忙啊?

  生:平均数。

  师:现在你想对平均数说什么?

  生:平均数真公平。

  生:人数不等时,可以用平均数比较。

  生:平均数的作用很大。

  评析:启发学生自主探索求平均数的不同方法,鼓励多渠道解决问题,既有利于抓住本质去思考问题,也有利于理解记忆。通过疑问、解释的过程,既让学生学会灵活选择方法求平均数,又加深了对平均数意义的理解。整个过程学生主动参与、善于思考,学得朴实有效。

  师:是啊,老师从生活中收集了些平均数的信息,和你们一起来分享。

  师:三年级女生平均身高130厘米,男生平均身高12厘米。(追问三年级所有女生身高都是130厘米,所有男生身高都是132厘米吗?)

  生:不是。

  师:那你怎么理解?

  生:这是平均数,实际上可能有一个女生身高是128厘米呢!

  生:还有可能有一个男生身高135厘米呢!

  师:理解得真透彻!再请看(多媒体出示画面),我们通过调查、统计、测算,发现严重缺水地区平均每人每天用水量约3千克,而我们这儿的小明家平均每人每天用水量约85千克。同学们,两者相比,相差多大呀,此时此刻你有什么心里话要说?

  生:小明家太浪费水了。

  生:我发现两地平均每人每天的用水量相差很大,有的地方严重缺水。

  生:我们要节约用水。

  师:说得真好|希望你们从自身做起,节约每一滴水。其实,我们国家正在搞"南7北调"的工程,南边水资源丰富,北边严重缺水,"南水北调",目的是让更多地方的人都能喝上用上好的水。

  师:平均数在生活中的应用这么广泛,说说你在哪儿遇到过或用过平均数

  生:我家平均每月用水8吨。

  生:我们班期中考试语文平均成绩是93.5分,数学平均成绩是93分。

  师:只要你们留心观察生活,发现平均数就在我们身边。

  评析:通过举例,让学生在实例中进一步理解平均数的意义,并向学生有机渗透节约的思想,同时让学生感受到数学与生活的联系,促使学生以后学好数学,关注生活。

  三、联系生活,灵活运用

  1.用合适的方法求平均数。(93页第1题和94页第2题)

  2.判断。投篮比赛,在规定的时间内

  红队5人,每人投中的个数分别为1、12、15、18、20,平均每人投中1个。( )

  蓝队4人,每人投中的个数分别为:1、15、20、22,平均每人投中22个。( )

  (判断并说理后,请学生估计平均数的值,在交流过程中学生初步感知到了平均数比一组数中最小的数大,比最大的数小,而旦最接近中间大小的那个数。)

  师:我们对平均数又有了更加深刻的了解,请带着你的智慧走进生活。

  (1)95页第1题。(运用平均数的意义,联系生活实际解释问题)

  (2)下面是王老板卖出苹果和椅子的数量。

  师:王老板平均每天卖出苹果和桶子各多少箱?请你们独立解决。

  生:王老板平均每天卖出苹果16箱,卖出桶子12箱。

  师:根据这两个数据,你对王老板有什么建议?

  生:建议王老板多进一些苹果,因为每天卖出的苹果多。

  师:是啊!通过算平均数,知道平均每天卖出的苹果多,就建议王老板多进一些苹果。说明平均数对我们做决策或预测未来事件的发展有着非常重要的作用。

  评析:有层次地设计练习,让学生进一步掌握知识,形成技能,发展智力。注重练习的新颖性,让学生的思维不停留在简单的重复练习中,而是通过判断、说理、估算、解释、推测等思维活动,让学生对平均数加深理解,丰富内涵,从中促进了创造性思维的发展。

  四、总结提升,质疑拓展

  师:今天学习了平均数,请你们静静地想一想,你有哪些收获?

  生:……

  师:老师想问一个问题目在我校五节歌咏比赛时,各位评委为参加比赛的选手打分,最后去掉一个最高分和一个最低分,再算出选手的平均得分。这是为什么呢?(学生茫然)

  师:这个问题,我们把它延伸到课后,请你们和家长一起研讨,可以举出些数据来揭开其中的奥秘。

  师:今天,我们认识了平均数,知道平均数在生活中有很大的作用,希望你们在生活中学会利用平均数解决问题,同时也希望你们像平均数样,堂堂正正做人,公平公正做事。

  评析:在总结回想中,提升认识。一方面让学生对所学知识有清晰的认识;另一方面培养学生质疑问难的精神;再者让学生在情感、态度、价值观方面受到良好的教育,让学生感受到既要学会学习,又要学会做人,促进学生情智并进,和谐发展。

  [总评]

  教学的基本出发点是促进学生全面、持续、和谐的发展。学生只有动情地、积极地投入到学习中,才能入目、入耳、入脑。为此,教者为学生创设了愉悦和谐的环境,启发他们或静静思考、或神情飞扬、或切磋商讨、或争论不休……促进他们的情感、知识、智慧交互生成,多元智力并进发展。具体有以下几点感触:

  一、营造了愉悦和谐的氛围

  学生在良好的环境下学习,心理安全、自由,敢于大胆地发表自己的意见,能说出心里话,有利于形成真实有效的课堂。在课的导入中,教者以故事激趣;在新知的教学中,以问题激疑;在巩固练习中,题型新颖,让学生亲近数学。每一个环节的设计和教学语言都讲究艺术,营造种愉悦和谐的氛围,努力去感染和激励学生,使他们产生求知欲,使课堂达到事半功倍的效果。

  二、构建了互动交流的方式

  教者在课堂上充分以学生为主体,多给学生提供机会,经常通过启发性的语言,如“你知道吗”“你有不一样的方法吗”“你有什么心里话要说”等,使学生感受到自己是学习的主人,增强参与的主动性,不断地去思考、探索、讨论、交流,在经历知识的形成过程中,不断休验成功的快乐,在认知与情感的交互作用下,学得积极主动,形成一个真实有效的课堂。

  三、设计了丰实有效的练习

  认知心理学认为:学生的学习过程,是一个把教材知识结构转化为自己认知结构的过程。完成这个过程,仅靠新课的教学是不够的,还要通过有效的练习,才能把新知识同原有知识结构更加紧密地融为一体,并贮存下来,从而使所形成的认识结构更加充实完善。教者把平均数和生活联系起来,通过有层次的设计练习,让学生在练习中丰富了对平均数内涵的深刻理解,既让学生学得扎实灵活,又让学生的创造性思维得到发展,让他们既长知识,又长智慧。

小学平均数教案7

  教学目标

  1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。

  2、使学生认识统计与生活的联系,发展学生的实践能力。

  3、巩固求平均数的计算方法。

  教学过程:

  一、情景导入

  1、师出示一杯水,告诉学生这一大杯水大约600克,而后把这杯水分别倒入4个杯子中(每个杯子的水不同)提出:你们能求出这4个杯子的水的平均重量吗?

  2、学生动手解决,并交流解决的方法。

  3、六一节,老师带了许多糖果想送给大家吃,老师给奋飞组6人共分36块,给前进组8人共分了40块,给蓝天组5人共35块,你们认为哪一组的同学分到的糖果多?怎么解决?

  (1)组织交流解决的方法。

  (2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的平均数来比较。板书课题。

  二、探究体验

  1、出示情景图,告诉同学穿兰色衣服的是开心队,穿黄色衣服的是欢乐队。

  2、引导学生观察后猜一猜:你认为哪一队的`身高高?并说说理由。

  3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的平均身高分别是多少?并说说估的方法。

  4、同桌合作,一人求欢乐队的平均身高,另一个求开心队平均身高,然后比较哪一队高?

  5、组织交流计算的方法与结果。

  6、组织讨论:从刚才的这件事,你有什么发现?

  7、小结:平均数能较好地反映一组数据的总体情况。

  三、实践应用

  1、说说生活中还有哪些事要通过求平均数来解决问题。

  2、生独立完成练习十一第4、5题。

  四、全课总结

  1、通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?

  2、师总结。

小学平均数教案8

 一、教材分析

  (一)教材所处的地位和作用

  “算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究、本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用数学知识,灵活解决实际问题,学数学用数学的好素材二同时本节知识又渗透了数形结合、化归等重要数学思想,所以有利于培养学生良好的思维品质、

  (二)教学目标

  1、知识目标:理解两个实数的平方和不小于它们之积的2倍的重要不等式的证实及其几何解释;把握两个正数的算术平均数不小于它们的`几何平均数定理的证实及其几何解释;把握应用平均值定理解决一些简单的应用问题、

  2、能力目标:培养学生数形结合、化归等数学思想、

  (三)教学重点、难点、关键

  重点:用平均值定理求某些函数的最值及有关的应用问题、

  难点:定理的使用条件,合理地应用平均值定理、

  关键:理解定理的约束条件,把握化归的数学思想是突破重点和难点的关键、

  (四)教材处理

  依据新大纲和新教材,本节分为二个课时进行教学、第一课时讲解不等式(两个实数的平方和不小于它们之积的2倍)和平均值定理及它们的几何解释、把握应用定理解决某些数学问题、第二课时讲解应用平均值定理解决某些实际问题、为了讲好平均值定理这节内容,在紧扣新教材的前提下,对例题作适当的调整,适当增加例题、

  二、教法分析

  (—)教学方法

  为了激发学生学习的主体意识,又有利于教师引导学生学习,培养学生的数学能力与创新能力,使学生能独立实现学习目标、在探索结论时,采用发现法教学;在定理的应用及其条件的教学中采用归纳法;在练习部分,主要采用讲练结合法进行、

  (二)教学手段

  根据本节知识特点,为突出重点,突破难点,增加教学容量,利用计算机辅导教学、

  三、教学过程设计

  6、2算术平均数与几何平均数(第一课时)

  (一)导入新课

  (教师活动)1、教师打出字幕(提出问题);2、组织学生讨论,并点评、

  (学生活动)学生分组讨论,解决问题、

  [字幕]某种商品分两次降价,降价的方案有三种:方案甲是第一次9折销售,第二次再8折销售;方案乙是第一次8折销售,第二次再9折销售;方案丙是两次都是折销售、试问降价最少的方案是哪一种?

  [讨论]

  ①设物价为t元,三种降价方案的销售物价分别是:

  方案甲:(元);

  方案乙:(元);

  方案丙:(元)、

  故降价最少的方案是丙、

  ②若将问题变为第一次a折销售,第二次b折销售、显然可猜想有不等式成立,即,当时,设计意图:提出一个商品降价问题,要求学生讨论哪一种方案降价最少、学生对问题的背景较熟悉,可能感爱好,从而达到说明学习本节知识的必要,激发学生求知欲望,合理引出新课、

  (二)新课讲授

  尝试探索,建立新知

  (教师活动)打出字幕(重要不等式),引导学生分析、思考,讲解重要不等式的证实、点评有关问题、

  (学生活动)参与研究重要不等式的证实,理解有关概念、

  [字幕]假如,那么(当且仅当时取“=”号)、

  证实:见课本

  [点评]

  ①强调的充要条件是

  ②解释“当且仅当”是充要条件的表达方式(“当”表示条件是充分的,“仅当”表示条件是必要的)、

  ③几何解释,如图。

  [字幕]定理假如a,b是正数,那么(当且仅当时取“=”号)、

  证实:学生运用“”自己证实、

  [点评]

  ①强调;

  ②解释“算术平均数”和“几何平均数”的概念,并叙述它们之间的关系;

  ②比较上述两个不等式的特征(强调它们的限制条件);

  ④几何解释(见课本);

  @指出定理可推广为“n个()正数的算术平均数不小干它们的几何平均数”、

  设计意图:加深对重要不等式的熟悉和理解;培养学生数形结合的思想方法和对比的数学思想,多方面思考问题的能力、

  例题示范,学会应用

  (教师活动)教师打出字幕(例题),引导学生分析,研究问题,点拨正确运用定理,构建证题思路、

  (学生活动)与教师一道完成问题的论证、

  [字幕]例题已知a,b,c,d都是正数,求证:

  [分析]

  ①应用定理证实;

  ②研究问题与定理之间的联系;

  ③注重应用定理的条件和应用不等式的性质、

  证实:见课本、

  设计意图:巩固对定理的理解,学会应用定理解决某些数学问题、

  课堂练习

  (教师活动)打出字幕(练习),要求学生独立思考,完成练习;巡视学生解题情况,对正确的解法给予肯定和鼓励,对偏差给予纠正;请甲、乙两学生板演;点评练习解法、

  (学生活动)在笔记本上完成练习,甲、动两位同学板演、

  [字幕]练习:已知都是正数,求证:

小学平均数教案9

  教学目标:

  1、结合具体实例,理解平均数的实际意义,探索求“平均数”的基本方法,初步学会根据具体情况运用平均数分析与解决实际问题,根据统计结果做出简单的判断和预测。

  2、在具体情境中,培养学生整理数据、分析数据的意识和能力,体会统计的作用及其价值。

  3、在统计过程中,形成自主探索与合作交流的意识和能力。

  教学重难点:

  理解平均数的意义。

  教学过程:

  一、创设情境,激发兴趣。

  师:你们认识姚明吗?姚明是干什么的?

  师:姚明在美国NBA球赛中有非常棒的表现。一支出色的球队除了要有优秀的运动员,还要有一名优秀的教练员。

  师:你想不想当回小教练?今天,老师就请同学们当回小教练,咱们去参加一场小篮球比赛。

  二、自主合作、探索新知。

  1、感受平均数产生的必要性。

  课件出示篮球比赛情境图,师叙述:赛场上,蓝、红两队比赛异常激烈,比分在交替上升,正打到关键时刻,蓝队眼看就要追上红队,突然,蓝队的`一名中锋受伤了,急需换人。蓝队只有两名替补中锋:7号和8号,换谁上场呢?

  师:7号和8号两名篮球运动员到底该换谁上场呢?你作为一名小教练,你应该怎样选呢?

  师:看来换谁上场,要考虑的因素很多,今天,我们就从“运动员的得分”角度上考虑该换谁上场的问题,好吗?

  课件出示7号、8号小组赛成绩统计表:

  师:这是7号和8号运动员前面几场比赛的得分情况。请同学们观察统计表仔细分析他们两人得分情况,考虑一下应该换谁上场呢?说明你的理由。

  学生交流。

  师:可以比两个人平均每场得分数。 “平均每场的得分”什么意思?

  (就是每场得分一样多。把多的和少的放在一块匀一匀,让它每场得分一样多。把不一样多的,变成一样多的;把多的匀给少的一些。)

  师:看来你过去的知识学得真不错。“平均每场的得分”就是让每场得分一样多。(板书:一样多)

  师:那么,小教练们,你们觉得用“比平均每场得分”的方法合理吗?

  2、探究求平均数的策略与方法。

  (1)引导探索“7号队员每场的平均得分”。

  师:那么我们来求一求7号、8号队员的平均得分各是多少?

  (2)自主探究,合作交流。

  请同学们按导学案中要求完成任务。

  ★请同学们根据统计表信息,独立完成1、2题。

  ★对子交流,小组交流。把自己的想法说给小伙伴听一听。

  ★班内大展。小组展示求平均数的多种方法,其余组质疑、补充。

  (3)教师总结,精讲两种方法。

  一种方法:把多的移动出来补给少的才能让每场得分一样多(课件出示)。这种把多的移动出来补给少得的方法叫做移多补少。(板书)

  第二种方法:7号:9+11+13=33(分),33/3=11(分)

  8号:(6+14+12+8)÷4=10(分)

  师:这是一种“先求总数,再求平均数”的方法。

  两种方法都求出了7号、8号运动员的平均得分。

  3、理解“平均数”的意义。

  师:“10”是哪一场比赛的得分?

  10是把四场比赛的比分匀活匀活得到的。 “10”是6、14、12、8的平均数。(板书)师:11是谁的平均数?

  师:小教练们,现在你能确定派谁上场了吗?说说你的理由。

  师:7号的平均分高决定了7号的整体水平要高一些。

  4、教师小结:

  同学们通过当“小教练”的活动,在分析、“统计”的过程中认识了平均数,学会了用移多补少和计算的方法求平均数。现在我们到篮球场下看看有没有平均数。

三、自主大闯关

  独立完成导学案中自主大闯关内容,然后对子交流,重点问题一起解决。

  四、布置作业

  课后根据自己的兴趣搜集一些有关平均数的信息,把它记录下来,跟全班同学交流。

小学平均数教案10

  教学目标

  (一)进一步理解求平均数的意义,掌握较复杂的求平均数的方法。

  (二)通过题目设计,对学生进行思想品德教育。

  (三)培养学生灵活计算的能力和解决实际问题的能力。

  教学重点和难点

  求平均数的意义及较复杂的求平均数的方法。

  较复杂的求平均数的方法。

  教学用具

  教具:电脑软件、投影片。

  学具:判断卡。

  教学过程设计

  (一)复习准备

  1.口算。

  ①小明有12本书,小军有20本书,小明和小军平均每人有几本书?

  ②五(3)班做好事28件,五(4)班做好事36件,平均每个班做好事多少件?③五年级一班分成3组投篮球,第一组投中28个,第二组投中33个,第三组投中23个,平均每组投中多少个?

  由学生自己解答(列式计算)针对第③题提问:

  ①说出这道题的问题是什么?

  ②求平均数必须知道什么条件?

  ③说一说你是怎样计算的?

  板书:投中总个数÷组数。

  (二)学习新课

  1.出示例 1:

  五年级一班分成3组投篮球,第一组10人,共投中28个;第二组11人,共投中33个;第三组9人,共投中23个。全班平均每人投中多少个?

  读题后,学生分组讨论思考题。(投影片)

  ①例1和准备题③比较,题目有什么异同?(从条件和问题两方面考虑。)②要求全班平均每人投中多少个,必须先知道什么条件?

  在学生回答基础上,板书:投中总个数÷全班总人数。

  教师:投中总个数和全班总人数题目中给了吗?怎么办?

  ②投中总个数和全班总人数知道之后,怎样求全班平均每人投中多少个?

  尝试自己列式,然后讨论订正。

  板书:

  (1)全班一共投中多少个?

  28+33+23=84(个)

  (2)全班一共有多少人?

  10+11+9=30(人)

  (3)全班平均每人投中多少个?

  84÷30=2.8(个)

  教师:综合算式怎样列?(学生试列式,再讨论订正。)

  板书:(28+33+23)÷(10+11+9)=2.8(个)

  答:全班平均每人投中2.8个。

  教师:对比例1和准备题③你能发现解答方法有什么异同吗?为什么会出现这种不同的情况?

  2.出示例2:(投影片)

  下表是五年级二班3个组投中篮球情况统计表。全班平均每人投中多少个?(得数保留一位小数)

  教师:例2和例1比较,有什么异同?

  明确:例1和例2的问题一样,但已知条件不同。

  教师:要求全班平均每人投中多少个,要知道什么条件?(学生试做,然后说出自己的列式和思路,充分讨论,如果有不同意见互相交换,最后弄清怎样是对的。)

  板书:

  (1)全班一共投中多少个?

  2.5×12+3×11+3.2×10=95(个)

  由学生完成。

  (2)全班一共有多少人?

  ________________________

  (3)全班平均每人投中多少个?

  ________________________

  答:全班平均每人投中________个。

  教师:你能列出综合算式吗?

  板书:(2.5×12+3×11+3.2×10)÷(12+11+10)。

  讨论:对比例2和例1有什么不同?解答时应该注意什么问题?

  教师:求平均数时,有时不能除尽,这时需要根据具体情况取近似值。

  (三)巩固反馈

  1.做一做:

  小亮读一本书,前4天平均每天看6.25页,后3天平均每天看8页。小亮这一星期平均每天看多少页?(先说思路,再列式计算。)

  2.判断正误并说明理由。

  ①小李加工一批零件,前2时加工28个,后3时加工36个,平均每时加工多少个?

  [ ]

  A.(28+36)÷(3+2);

  B.(28 × 2+36 × 3)÷(3+2);

  C.(28+36)÷2。

  ②一辆汽车从甲地开往乙地,前5时平均每时行60千米,后3时平均每时行56千米,这辆汽车从甲地开往乙地,平均每时行驶多少千米?

  [ ]

  A.(60+56)÷(5+3);

  B.(60+56)÷2;

  C.(60×5+56×3)÷(5+3)。

  (四)课堂总结(学生总结)

  教师:解答求平均数应用题应注意哪些问题?

  ①明确问题求的是什么平均数;

  ②总数量÷总份数=平均数。

  (五)布置作业 课本P15:1,2,3,4,5。

  课堂教学设计说明

  本节课是在较简单的求平均数应用题的基础上进行的。重点是让学生理解并巩固平均数的意义以及求平均数应用题的解题思路和方法,其中加权算术平均数的计算方法是难点。通过准备题与例1的.对比突出重点,学生掌握求平均数的方法,同时培养学生分析、比较的能力。让学生充分讨论、尝试例2,培养学生独立解答问题的能力,从而突破了难点。

  本节新课教学分为三部分。

  第一部分,教学例1,加深对平均数应用题的解题方法的理解,共分3层。

  第一层:由准备题与例1对比,找出异同点;

  第二层:由问题出发找出解决问题的方法;

  第三层:列出分步和综合算式。

  第二部分:教学例2,强调根据题意确定算法,可分3层。

  第一层:出示例2,审题找出与例1的异同点;

  第二层:分组讨论解题方法;

  第三层:列出分步、综合算式。

  第三部分:对比例1、例2,找出异同点,从而加深对平均数应用题解题方法的理解。

  板书设计(略)

小学平均数教案11

  设计说明

  平均数是统计中的一个重要概念。在统计中,平均数常用于表示统计对象的一般水平,它是描述数据集中程度的一个统计量。用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常用到。本节课是在学生已有知识经验的基础上,让学生进一步体会平均数的意义,掌握求平均数的方法。

  1.创设问题情境,引发认知冲突。

  “问题是数学的心脏”,有了问题才会思索,有了问题才会引发学生认识上的冲突。这节课通过具体问题情境,激发学生的学习兴趣。由“为什么两个阿姨都领着孩子,第一位阿姨只买一张票,而第二位阿姨却要买两张票呢?”引发学生的认知冲突,从而产生进一步探究平均数的意义的欲望。

  2.在分析讨论中促进学生对平均数意义和计算方法的.再认识。

  在以往的学习中,平均数的意义和计算方法学生已经接触过,但对于具体生活情境中问题的解答,学生比较陌生,所以在教学中通过学生的小组讨论、交流、分析,使学生了解到在不同的情境中,求平均数的方法也不同,培养学生灵活运用所学知识解决生活中的实际问题的能力。

  课前准备

  教师准备 PPT课件

  学生准备 作业纸

  教学过程

  ⊙谈话导入

  1.课件出示两位阿姨排队买票的情境图(一位阿姨抱着一个大约四五岁的孩子,另一位阿姨领着一个大约七八岁的孩子)。

  师:从画面上你获取了哪些信息?你认为买票时应该怎样做?(适时对学生进行思想品德教育)

  课件依次演示第一位阿姨只买了一张票,而第二位阿姨却买了两张票。

  师:从画面上你知道了什么?有哪些疑问呢?为什么两个阿姨都带着孩子,第一位阿姨只买了一张票,而第二位阿姨却要买两张票呢?

  (学生在小组内讨论、交流,初步感知学龄前儿童免票的规定)

  2.引出新知。

  师:这节课我们一起来学习平均数的再认识。(板书:平均数的再认识)

  设计意图:数学来源于生活,从学生熟知的乘车买票情境入手,使学生初步感知平均数在实际生活中的应用,为后面学习用平均数知识解决生活中的实际问题奠定基础。

  ⊙探究新知

  (一)进一步探究平均数的意义。

  课件出示:根据有关规定,我国对学龄前儿童实行免票乘车,即一名成年人可以携带一名身高不足1.2m的儿童免费乘车。

  1.组织学生讨论:1.2m这个数据可能是如何得到的?

  (学生在小组内交流、讨论,然后全班汇报)

  (1)调查了一些6岁儿童的身高。

  (2)1.2m可能是这些身高的平均数。

  2.据统计,目前北京市6岁男童身高的平均值为119.3cm,女童身高的平均值为118.7cm。引导学生根据上面信息解释免票线确定的合理性。

  (学生在小组里讨论、交流各自的想法)

  (二)引导学生从生活情境中理解平均数。

  课件出示:下表是“新苗杯”少儿歌手大奖赛的成绩统计表。

  1.指导学生把统计表填写完整,并排出名次。

  学生进行计算,独立填表,排出名次。

  2.根据你的生活经验,说一说在实际比赛中计算平均分的规则。

  (在小组内讨论、交流,初步感知实际比赛中的评分规则和平常的求平均数方法的不同)

  3.引导学生讨论:在实际比赛中,通常都采取去掉一个最高分和一个最低分,然后再计算平均数的记分方法。你能说出其中的道理吗?

  (交流并汇报:平均数容易受偏大或偏小数据的影响)

  4.小结:在很多比赛中,为了体现公平、公正的原则,往往采取去掉一个最高分和一个最低分,然后求平均分的记分方法。

  5.引导学生按照上面的方法重新计算3位选手的最终成绩,然后排出名次。

  (学生独立计算,然后全班汇报)

  引导学生理解:其中一个数有变化,所求的平均数也会发生变化。

小学平均数教案12

  ⊙讲故事,激趣导入

  1.通过小猫钓鱼认识平均数。

  师:大家都听过小猫钓鱼的故事吧?今天老师也给大家讲一个小猫钓鱼的故事。

  师:在一个晴朗的午后,老大、老二和老三这三位猫兄弟到河边钓鱼。两个小时以后,它们各自数了数自己钓到的鱼,老大钓到7条鱼,老二钓到6条鱼,老三钓到2条鱼。老三看自己钓得这么少就哭起来了,原来猫妈妈说,今天谁钓鱼钓得最少就不能去观看森林卡拉OK大赛,于是老三哭得特别伤心,怎么哄也哄不好。这时老二说:“我有主意了。”你知道老二想出什么主意能让三位猫兄弟一起去观看森林卡拉OK大赛吗?你能用小棒代替鱼,摆出老大、老二和老三分别钓鱼的条数吗?

  (1)提出问题。

  怎样才能使老大、老二和老三钓到的鱼同样多呢?用小棒摆一摆,在小组内说说你的方法。

  (2)汇报。

  方法一:老大拿出2条鱼给老三,老二拿出1条鱼给老三,这样老大、老二和老三各有5条鱼,这种方法叫作移多补少法。

  方法二:把老大、老二和老三的鱼合到一起再平均分,每位猫兄弟都可以得到5条鱼,这种方法叫作先合并再平均分。

  师:这种方法你能列出算式吗?

  7+6+2=15(条) 15÷3=5(条)

  2.引出“平均数”。

  师:5条是老大钓鱼的条数吗?是老二和老三钓鱼的条数吗?(都不是)我们给“5条”起个名字,“5条”是三只小猫钓鱼的平均数,可以说平均每只小猫钓了5条鱼。

  师:今天我们就来学习什么是平均数,怎样求平均数。

  (板书课题)

  设计意图:从故事情境中引入要学习的内容,不仅激起了学生学平均数的欲望,还为这一课的学习创设了良好的开头。通过摆一摆,提前渗透移多补少的方法,降低了学习新知的难度,使学生容易掌握解决问题的方法。

  ⊙自主探究,理解新知

  1.教学教材90页例题。探究用“移多补少法”求平均数。

  (1)(课件出示主题图)请学生观察统计表。

  提问:你从统计表中发现了哪些数学信息?

  根据学生的回答,老师再提问:由统计表你能看出淘气能记住几个数字吗?淘气平均每次记住数字的.个数用几表示比较合适?

  出示智慧老人的说法:淘气平均每次记住6个数字。

  师:“平均每次记住6个数字”就是这5次平均每次记住的数字的个数同样多,都是6个。你们想知道这个数字“6”是怎么得来的吗?

  学生小组内操作:摆一摆或画一画,使5次同样多。

  (2)学生操作后汇报自己的想法。

  因为第5次和第3次记住数字的个数比较多,所以第5次给第1次1个,给第2次2个,第3次给第4次1个,这样淘气每次记住数字的个数都变成了6。

  (3)教师边演示,边总结。

  通过把多的补给少的,使每次记住数字的个数同样多,这种方法就是“移多补少法”。用这种方法,可以求出淘气5次平均每次记住数字的个数。

  2.探究用“算术法”求平均数。

  师:除了上面这种方法,你还有其他的方法吗?

  学生讨论后可得出:先把这5个数合起来,再平均分。

  师小结:“合”就是把这5个数加起来,然后平均分成5份,每一份就是平均数。

小学平均数教案13

  教学目标

  1.理解平均数的含义,初步学会简单的求平均数的方法,理解平均数的统计意义。进一步积累分析和处理数据的方法,发展统计观念。

  2.在具体的问题情境中,感受求平均数是一些实际问题的需要,体会平均数的意义,学习求简单数据的平均数。

  3.感悟数学知识的现实性,体会平均数在现实生活中的实际意义及广泛应用。

  学情分析

  通过对任教的三年级(2)班学生进行课前调研,了解到全班59.1%的学生面对“比总数不公平”的情境,能够想到“先求出平均每人投中的个数再比较”的建议,但没有学生能够清晰地回答“为什么求出平均每人投中的个数再比较就公平了?”。退一步说,就算学生真正理解了其中的意义,那么“平均每人投中的个数”是否就能直接与“每人投中个数的平均数”画上等号?细微的文字表述差异的背后,又表征着学生怎样微妙的思维差异呢?

  事实上,“求出平均每人投中的个数”,对于一个三年级学生而言,其心理活动的表征往往是“先求总和,再除以人数”。而这一心理运算对学生而言,其直观背景十分模糊。至于其最终运算后得出的结果又是如何成为这组数据的代表的,其意义的“联结点”对学生而言更是很难直接建立。由此可见,仅仅从“比较的维度”揭示平均数的意义,潜藏着学生难以跨越、且教师也很难察觉的认知障碍与思维断点。

  于是,教师将备课的思维焦点再次落到“数据的代表”上来。能不能从“数据的代表”的角度,重新为平均数寻找一条诞生的新途径?于是,便有了本节课的尝试。

  重点难点

  教学重点理解平均数的含义,掌握平均数的求法。

  教学难点理解平均数的统计意义。

  教学过程

  活动1【活动】一、建立意义

  (一)体验平均数的代表性

  1.谈话:

  (1)上个星期,于老师和体育来老师比赛投篮,1分钟看谁投得多。

  (2)想不想知道比赛结果?我给同学们提供一些数据,请你判断一下,我们俩谁投篮的水平更高一些。(课件分别依次出示来老师和于老师三次1分钟投篮的成绩)

  2.提问:

  (1)我们俩谁投篮的水平更高一些?为什么?

  预设:分别计算出两位老师三次投篮的总数,进行比较,得出结论。

  小结:在以前的学习过程中,要想比较谁的水平高我们经常先把总数算出来,看总数谁多。

  (2)观察观察数据,还有别的办法很快地比较出我们俩谁的水平高吗?

  预设:直接将两位老师每次投篮的个数进行比较,得出结论。

  提问:为什么直接比5和3?

  小结:如果每一次投篮的数量一样,那在这种情况下我们选一次的成绩作为我投篮水平的代表就可以了。

  提问:选择哪个数量来代表来老师的投篮水平呀?那于老师呢?方便不方便?

  【设计意图:创设“1分钟投篮比赛”的情境,精心设计数据,引发学生对平均数的“代表性”的理解。】

  (二)强化对平均数意义的理解

  1.谈话:不过,我可不服气,就找了一个理由:你是体育老师,我是数学老师,我要求再多投一次,结果来老师还真同意了,我就又投了一次。

  2.提问:

  (1)你们说于老师再投一次的话,会不会对我目前投篮的成绩有影响?

  (2)想不想知道于老师最后一次投篮的结果?(课件出示于老师第四次1分钟投篮的成绩)

  (3)我这次1分钟投了几个?我太高兴了,我为什么高兴呀?你们认为来老师会同意我的观点吗?

  (4)你认为在这种情况下应该怎么比?

  (5)我平均每次投中了几个?

  a.谈话:有很多同学有自己的想法了,请你试着在图上圈一圈、画一画,或者在图下面写一写、算一算把你的想法表示出来。

  b.谁愿意跟大家交流一下自己的想法?

  方法一:移多补少

  预设:从第四次投的7个中拿出3个分别给前3次各1个,就得到平均每次投中4个。

  谈话:你这个办法可真好!这样一移实际就是把几次不相等的数匀乎匀乎,看起来每次都一样了。数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程有个名字就叫“移多补少”。(板书:移多补少)

  【设计意图:首先利用直观形象的象形统计图呈现“移多补少”求得平均数的过程,而不是先通过计算求平均数,强化平均数“匀乎匀乎”的产生过程,帮助学生进一步直观理解平均数能反映一组数据的整体水平。】

  方法二:先合后分

  提问:还有同学用计算的方法算出了于老师平均每次投中的个数。谁愿意给大家介绍一下?

  预设:3+3+3+7=14(个)16÷4=4(个)于老师平均每次投中了4个。

  谈话:实际上就是把于老师四次投中的个数先全部合在一起再平均分成4份。(板书:先合后分)

  小结:无论是移多补少,还是先合后分,目的就是要把原来几个不同的.数变得一样多了,数学上我们把同样多的这个数就叫做原来这几个数的平均数。(板书:平均数)3、3、3、7的平均数是4。

  提问:再来看看,来老师水平高还是我水平高,这种情况下我干嘛要用到平均数来比较我们俩谁的水平高呀?

  【设计意图:帮助学生理解投篮次数不同的情况下,比较总数不公平。这时就需要用平均数作为几次投篮个数的代表来反映投篮的整体水平进行比较。加强学生对平均数在统计学上的意义和作用的理解。】

  活动2【讲授】二、深化理解

  提问:

  1.那你们觉得于老师要是再投一次的话,这个平均数会不会发生变化?为什么?

  2.我们举个例子来看看吧,如果我第五次就投了1个,你们觉得于老师投篮的整体水平是上升了还是下降了?为什么?(课件出示于老师第五次1分钟投篮的成绩)

  3.你可没算,为什么你一下子就告诉我下降了呢?你是怎么判断出来的?

  4.那我要想让我的投篮水平再上涨一点儿,你们觉得我得投几个?算算我投篮的水平上涨了没有?( 根据学生回答课件出示于老师第五次1分钟投篮的成绩)

  5.要想让我投篮的整体水平上升点,你觉得我这次得投几个才行?(根据学生回答课件出示于老师第五次1分钟投篮的成绩)

  【设计意图:初步认识了统计学的意义后,进一步设计活动让学生借助于具体问题、具体数据初步理解平均数的敏感性,丰富学生对平均数的理解。】

  活动3【练习】三、拓展提升

  (一)进一步丰富学生对平均数的理解

  1.估计平均数(课件出示)

  提问:

  (1)不能算,直接看,有这样5个数据,估计一下平均数可能会是几呢?

  (2)为什么一下就能想到平均数是5呢?平均数可不可能是2,为什么?

  (3)真的是5吗?你怎么知道是5?用计算的方法会算吗?怎么算?

  【设计意图:在估计的过程中,学生发现平均数总是介于最小数与最大数之间,强化学生对平均数意义的理解。】

  2.判断直条所在位置(课件出示)

  提问:

  (1)仔细观察、认真思考,第五个数据如果我也要画一个直条,它会在这条红线上面?还是在红线下面?请同学们用投票器进行选择。

  (2)来选一个代表,谁愿意告诉大家为什么在红线的下面?

  【设计意图:变化思路,由已知平均数逆求部分数,加深学生对平均数意义的理解。】

  (二)利用平均数解决问题(课件出示)

  1.平均身高

  提问:

  (1)篮球队队员的平均身高是160厘米。李强是学校篮球队的队员,可是他的身高才155厘米。你觉得可能吗?

  (2)那平均身高是160厘米是每个人都是160厘米吗?

  (3)既然李强的身高是155厘米,根据这个信息猜想一下,可能有的同学身高是多少厘米呢?有可能超过160厘米吗?为什么?

  【设计意图:学生借助平均数的意义进行推理判断,深化对平均数的理解。】

  2.平均水深(课件出示)

  (1)提问:

  a.从图中你了解到了哪些数学信息?(冬冬身高130厘米 池塘平均水深115厘米)

  b.冬冬心想,这也太浅了,我的身高130厘米,下水游泳一定没危险。你们觉得,冬冬的想法对吗?

  c.冬冬的身高不是已经超过平均水深了吗?

  (2)谈话:想看看这个池塘水底下真实的情形吗?(利用课件,呈现池塘水底的剖面图)

  (3)小结:虽然平均水深能够很好地反映这条小河水深的总体情况,但并不能反映出小河某一处的深度。看来,平均数也不是万能的,如果使用得不恰当,也会给我们带来麻烦,甚至发生危险,今后我们还会研究中位数、众数……在具体应用的过程中还要联系实际去思考,平均数只有用在恰当的地方才能发挥它的作用。

  【设计意图:处理这一题目时,教师适时呈现小河的截面图,并标注出5个距离,将复杂的问题简单化,达到学生仍能借助平均数的意义理解东东下水的危险性。在此过程中学生也会感悟到平均数在反映一组数据总体情况时存在的局限性,适时提出今后还要学习其它反映一组数据总体水平的统计量,做好统计知识由中年级到高年级的衔接。】

小学平均数教案14

  教学目标:

  1、使学生理解平均数的含义,初步学会简单的求平均数的方法。

  2、理解平均数在统计学上的意义,感受数学与生活的联系。

  3、发展学生解决问题的能力。

  重点难点:使学生理解平均数的含义,初步学会简单的求平均数的方法。

  教学过程:

  一、理解平均数

  1、周末,妈妈买了许多糖果,分给哥哥6颗,妹妹4颗,你对妈妈的做法有什么看法?你有什么办法让哥哥和妹妹分到的糖果一样多?是多少?

  2、老师(出示两个笔筒)分别装了27枝送给23个女同学,23枝送给23男同学,学生动手分:让女同学和男同学分的一样多。

  3、引入平均数象哥哥和妹妹分得一样多的5颗就是哥哥和妹妹分到的糖果的平均数。25枝就是男同学和女同学分的笔的平均数。

  4、学生讨论:你们喜欢刚才谁的方法?导入板书课题。

  二、探究体验

  1、出示情景图:说说老师和同学们在干什么?

  2、出示统计图:引导学生收集信息。

  3、引导学生运用移多补少的方法求平均每人收集了多少个:利用这个统计图,你们有什么办法,可以解决这个问题?学生独立思考后交流方法。

  4、提出问题:生活中,大家分头收集了许多矿泉水瓶,大家是怎样集中过来的`?如果没有这个统计图,只是每个人汇报自己收集了几个?你们有什么办法可以知道这个小组平均每个人收集了多少个?

  5、小组讨论解决的方法并派代表交流,并说说13个就是平均数,那是不是说他们每个人都是收集13个呢?理解平均数是个虚的数。

  6、小结求平均数的方法。

  三、实践应用

  1、另外一个环保小组也收集了许多矿泉水瓶,小军收集15个,小伟收集16个,小朋收集12个,小新收集了13个,这个小组平均每个人收集了几个?请你算一算。

  2、根据统计表算一算,三年段平均每班踢几下?

  班级三(1)三(2)三(3)三(4)

  踢的次数632654668646

  3、生独立完成练习十一第2题。

  四、全课总结

  1、通过今天的学习,你学到了什么新的知识?

  2、师总结。

小学平均数教案15

  第一课时

  素质教育目标

  (一)知识教学点

  1、使学生初步了解统计知识是应用广泛的数学内容。

  2、了解平均数的意义,会计算一组数据的平均数。

  3、当一组数据的数值较大时,会用简算公式计算一组数据的平均数。

  (二)能力训练点

  培养学生的观察能力、计算能力。

  (三)德育渗透点

  1、培养学生认真、耐心、细致的学习态度和学习习惯。

  2、渗透数学来源于实践,反地来又作用于实践的观点。

  (四)美育渗透点

  通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美。

  重点·难点·疑点及解决办法

  1、教学重点:平均数的概念及其计算。

  2、教学难点:平均数的简化计算。

  3、教学疑点:平均数简化公式的应用,a如何选择。

  4、解决办法:分清两个公式,公式②的运用要选择一个适当的a。

  教学步骤

  (一)明确目标

  在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等、这些都涉及数据的计算问题、请同学们思考下面问题。(教师出示幻灯片)

  为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验、两人在相同条件下各射靶10次,命中的环数如下:

  甲 7 8 6 8 6 5 9 10 7 4

  乙 9 5 7 8 7 6 8 6 7 7

  1、怎样比较两个人的成绩?

  2、应选哪一个人参加射击比赛?

  教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法。

  对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题)、这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣、

  (二)整体感知

  解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质、在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面、本章我们将学习统计学的一些初步知识、

  (三)教学过程

  这节课我们首先来学习了平均数。

  1、(出示幻灯片)请同学看下面问题:

  某班第一小组一次数学测验的成绩如下:

  86 91 100 72 93 89 90 85 75 95

  这个小组的平均成绩是多少?

  教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识。

  2、平均数的概念及计算公式

  一般地,如果有n个数。

  那么 ①

  叫做这n个数的平均数, 读作“x拨”。

  这是在初中数学课本中第一次出现带有省略号的.用字母表示的n个数相加的一般写法。学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性。教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义。

  3、平均数计算公式①的应用

  例1 一个地区某年1月上旬各天的最低气温依次是(单位:℃):

  -6,-5,-7,-6,-4,-5,-7,-8,-7

  求它们的平均气温。

  让学生动手计算,以巩固平均数计算公式(一名学生板演)

  教师应强调:①解题格式。②在统计学里处理的数据包括负数。③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同。

  例2 从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):

  210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215

  计算它们的平均质量。(用投影仪打出)

  引导学生两人一组完成计算,然后一起对答案。由于数据较大,计算较繁,可能会出现不同的答案。正好为下面提出简化计算公式作好铺垫。

  教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法。

  学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样。

  讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;简化计算的结果与前面毛算的结果相同。

  通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受。

  3、推导公式②

  一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到,那么 ,因此,即 ②

  为了加深学生对公式②的认识,再让学生指出例2的 、 、 各是什么?(学生回答)

  课堂练习:

  教材P148中~P149中1,2,3

  (四)总结、扩展

  知识小结:

  1、统计学是一门与数据打交道的学问,应用十分广泛。本章将要学习的是统计学的初步知识。

  2、求n个数据的平均数的公式①。

  3、平均数的简化计算公式②。这个公式很重要,要学会运用。

  方法小结:通过本节课我们学到了示一组数据平均数的方法。当数据比较小时,可用公式①直接计算。当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算。

  八、布置作业

  教材P153中1、2、3、4。

【小学平均数教案】相关文章:

《平均数》 教案05-30

《平均数》 教案03-18

《平均数》教案07-19

平均数教案04-13

平均数教案15篇02-06

《平均数》教案15篇08-13

平均数数学教案05-27

小学数学平均数说课稿04-18

《求平均数》教案14篇03-05