小学方程的教案
作为一名无私奉献的老师,编写教案是必不可少的,教案有助于学生理解并掌握系统的知识。我们应该怎么写教案呢?以下是小编为大家收集的小学方程的教案,希望能够帮助到大家。
小学方程的教案1
教学内容:
p53--54练习十一1,2,3
教学目标:
1. 通过观察天平演示,使学生初步理解方程的意义;
2. 使学生能够判断一个式子是不是方程,并能解决简单 的实际问题;
3. 培养学生观察、描述、分类、抽象、概括、应用等能力。
教学重点:
判断一个式子是不是方程;初步理解方程的意义。
课前准备:
课件,习题板
教学过程:
一、复习旧知,激趣导入
同学们,我们上节课学了用含有字母的式子表示一些数量关系,现在老师要考考你们,已知我们学校有88位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:88+ x)。学得真不错,今天我们要进一步来研究这些含有未知数的式子所隐藏的数学奥秘,想知道吗?请你用饱满的姿态告诉老师!
二、出示学习目标
1、初步理解方程的意义,会判断一个式子是否是方程
2、按要求用方程表示出数量关系,培养学生观察、比较、分析概括的能力。
三、学习过程。
(一)认识天平
(二)新课学习
自学指导(一)。
自学p53, 分别说一说图1,图2,,显示的信息。
图1天平两边平衡,一个空杯重100克。
图2在空杯里加一杯水后天平不平衡了。
自学指导(二)
再看图3说说图3 显示的信息。
天平1杯子和里面的水比200克法码重
天平2杯子和里面的水比300克法码轻
自学指导(三)
请用算式表示图3数量关系。
天平1、100+x>200
天平2、100+x<300
自学指导(四)
再看图4说说图4 显示的.信息,请用算式表示图4数量关系
100+x=250
自学指导(五)
观察比较下列算式说说你的发现
观察比较
100+x>200
100+x<300
100+x=250
前面两个算式两边不相等,后面一个算式两边是相等的。
教师总结:像这样两边相等的算式我们把它叫做等式。(板书)
课堂练习(一)
写出几个等式
自学指导(六)
请学生把这里的等式分类,并说说你们是如何分类的?
20+30=50
20+χ=100
50×2=100
14-8=6
3y=180
78× 3=234
100+2y=3×50
学生汇报后让学生说出分类的理由。(有的含有未知数,有的没有未知数)
教师总结:含有未知数的等式,称为方程。(板书)
课堂练习(二)
请大家写出几个方程。
四、小结:回答什么是方程?
小学方程的教案2
第一课时
教学内容:教材第三5页例1。练习十二的第1-6题。
教学目标:
1.学生能根据等式的基本性质解形如ax±b=c的方程,初步学会列方程解决一些简单的实际问题。
2.培养学生抽象概括的能力,发展学生思维灵活性,进一步提高学生的分析能力。
3.学生感受数学与现实生活的联系,培养学生的数学运用意识与规范书写和自觉检验的习惯。
教学重点:掌握解形如ax±b=c方程的解法。
教学难点:正确找出数量间的相等关系,列出方程。
教学过程:
一、复习铺垫:
1、解方程。
X-2.5=10
0.4X=12
3.2+X=40
2、根据下列句子说出其数量间相等的关系。
1)女生比男生人数的3倍少10人。
2)这个月比上个月水电费的2倍多200元。
二、情景导入:
1、同学们见过足球吧?(出示1个足球)那你们观察过足球上的花纹有什么特点呢?
(出示例1)一起观察挂图,问:同学们能从图中获得什么信息?要求什么问题?
2、师:几位同学的观察能力都很强。老师还知道:那款黑白相间的足球是1970年墨西哥世界杯的比赛用球,此后的一系列世界杯用球都是在此基础上加以改进的。
三、探究新知:
1、小组合作探究解决问题的方法:
师:刚才有一位同学想知道黑色皮有多少块,用我们学过的知识怎样解决黑色皮有多少块呢?
小组讨论,合作交流:
(一部分学生用算术的方法解答,在学生讲解题思路时,老师可以用线路图表示;
另一部分学生找到题中的.等量关系,并依据等量关系式列出方程;还有另外的学生找到另外的等量关系式,列方程。)
师:第一小组的同学用我们前面学过的知识成功的解决了这个问题,在解决问题的过程中,能运用画线段图的方法,帮助分析,很善于动脑。其他同学依据不同的数据关系列出较复杂的方程,怎样解答呢?今天我们就来学习“稍复杂的方程”。(板书课题)
小学方程的教案3
知识网络
列方程解应用题最关键是前两步:设未知数和列方程。有的同学说解方程的部分不是篇幅很长么,为什么不是关键部分呢?其实,只要仔细观察一下,就会发现,虽然篇幅很长,但只要注意到符号变化、分配律等基本运算技巧,解的过程是较容易掌握的。相反,前两步篇幅虽然短,但列方程解应用题的精华和难点却大部分集中在这里,需要用以体会。
一般地,设什么量为未知数,最简单明了的想法是设所求为x(复杂的题目有时要采取迂回战术,间接地设未知数),当所求的数较多时,把这些所求的数量用一个或尽量少的未知数表达出来,也是很重要的。
设完未知数,就要找等量关系,来帮助列出方程。这时需要认真读题,因为许多等量关系是隐藏在字里行间的。中文有很多字、词、句表达相等的意思,如相等、是、比多、比少、是的几倍、的总和是、与的差是等等,根据这些字句的含义,再加上其中的量用未知数表达出来,就能列出方程。
重点难点
列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值,列方程解应用题的优点在于可以使未知数直接参加运算。解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程。而找出等量关系又在于熟练运用数量之间的各种已知条件。掌握了这两点就能正确地列出方程。
学法指导
(1)列方程解应用题的一般步骤是:
1)弄清题意,找出已知条件和所求问题;
2)依题意确定等量关系,设未知数x;
3)根据等量关系列出方程;
4)解方程;
5)检验,写出答案。
(2)初学列方程解应用题,要养成多角度审视问题的习惯,增强一题多解的自觉性,逐步提高分析问题、解决问题的能力。
(3)对于变量较多并且变量关系又容易确定的问题,用方程组求解,过程更清晰。
经典例题
例1 某县农机厂金工车间有77个工人。已知每个工人平均每天加工甲种零件5个或乙种零件4个或丙种零件3个。但加工3个甲种零件、1个乙种零件和9个丙种零件才恰好配成一套。问:应安排生产甲、乙、丙种零件各多少人时,才能使生产的三种零件恰好配套。
思路剖析
如果直接设生产甲、乙、丙三种零件的人数分别为x人、y人、z人,根据共有77人的条件可以列出方程x+y+z=77,但解起来比较麻烦 如果仔细分析题意,会出现除了上面提到的加工甲、乙、丙三种零件的人数为未知数外,还有甲、乙、丙三种零件各自的总件数也未知。而题目中又有关于甲、乙、丙三种零件之间装配时的内在联系,这个内在联系可以用比例关系表示,而乙种零件件数又在中间起媒介作用。所以如用间接未知数,设已种零件总数为x个,为了配套,甲种、丙种零件件数总数分别为3x个和9x个,再根据生产某种零件人数=生产这种零件的个数工人劳动效率,可以分别求出生产甲、乙、丙种零件需安排的人数,从而找出等量关系,即按均衡生产推算的总人数,列出方程 解 答
设加工乙种零件x个,则加工甲种零件3x个,加工丙种零件9x个。
答:应安排加工甲、乙、丙三种零件工人人数分别为12人、5人和60人。
例2 牧场上长满牧草,每天牧草都匀速生长。这片牧场可供10头牛吃20天,可供15头牛吃10天,问可供25头牛吃几天?
思路剖析
这是以前接触过的牛吃草问题,它的算术解法步骤较多,这里用列方程的方法来解决。
设供25头牛可吃x天。
本题的等量关系比较隐蔽,读一下问题:每天牧草都匀速生长,草生长的速度是固定的,这就可以发掘出等量关系,如从供10头牛吃20天表达出生长速度,再从供15头牛吃10天表达出生长速度,这两个速度应该一样,就是一种相等关系;另外,最开始草场的草应该是固定的,也可以发掘出等量关系。
解 答
设供25头牛可吃x天。
由:草的总量=每头牛每天吃的草头数天数
=原有的草+新生长的草
原有的草=每头牛每天吃的草头数天数-新生长的草
新生长的草=草的生长速度天数
考虑已知条件,有
原有的草=每头牛每天吃的草1020-草的生长速度20
原有的草=每头牛每天吃的草1510-草的生长速度10
所以:原有的草=每头牛每天吃的草200-草的生长速度20
原有的草=每头牛每天吃的草150-草的生长速度10
即:每头牛每天吃的草200-草的生长速度20
=每头牛每天吃的草150-草的生长速度10
每头牛每天吃的草200草的生长速度20+每头牛每天吃的草150-草的生长速度10
每头牛每天吃的草200-每头牛每天吃的草150
=草的生长速度20-草的生长速度10
每头牛每天吃的草(200-150)=草的生长速度(20-10)
所以:每头牛每天吃的草50=草的`生长速度10
每头牛每天吃的草5=草的生长速度
因此,设每头牛每天吃的草为1,则草的生长速度为5。
由:原有的草=每头牛每天吃的草25x-草的生长速度x
原有的草=每头牛每天吃的草1020-草的生长速度20
有:每头牛每天吃的草25x-草的生长速度x
=每头牛每天吃的草1020-草的生长速度20
所以:125x-5x=11020-520
解这个方程
25x-5x=1020-520
20x=100
x=5(天)
答:可供25头牛吃5天。
例3 某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?
解 答
设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程
解法一:用直接设元法。
80x-40=(30x+40)2
80x-40=60x+80
20x=120
x=6(座)
解法二:用间接设元法。
设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。
(x-40)30=(2x+40)80
(x-40)80=(2x+40)30
80x-3200=60x+1200
20x=4400
x=220(米3)
由灰砖有220米3,推知修建住宅(220-40)30=6(座)。
同理,也可设有红砖x米3。留给同学们练习。
答:计划修建住宅6座。
例4 两个数的和是100,差是8,求这两个数。
思路剖析
这道题有两个数均为未知数,我们可以设其中一个数为x,那么另一个数可以用100-x或x+8来表示。
解 答
解法一:设较小的数为x,那么较大的数为x+8,根据题意它们的和是100,可以得到:
x+8+x=100
解这个方程:2x=100-8
所以 x=46
所以 较大的数是 46+8=54
也可以设较小的数为x,较大的数为100-x,根据它们的差是8列方程得:
100-x-x=8
所以 x=46
所以 较大的数为100-46=54
答:这两个数是46与54。
小学方程的教案4
一、教学目标
1.经历在实际问题中运用分式方程的过程,了解分式方程的意义,体会分式方程的模型思想.
2.会解可化为一元一次方程的分式方程.
3.了解分式方程增根产生的原因,会检验分式方程的根.
4.通过学习分式方程的解法,理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,体会数学中的转化思想.
二、重、难点
重点:
(1)可化为一元一次方程的分式方程的解法.
(2)分式方程转化为整式方程的方法及其中的转化思想.
难点:增根产生的原因
三、学习过程
(一)复习并引入新课
1、什么叫方程?什么叫方程的解?
2、阅读课本P76页“交流与发现”,完成课本上的填空。并思考所列方程有怎样的特点?
(二)探究新知
1、总结分式方程的定义:中含有求知数的方程,叫做分式方程.
巩固练习:判断下列方程中,哪些是分式方程.为什么?
(1)2x+x-15=10(2)x-1x=2
(3)12x+1-3=0(4)2x3+x-12=0
2、阅读课本P77—78例1、例2并思考:
(1)与解一元一次方程有什么异同点?解分式方程必需要.
(2)总结解分式方程的步骤:
3、自学课本P78—79页例3、例4,进一步熟练解分式方程的步骤.
巩固练习:(1)21-x+1=x1+x
(2)61-x2=31-x
四、当堂小结:
本节课你的收获是:
不足有:
五、当堂测试:
解下列方程
3.7分式方程应用
一、教学目标:
1、学生能正确分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;
2、通过列分式方程解应用题,渗透方程的思想方法。
二、教学重、难点
重点:
1.审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型.
2.根据实际意义检验解的合理性.
难点:
寻求实际问题中的等量关系,寻求不同的解决问题的方法.
三、学习过程:
(一)拓通准备:
列一元一次方程解用题的步骤有哪些?
1、2、
3、4、
5、
(二)新课讲解
题型一:行程问题
例5、(1)、认真看课本例题,分析题目中的“分别从甲地去乙地”、“同时到达”、“速度的比是4:3”等关键词的含义,找出题目中的等量关系,尝试列方程解答,并与课本解答对照。
(2)、思考:从例5的条件出发,还可以探究哪些未知量?
巩固练习一:
课本p82练习题第1、2题
题型二:销售问题
例6、认真阅读例6,思考并完成p81页的问题(1)----(6),列方程解答。
思考:根据例6提供的信息,你能编制出另外一个用分式方程解决的问题吗?与同学交流。
巩固练习二:
某市从今年1月1日起调整居民的用水价格,每立方米水费上涨。小丽家去年12月份的水费是15元,而今年7月份的水费则是30元,已知小丽家今年7月份的用水量比去年12月份的用水量多5,求该市今年居民用水的价格
(三)思考并交流:
列分式方程解应用题的步骤是什么?与列一元一次方程解用题的步骤有何区别?
(四)课堂小结:
1.回顾本节课的知识点,总结你的收获,说说你的困惑;
2.整理笔记。
(五)当堂测试
1、一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?
2、小明和同学一起去书店买书,他们先用15元买了一种一种科普书,又用15元买了一种文学书。科普书的价格比文学书高出一半,因此他们所买的科普书比所买的文学书少1本。这种科普书和这种文学书的价格各是多少?
延伸阅读
《分式方程》复习教案
一般给学生们上课之前,老师就早早地准备好了教案课件,大家应该要写教案课件了。用心制定好教案课件的工作计划,才能更好的在接下来的工作轻装上阵!有哪些好的范文适合教案课件的?下面是小编为大家整理的“《分式方程》复习教案”,欢迎您阅读和收藏,并分享给身边的朋友!
《分式方程》复习教案
课题
5.5分式方程
学习
目标
情感态度和价值观目标
通过学习分式方程的解法,使学生理解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.
能力目标
在学生掌握了分式方程的解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.
知识目标
理解分式方程的意义.
掌握可化为一元一次方程的分式方程的一般解法.
了解解分式方程时可能产生增根的原因,并掌握分式方程的验根方法.
重点
可化为一元一次方程的分式方程的解法.
难点
理解解分式方程时产生增根的原因.
学法
探究学习法.
教法
讨论法.
教学过程
教学环节
教师活动
学生活动
设计意图
导入新课
问题情境:某地电话公司调低了长途电话的话费标准,每分钟费用降低了25%,因此按原收费标准6元话费的通话时间,在新收费标准下可多通话5分钟.问前后两种收费标准每分钟收费各是多少?
解:设原来的收费标准是x元/分,则新的收费标准是____________,原收费标准6元话费的通话时间_____分钟,新收费标准下6元话费的通话时间_____分钟,本题的主要等量关系是__________________________________根据题意可列方程得____________.
该方程与我们所学的一元一次方程有什么不同?
根据问题情境,完成填空列出分式.
通过实际问题列出分式,通过质疑所列的方程与所学的一元一次方程有什么不同引出课题,激发学生求知的欲望.
讲授新课
1、观察下列方程与我们学过的一元一次方程有什么不同?它们有什么共同的特点?
5.5分式方程教学设计,5.5分式方程教学设计,5.5分式方程教学设计,5.5分式方程教学设计.
像这样只含分式,或分式和整式,并且分母里含有未知数的方程叫做分式方程.
分式方程和一元一次方程的异同:
分式方程
一元一次方程
相同点
不同点
针对练习:下列方程中,哪些是分式方程?哪些不是分式方程?
(1)5.5分式方程教学设计;(2)5.5分式方程教学设计;
(3)5.5分式方程教学设计;(4)5.5分式方程教学设计.
2、例1解分式方程:5.5分式方程教学设计.
分析如果方程的两边同乘7(2x-3),就可以把分式方程转化为一元一次方程来解.
解:方程的两边同乘7(2x-3),得7(x+3)=2(2x-3).
去括号,得7x+21=4x-6.
移项,合并同类项,得3x=-27.
解得x=-9.
把x=-9代入原方程检验:左边=5.5分式方程教学设计=右边.
所以x=-9是原方程的根.
针对练习:
解下列方程:
(1)5.5分式方程教学设计;(2)5.5分式方程教学设计.
3、例2解方程:5.5分式方程教学设计.
解方程的'两边同乘(x-3),得2-x=-1-2(x-3).
化简,得x=3.
把x=3代入原方程检验,结果使原方程中分式的分母的值为0,分式没有意义,所以x=3不是原方程的根,原方程无解.
归纳总结:当分式方程含有若干个分式时,通常可用各个分式的公分母同乘方程的两边进行去分母.
必须注意的是,解分式方程一定要验根,即把求得的根代入原方程,或者代入原方程两边所每次的公分母,看分母的值是否为零.使分母为零的根我们把它叫做增根.增根使分式方程无意义,必须舍去.
产生的原因:分式方程两边同乘以一个零因式后,所得的根是整式方程的根,而不是分式方程的根.所以我们解分式方程时一定要代入最简公分母检验.
针对练习:
1.解下列方程:
(1)5.5分式方程教学设计;(2)5.5分式方程教学设计.
2.请解答节前提出的问题.
归纳总结:解分式方程的一般步骤:
(1)方程两边同乘以最简公分母,约去分母,把分式方程化归为整式方程;
(2)解这个整式方程;
(3)检验.
观察方程的特点,总结分式方程的概念.
根据分式方程的定义进行判断.
完成例题和练习.
解答例2.
归纳总结解分方程的方法,理解增根的概念及产生的原因.
理解分式方程的概念.
进一步理解分式方程的定义.
掌握解分式方程的一般步骤.
进一步掌握解分式方程的一般步骤.
理解增根的概念及产生的原因.
巩固提升
1.解下列方程:
(1)5.5分式方程教学设计;(2)5.5分式方程教学设计.
2.解下列方程:
(1)5.5分式方程教学设计;(2)5.5分式方程教学设计.
3.拓展提升:
当m为何值时,方程5.5分式方程教学设计会产生增根?
解:得x-2(x-3)=m,原方程有增根,∴最简公分母(x-3)=0,解得x=3,当x=3时,m=3.
所以当m=3时方程会产生增根.
4.针对练习:
解关于x的方程5.5分式方程教学设计有增根,试求k的值.
解:方程两边都乘(x-3),得
k+2(x-3)=4-x,原方程有增根,∴最简公分母x-3=0,即增根为x=3,把x=3代入整式方程,得k=1.
独立完成1、2题.
小组合作完成3、4题.
通过练习熟练掌握分式方程的解法.
进一步理解增根的概念.
课堂小结
解分式方程的一般步骤:
IMG_256
板书
分式方程:只含分式,或分式和整式,并且分母里含有未知数的方程叫做分式方程.
解分式方程的一般步骤:
(1)方程两边同乘以最简公分母,约去分母,把分式方程化归为整式方程;
(2)解这个整式方程;
(3)检验;
(4)写出原方程的根.
增根:使方程中的分母为零的根.
解:方程的两边同乘7(2x-3),得7(x+3)=2(2x-3).
去括号,得7x+21=4x-6.
移项,合并同类项,得3x=-27.
解得x=-9.
把x=-9代入原方程检验:左边=5.5分式方程教学设计=右边.
所以x=-9是原方程的根.
分式方程(2)学案
老师会对课本中的主要教学内容整理到教案课件中,大家开始动笔写自己的教案课件了。是时候对自己教案课件工作做个新的规划了,这样接下来工作才会更上一层楼!你们了解多少教案课件范文呢?下面是小编精心收集整理,为您带来的《分式方程(2)学案》,欢迎大家与身边的朋友分享吧!
课题7.4分式方程(2)授课时间
学习目标1、会列分式方程解简单应用题
2、会进行简单的公式变形
学习重难点重点:列分式方程解简单应用题
难点:对实际问题的数量关系的分析
自学过程设计教学过程设计
看一看
认真阅读教材p168~169页,弄清楚以下知识:
1、解决实际问题的方法(关键在于分析实际问题中的数量关系);
2、公式变形的本质是什么?
做一做:
1、完成课内练习部分(写在预习本上)
2.在匀速行程问题中,路程s,速度v,时间t之间的关系是什么?
3.甲,乙二人同时从张庄出发,步行15千米到李庄,甲比乙每小时多走1千米,结果比乙早到半小时,二人每小时各走几千米?
想一想
你还有哪些地方不是很懂?请写出来。
______________________________________________________________________________________________________________________________________________________________________________________________________预习检测:
1.如果分数的分子分母同时加上同一个数后,分数的值变为它的倒数,那么加上的这个数是多少?
解:设这个数为x,则可列方程,2.某车间加工1200个零件,原来每天可加工x个,则
需________天可加工完成;如果采用新工艺,工效是
原来的1.5倍,这样每天可以加工_____个,同样多的零件只要用______天可加工完成;如果比原来快了10天完成,则可列方程:_____
_______________.
二、应用探究
1.工厂生产一种电子配件,每只的成本为2元,毛利率为25%,后来该工厂通过改进工艺,降低了成本,在售价不变的情况下,毛利率增加了15%,问这种配件每只的成本降低了多少元?(精确到0.01元)。
本题等量关系是什么?
2.照相机成像应用了一个重要原理,即(V≠f),其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示明胶片(像)到镜头的距离,如果一架照相机f已固定,那么就要依靠调整U、V来使成像清晰,问在f、v已知的情况下,怎样确定物体到镜头的距离u?
公式变形:把要求表示的字母看成未知数,其它字母看成已知数,按解方程的思想来进行解答。
三、拓展提高
某单位将沿街的一部分房屋出租,每间房屋的租金第二年比第一年多500元,所有房屋的租金第一年为9.6万元,第二年为10.2万元.
1.你能找出这一情境中的相等关系吗?
2.根据这一情境你能提出哪些问题?
堂堂清:
1.在公式v=v0+at中,已知a,t,v,则v0=______.
2.在公式s=-ah中,已知a,s,则h=_______.
3.某种商品,甲商场每10元可买x件,乙商场每10元可以买(x+1)件,则每件该商品乙商场比甲商场便宜________.
4.注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答,也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求,进行解答.
某农场开挖一条长960米的渠道,开工后每天比原计划多挖20米,结果提前4天完成任务,原计划每天挖多少米?
解题方案:设原计划每天挖x米.
(1)用含x的代数式表示:开工后实际每天_______米,完成任务原计划用_____天,实际用______天;
(2)根据题意,列出方程________.
教后反思分式方程的应用,其中用字母化简的题目稍微难一点的学生就不会做,这一部分题在以后的练习中还需要强化,还有就是分式方程的应用题学生总会把检验的过程丢掉。
分式方程(3)学案
每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。只有写好教案课件计划,可以更好完成工作任务!有哪些好的范文适合教案课件的?以下是小编为大家精心整理的“分式方程(3)学案”,希望能为您提供更多的参考。
小学方程的教案5
教学重点难点:
教学目标1、2是重点,目标1是难点。
教学时数:2课时
课前预习:
1、专注地朗读文章至少3遍,并抄写重要词语2遍:
倒行逆施刻骨铭心黯淡无关侥幸拍摄纯粹
2、结合课后练习,先自我思考。
第一课时
主要内容:
仔细朗读文章,梳理文章脉络;整体把握文章,理解作者的巧妙构思。
教学步骤:
1、检查课前预习成果。
①听写课前抄写的6个词语,并有选择地让学生口头造句。如:刻骨铭心、黯淡无光。
②本文的标题是“日历”,但文章显然不仅仅是写日历,那么文章究竟是写什么?想告诉人们什么?
明确:写时间,写生命;告诉我们时间易逝,生命易逝,要倍加珍惜(要求:学生能从文章中找到重要的句子来支撑自己的看法)。
2、朗读文章,感知文章深意。
①既然同学们知道本文不只是写日历,而是有更深层的意思,是时间与生命。就请大家再次专心致志地朗读文章一遍,再次感知文章的深意。
(自由朗读,感知深意)
②再读文章,理清脉络。
本文怎么从日历谈到时间与生命呢?这个过程有些曲折。我们一道沿着作者的思路,从“日历”出发向“时间”“生命”攀登,理清脉络,就能更加理解文章深意。
第一组朗读2—3自然段,并归纳大意。
明确:扯下一页日历——向往明天但又感到岁月匆匆与虚无。
第二组朗读4—6自然段,并归纳大意。
明确:不能从容地扯下日历——因为那是生命的页码。
第三组朗读8—9自然段,并归纳大意。
明确:明白日历的意义——生命忠实的记录。
第四组朗读10—15自然段,并归纳大意。
明确:不肯再去扯日历——因为想保存岁月。
归纳:由此可知,本文表面看来是写日历,但处处是写时间,写生命。从“扯下一页日历”到“不能从容地扯下日历”再到“明白日历的意义”和“不肯再去扯日历”,这个过程就是对时间与生命的认识不断深化的过程。
3、理解文章的巧妙构思。
珍惜时间与生命,这是个抽象的问题。而此时我们不觉得抽象,反而是具体可感,为什么?
明确:主要原因是作者把抽象的认识转化为具体的事物来表现,让读者看得见,摸得着。
这就是作者构思的巧妙之处,也是本文的魅力之一。将抽象的时间与生命转化为熟悉而具体的日历,十分形象。如果用几句话来描述二者之间的关系,可以这样说:
时间(生命)是一本日历,扯下了一页便消失了一天。它时刻在警醒我们:时间(生命)无价,要好好珍惜。
4、借助语言训练强化认识。
如果也让同学们用一种具体的事物来表现时间、生命,你会选择什么?请同学们写一段话来表现你对时间与生命的认识。
学生先写后交流,教师板书学生所选择的事物。
5、作业:
①根据课堂上写的几句话,在此基础上扩写成一则不少于200字的片段。
②延伸阅读朱自清的《匆匆》。
第二课时
主要内容:
品味哲理式句子;进行片段写作,强化学生的时间与生命意识。
教学步骤:
1、朗读文章,初步感受哲理式句子。
上节课,我们体会了文章的魅力之一——巧妙的构思。其实,同学们还应当会感受到本文的另一个魅力——众多富有哲理的句子。每读到此处,我们不禁会放慢速度,若有所思。请大家细心朗读文章,标画出你认为富有哲理或者能触动你内心情感的句子。
要求边读边标画,形成自己的初步感受。
2、朗读并交流哲理式句子,品味深意。
①学生朗读自己所标画的哲理式句子。
②学生以同桌2人或上下桌4人为小组,互相交流所标画的哲理式句子。
③学生个人展示哲理式句子的阅读感受和启发。
④教师点拨几个重点的哲理式句子,引导学生品味深意。
例如:“如果你静下心来就会发现,你不能改变昨天,但你可以决定明天。”
“于是,光阴岁月,就像一阵阵呼呼的风或是闪闪烁烁的流光。它最终留给你的只有无奈和频生的白发和消耗中日见衰弱的身躯。”
“一个个明天,不就像是一间间空屋子吗?那就看你把什么东西搬进来。”
“因为日历是有生命感的,或者说日历叫我随时感知自己的生命并叫我思考如何珍惜它。”
(教师的点拨可以有两个层次:首先是句子包含的意义,其次是给予我们的联想与启迪)。
3、质疑与总结。
学生再读文章,还有什么疑问可以提出并进行交流和释疑(尽量多采用学生内部互动,但教师必须有意地解决一些重点疑问)。
如:前面老师朗读时有意避开第七自然段,请同学们思考能不能不写这一段,它与文章主题有何关系?
明确:本段与文章主题有着密切关系。正因为有这段人生难忘的经历才使“我”对生命有着更深刻的认识,懂得了日历的意义,刻骨铭心。
又如:阅读练习与探究中的第二题。
明确:之所以全文没有不统一的感觉,是因为这两者之间的本质是统一的。“为有大把大把的.日子而心头十分快活”,那是因为我向往明天,有明天就有生命和希望。后来又说“感到岁月匆匆与虚无”,“日历大多数的页码都是黯淡无光”,这是因为我感到岁月的易逝、生命的可贵,不想碌碌无为。
总结:本文没有写故事,也没有写风景,谈的是一个抽象的道理,但文章却能打动读者,令人喜爱。原因至少有两点:首先是巧妙的构思,从具体形象的日历入手,能够引起读者的共鸣。二是众多富有哲理式的句子,令人深思,启人智慧,获益匪浅。
4、拓展写作。
学习了本文,又阅读了《匆匆》,同学们对时间与生命可能有更深的认识和体会。请以“我想这样走过每一天”为题,或者也借助某一具体可感的事物谈论时间、生命,写一篇600字以上的文章。
5、课外延伸阅读。
发给学生有关作者的简介资料,建议学生课外阅读《珍珠鸟》和《高女人和她的矮女人》。2018中考数学知识点:直线的平面方程公式大全
2018中考数学知识点:直线的平面方程公式大全
直线的平面方程包括了一般式、点斜式、斜截式、截距式等。
直线的平面方程
1、一般式:适用于所有直线
Ax+By+C=0(其中A、B不同时为0)
2、点斜式:知道直线上一点(x0,y0),并且直线的斜率k存在,则直线可表示为
y-y0=k(x-x0)
当k不存在时,直线可表示为
x=x0
3、斜截式:在y轴上截距为b(即过(0,b)),斜率为k的直线
由点斜式可得斜截式y=kx+b
与点斜式一样,也需要考虑K存不存在
4、截距式:不适用于和任意坐标轴垂直的直线
知道直线与x轴交于(a,0),与y轴交于(0,b),则直线可表示为
bx+ay-ab=0
特别地,当ab均不为0时,斜截式可写为x/a+y/b=1
5、两点式:过(x1,y1)(x2,y2)的直线
(y-y1)/(y1-y2)=(x-x1)/(x1-x2)(斜率k需存在)
6、法线式
Xcosθ+ysinθ-p=0
其中p为原点到直线的距离,θ为法线与X轴正方向的夹角
7、点方向式(X-X0)/U=(Y-Y0)/V
(U,V不等于0,即点方向式不能表示与坐标平行的式子)
8、点法向式
a(X-X0)+b(y-y0)=0
大家尤其要注意的是直线方程的一般式中系数A、B不能同时为零。
小学方程的教案6
教学目标
知识与技能
1.初步理解方程的解和解方程的含义。
2.结合图例,理解根据等式的性质解方程的方法并进行检验。
3.掌握解方程的格式和写法。
过程与方法
经历方程的解和解方程的认识过程,提高学生比较、分析的能力。
情感态度与价值观
在学习活动中,激发学生的学习兴趣,体验知识之间的联系和区别,培养检验的学习习惯。
教学重难点
重点:理解方程的解和解方程的含义。
难点:会检验方程的解。
教学工具
多媒体设备
教学过程
教学过程设计
1、复习旧知,迁移导入
(1)在上一节课的学习活动中,我们探究了哪些规律?
学生回顾天平保持平衡的规律及等式保持不变的规律。
(2)学习这些规律有什么用呢?今天我们解方程就需要充分利用等式的基本性质。
【板书课题:解方程(1)】
2、合作探究,获取新知
8.2.1教学教材第67页例1。
(1)课件出示例1。
从图中知道哪些信息?学生观察图片,交流图片数学信息。盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到χ+3=9
学生自己先列出方程,然后指名回答。
【板书:χ+3=9】
如何解方程?要求盒子中一共有多少个皮球,也就是求等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?
(2)出示第67页分析图示,学生观察图示,交流想法。
根据学生的汇报,板书解方程的过程:
(3)为什么方程两边同时减去3,而不是别的数?
引导学生得出结论:因为,两边减去3以后,左边刚好剩下一个χ,这样,右边就刚好是χ的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个χ即可。
追问:χ=6带不带单位呢?让学生明白χ在这里只代表一个数值,因此不带单位。
(4)如何检验χ=6是不是正确的答案?引导学生学习检验方程的解得方法,根据学生回答板书。
【板书】:
小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。利用等式的基本性质,可以帮助我们解方程。
【注意】:在书写的过程中写的都是等式,而不是递等式。
(5)认识、区别方程的解和解方程。
①使方程左右两边相等的未知知数的值,叫做方程的解,刚才,χ=6就是方程χ+3=9的解。而求方程的解的过程叫做解方程,刚才,想出办法求出χ+3=9的过程就是解方程。
【板书】:使方程左右两边相等的未知知数的值,叫做方程的解
求方程的解的过程叫做解方程。
②方程的`解和解方程这两个概念说起来差不多,但它们的意义却大不相同,它们之间的有何不同?
在小组内议一议,明确,方程的解是一个具体的值,而解方程是一个求解的过程。
③刚才我们把χ=6代入方程中,得到方程左边=右边,说明χ=6是方程χ+3=9的解。
8.2.2教学教材第68页例2。
(1)利用等式不变的规律,我们再来解一个方程。
出示例2:解方程3χ=18
怎样才能求到1个χ是多少呢?
观察示意图,互相讨论,指名回答。
在方程两边同时除以3,得到χ=6。
让学生打开书68页,把例2中的解题过程补充完整。
为什么两边同时除以的是3,而不是其它数呢?
两边同时除以3,刚好把左边变成1个χ。
使学生明确:在方程的两边同时除以一个不为0的数,方程左右两边仍然相等。
(2)组织学生动手检验。
(3)这是我们解方程常用的两种方法,想不想用它们来试一试呢?
8.2.3教学教材第68页例3。
(1)出示:解方程20-χ=9
(2)指名学生板演,解出方程20-χ=9的解。
(3)交流归纳解方程的方法。
(4)小结:等式两边加上相同的式子,左右两边仍然相等。
3、深化理解,拓展应用
(1)随堂练习。
①、完成“做一做”的第1、2题,集体评讲,强调验算。
②、思考:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?
等式保持不变的规律。
(2)拓展练习。
亮亮今年9岁,爸爸今年37岁。几年后妈妈的年龄是小华的3倍?
4、自主评价,全课总结
你觉得自己今天学会了什么?还有什么不太理解的地方?
讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?
课后习题
练习十五1—5题。
板书
所以,χ=6是方程的解。
使方程左右两边相等的未知数的值,叫方程的解。
求方程的解的过程叫解方程。
小学方程的教案7
教学目的:通过复习使学生能教熟练地用字母代表未知数,列出符合题中条件的等式;列方程解应用题。从而培养学生抽象思维的能力和分析问题、解决问题的能力。
教学重点:列方程解应用题的方法。
教学过程:
一、列方程解应用题的特点:
1、列方程解应用题的特点是什么?
2、找出等量关系:
列方程解应用题时,根据什么来列方程?(根据数量间的.相等关系列方程)
根据下面的条件,找出数量间相等的关系:
(1)篮球比足球多5个
(2)男生人数是女生人数的2倍
(3)梨树比苹果树的3倍少15棵
(4)做8件大人衣服和10件儿童衣服共用布31.2米
(5)两根一样长的铁丝,一根围成长方形,一根围成正方形。
小结:找等量关系,可以依据常见的数量关系,也可以依据线段图和计算公式,要认真审题,找出关键句。
二、练习例3
1、让学生独立解答例3的三道题目
2、讨论:
(1)这三道应用题之间有什么联系和区别?
(2)列方程解应用题的步骤是什么?
①审题;(弄清题意)
②设未知数;
③找出等量关系、列方程;
④解方程;
⑤检验、写答案;
(3)用方程解和用算术方法解,有什么不同?
方程解:
A、用字母代表未知数参加列式与运算;
B、列出符合题中条件的等式;
算术解:
A、算式中应全是已知数;
B、算式必须表示所求的未知数;
3、练习:
①114页“做一做”;
②练习二十四的第1、2题。
三、巩固练习:(补充练习)
1、①男生50人,女生比男生的2被多10人,女生多少人?
②男生50人,比女生2被多10人,女生多少人?
③全班50人,男生比女生的2倍多10人,男、女生各多少人?
2、①果园里的桃树和杏树共360棵,杏树的棵数是桃树的4/5。桃树和杏树各有多少棵?
②果园里的桃树和杏树共360棵,杏树的棵数比桃树少50棵。桃树和杏树各有多少棵?
四、作业:练习二十四3、4、5、6题
小学方程的教案8
设计说明
本节课的教学任务是使学生了解等式性质(二),并会用这个性质解方程。由于学生在探究等式性质(一)时已经具备了一定的学习经验,因此本节课的教学设计主要突出以下两点:
1、在操作实践中验证等式性质(二)。
在教学中,通过学生的亲身实践,边操作边观察边总结,使等式性质(二)顺利地生成,同时让学生对此有直观的理解,强化学习效果。
2、通过直观图理解解方程的过程。
在指导学生利用等式性质(二)解方程时,充分发挥了直观图的作用,加深学生对解方程的过程和依据的了解,提高学习效率。
课前准备
教师准备:
PPT课件
学生准备:
天平,若干个贴有标签的砝码
教学过程
猜想导入
师:谁能说出我们学过的等式性质?
[学生回顾上节课学习的内容,并汇报:等式两边同时加上(或减去)同一个数,等式仍然成立]
引导学生猜想:等式两边都乘同一个数(或除以同一个不为0的数),等式是否仍然成立呢?思考并在小组内交流自己的想法,然后汇报。
设计意图:学生已经学过了等式两边都加上(或减去)同一个数,等式仍然成立的性质。上课伊始,先复习所学知识,并由此进行合理猜想,再自然地引入新课,直奔主题。
动手验证,探究规律
师:大家的猜想对不对呢?我们来验证一下。
1、(课件演示,学生操作)天平左侧的砝码重x克,右侧放5克的砝码,这时天平的指针指向正中央,说明了什么?你知道左侧的砝码重多少克吗?怎样用等式表示?(说明天平平衡,左侧的砝码重5克,x=5)
2、如果左侧再加上2个x克的.砝码,右侧再加上2个5克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,3x=3×5)
3、如果左侧有2个x克的砝码,右侧有2个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x=20)
4、如果左侧拿走一个x克的砝码,右侧拿走一个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x÷2=20÷2)
5、通过上面的游戏,你发现了什么?
小结:等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立。
设计意图:利用课件的演示和动手操作,让学生体会天平两侧的变化情况,加深学生对等式的理解,体会等式的变化规律。
解方程
1、(课件出示教材70页方程:4y=20xx)
师:你们能求出这个方程的解吗?
(学生先独立尝试,然后小组交流,并汇报)
预设
方法一:想?×4=20xx,直接得出答案。
方法二:用等式性质解方程,方程的两边都除以4,从而得出答案。
师:为什么方程的两边都除以4,依据是什么?
预设
生:依据是等式的两边都乘同一个数(或除以同一个不为0的数),等式仍然成立。
让学生说出用等式性质解方程的过程。
小学方程的教案9
学习目标:
(一)学习知识点
1、用分式方程的数学模型反映现实情境中的实际问题.
2、用分式方程来解决现实情境中的问题.
3、经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣.
学习重点:
1.审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型.
2.根据实际意义检验解的合理性.
学习难点
寻求实际问题中的等量关系,寻求不同的解决问题的方法.
学习过程:
Ⅰ.提出问题,引入新课
前两节课,我们认识了分式方程这样的数学模型,并且学会了解分式方程.
接下来,我们就用分式方程解决生活中实际问题.
例1:某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.
(1)你能找出这一情境的等量关系吗?
(2)根据这一情境,你能提出哪些问题?
(3)这两年每间房屋的租金各是多少?
解法一:设每年各有x间房屋出租,那么第一年每间房屋的租金为______元,第二年每间房屋的租金为__________元,根据题意得方程,解法二:设第一年每间房屋的租金为x元,第二年每间房屋的租金为_______元.第一年租出的房间为__________间,第二年租出的房间为__________间,根据题意得方程,例2:小芳带了15元钱去商店买笔记本.如果买一种软皮本,正好需付15元钱.但售货员建议她买一种质量好的硬皮本,这种本子的价格比软皮本高出一半,因此她只能少买一本笔记本.这种软皮本和硬皮本的价格各是多少?
解:设软皮本的价格为x元,则硬皮本的价格为________元,那么15元钱可买软皮本_________本,硬皮本___________本.根据题意得方程,图3-4
活动与探究:
1、如图,小明家、王老师家、学校在同一条路上.小明家到王老师家路程为3km,王老师家到学校的`路程为0.5km,由于小明父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?(2003年吉林省中考题)
2、从甲地到乙地有两条公路:一条全长600千米的普通公路,另一条是全长480千米的高速公路。某客车在高速公路上行驶的速度比在普通公路上快45千米/时,由高速公路从甲地到乙地所需时间是由普通公路从甲地到乙地所需时间的一半。求客车在高速公路上行驶的速度。
3、轮船顺水航行40千米所用的时间与逆水航行30千米所用的时间相同,若水流的速度为3千米/时求轮船在静水中的速度?
积累与总结:
1、列方程解决实际情境中的具体问题,是数学实用性最直接的体现,而解决这一问题是如何将实际问题建立方程这样的数学模型,关键则在于审清题意,找出题中的等量关系,找到它就为列方程指明了方向.
2、列分式方程解应用题的一般步骤:(1)审清题意,找出等量关系;(2)设出__________;(3)列出_________;(4)解分式方程;(5)检验,既要验证是否是原方程的的根,又要验证是否符合题意;(6)写出答案。
小学方程的教案10
教学内容:
教材第81页例3、例4,练习十六9---14题。
教学目标:
1、经历交流、讨论、练习等学习过程,理解方程的含义和等式的性质,根据等式的性质正确熟练地解方程。
2、掌握解方程的方法及列方程解决问题的步骤,解决问题的关键是找出数量之间的相等关系,能根据题意正确地列出方程,解答两、三步计算的问题。
3、能根据问题的特点选择恰当的方法来解答,进一步培养分析数量关系的能力,发展思维。
教学重点:
理解方程的.含义和等式的性质。
教学难点:
较熟练地解简易方程,并能解决一些实际问题。
教具准备:
多媒体课件
教学过程:
一、导入复习
1、什么叫做方程?(方程是含有字母的等式。)能举几个是方程的式子吗?
2、什么叫做方程的解? (使方程两边左右相等的未知数的值叫做方程的解。求方程的解的过程,叫做解方程。)
3.解方程的依据是等式的性质:等式两边同时乘或除以(加或减去)相同的数,等式的大小不变。
4、出示例3 学生交流。
5、出示例4 学生交流。
二、创设情境,引出知识
1、出示:学校组织远足活动。原计划每小时走3.8km,3小时到达目的地。实际2.5小时走完了原定路程,平均每小时走了多少千米?(列方程解应用题)
解题过程
解:设现在平均每小时走了x千米。
2.5x=3.83
2.5x2.5=11.42.5
x=4.56
答:平均每小时走了4.56千米?
2、提出问题
这是我们熟悉的列方程解决问题,用方程解决问题是我们解题的一种方法。请你以小组为单位,合作自主梳理有关代数的知识。
三、分析知识建立联系
(一)学生汇报各类知识
小组汇报知识,要求按照由浅入深的顺序汇报,边汇报教师边完善,同时进行板书。
(二)解方程与方程的解
1、具体知识
4.56是方程的解,而求这个解的过程就是解方程。
方程是含有字母的等式
补充提问:能举几个是方程的式子吗?
小学方程的教案11
【教学内容】 教材P135~136页复习第16~23题。
【教学目标】
1、使学生进一步理解用字母表示数的优点。会用字母表示常见的数量关系,会根据字母所取的值,求含有字母式子的值。
2、进一步理解方程的意义,会解简易方程。
3、会列方程解应用题。
【教学重点】
用字母表示常见的数量关系,根据字母所取的值,求含有字母式子难点】的值,解简易方程和列方程解应用题。
【教学过程】
一、揭示课题
今天我们复习的内容是有关简易方程的知识,通过复习要进一步理解用字母表示数的优点,会用字母表示常见的`数量关系,进一步理解方程的意义,会解方程,会列方程解应用题。
二、复习用字母表示数量关系,公式,运算定律
1、 出示表:用字母表示运算定律。
名称 用字母表示
加法交换律 a+b=b+a
加法结合律 (a+b)+c=a+(b+c)
乘法交换律 ab=ba
乘法结合律 (ab)c=a(bc)
乘法分配律 (a+b)c=ac+bc
2、请学生说平面图形面积计算公式和长方形、正方形周长公式。
3、用字母还可以表示数量关系,a表示单价,b表示数量,c表示总价,说出分别求总价、单价及数量的字母公式。
4、练习:期末复习第16题。
5、求含有字母式子的值。做期末复习第17题。
(1)原来每月烧的煤用30c表示;现在每月烧的煤用30(x-15)表示。
(2)学生计算现在每月烧煤的千克数。
三、复习方程的意义和解方程
1、什么是方程?什么是方程的解和解方程?方程和等式关系是怎样的?
2、练习:做期末复习第18题。
学生练习。讲解第(3)题,在方程3x=y中y=21,先把y=21代人原方程成为3x=21再解方程。
3、做期末复习第19题。
请学生说一说解方程的方法。
4、做期末复习第20题。
学生列方程并解方程。
四、复习列方程解应用题
1、(1)列方程解应用题的特征是什么?解题时关键是找什么?
(2)请学生说一说列方程解应用题的一般步骤。
2、做期末复习第2123题。
第21题:
学生说数量关系式,列方程并解答,根据已列方程写出另外两个不同的方程。
第22题:
师画线段图表示题目的条件和问题,学生列方程解答。
第23题:
学生说数量关系式、列方程解答。
五、全课总结
这节课复习了什么内容。
六、布置作业
补充
1、(1)某商店上午卖出3台微波炉,下午卖出6台微波炉,每台。元,上午比下午少卖( )元。
(2)四(3)班有x人,每人7本练习本;四(2)班有48人,每人有y本练习本。(x48)
7x表示( )。
48y表示( )。
48-x表示( )。
7x+48y表示( )。
2、解方程:
80-4x=68 45+x=30
46-13-x=10 20x-28=52
x-(30+8)=11 4x3=60
3、列出方程,并求出方程的解。
(1)从80里减去3x得11,求x。
(2)60比一个数的5倍多5,求这个数。
4、列方程解应用题。
(1)一个三角形面积是6000平方米,底是400米,求高。
(2)甲乙两地相距320千米,一辆汽车从甲地开往乙地,平均每小时行70千米,若干小时后,这辆汽车不仅到达乙地,还超过乙地30千米,汽车已行了几小时?
(2) 一捆电线长155米,装了38盏电灯还剩3米,平均每盏灯用线多少米?
小学方程的教案12
四年级(下册)用字母表示数教学含有字母的式子,学生初步学会了写式子的方法。五年级(下册)方程教学了方程的意义、用等式的性质解一步计算的方程,学生能够列方程解答简单的实际问题。本单元继续教学方程,要解类似于axb=c、axbx=c的方程,并用于解决稍复杂的实际问题。教学内容的编排有以下特点。
第一,把解方程和列方程解决实际问题的教学融为一体,同步进行,这是和以前教材的不同编排。在例1里,解2x-22=64这个方程是新知识,用它解答实际问题也是新知识。在例2里,解方程x+3x=290是新授内容,解决的实际问题也是新授内容。这两道例题,既教学解方程的思路与方法,又教学列方程的相等关系和技巧。这样编排,能较好地体现数学内容和现实生活的联系。一方面分析实际问题里的数量关系,抽象成方程,形成知识与技能的教学内容;另一方面,利用方程解决实际问题,使知识技能的教学具有现实意义,成为数学思考、解决问题、情感态度有效发展的载体。
第二,突出思想方法,通过举一反三培养能力。全单元编排的两道例题、两个练习,涵盖了很宽的知识面。先看解方程。例 1教学ax-b=c这样的方程,练习一里还要解ax+b=c、a+bx=c这些形式的方程。从例题到习题,虽然方程的结构变了,但应用等式的性质解方程是不变的。也就是说,解方程的策略是一致的,知识与方法的具体应用是灵活的。再看列方程。例1把一个数比另一个数的2倍少22作为相等关系,练一练和练习一里陆续出现一个数比另一个数的几倍多几、三角形的面积计算公式以及其他的相等关系。实际问题变了,寻找相等关系是解题的关键步骤始终不变。在例2和练习二里也有类似的安排。无论教学解方程还是列方程,例题讲的是思想方法,以不变的思想方法应对多变的实际情况,有利于形成解决问题的策略,培养创新精神和实践能力。
全单元内容分成三部分,例1和练习一教学一般的分两步解的方程;例2和练习二教学特殊的需两步解的方程;整理与练习回忆、整理、应用全单元的教学内容,反思、评价教学过程和效果。
一、 解稍复杂方程的策略转化成简单的方程。
两道例题里的方程都要分两步解,通过第一步运算,把稍复杂的方程转化成五年级(下册)里教学的简单方程,使新知识植根于已有经验和能力的基础上。化复杂为简单、变未知为已知是人们解决新颖问题的常用策略。这两道例题突出转化的'过程,不仅使学生掌握解稍复杂的方程的方法,还让他们充分体验转化思想,发展解决问题的策略。
1. 从各个方程的特点出发,使用不同的转化方法。
解形如axb=c的方程,一般根据等式两边同时加上或减去同一个数,结果仍然是等式的性质化简。例1在列出方程2x-22=64以后,教材里写出了解这个方程的第一步: 2x-22+22=64+22。教学要让学生理解为什么等号的两边都加上22,体会这样做是应用了等式的性质,感受这样做的目的是把稍复杂的方程化简。过去教材里强调把ax看成一个数,是为了应用加、减法中各部分的关系解方程,新教材应用等式的性质解方程,突出转化的思想和方法。
解形如axbx=c的方程,一般应用运算律或相应的知识化简。axbx可以改写成
(ab)x,这已经在四年级(下册)用字母表示数时掌握了,现在只要计算ab,就能实现化简原方程的目的。教学时仍然要让学生理解为什么可以这样改写,以及这样改写的目的。
2. 转化后的简单方程,教法不同。
例1让学生算出2x=?,并求出x的值。这是因为学生具有解2x=86这个方程的能力。教学这样安排,是把转化思想和方法放在突出位置上,促进新旧知识的衔接,有效地使用教学资源。把求得的x的值代入原方程进行检验,在五年级(下册)已经教学。例1提出检验的要求,不仅是培养良好的习惯,还要通过结果是正确的,确认解稍复杂方程的策略和方法是正确的。
例2把原方程化简成4x=290,没有让学生接着解。教材写出x=72.5并继续算出3x=217.5,是因为72.5米和217.5米是实际问题的两个答案。学生以往解答的问题,一般只有一个问题,这道例题有两个问题,需要完整呈现解题过程,在步骤、书写格式上作出示范,便于学生掌握。另外,检验的思路也有拓展。由于题目的特点,不能局限于对解方程的检验,还要联系实际问题里的数量关系,检验算得的陆地面积和水面面积是不是一共290公顷,水面面积是不是陆地面积的3倍。教学时要注意到这一点,既保障解方程是正确的,更保障列出的方程符合实际问题里的数量关系。
3. 加强解方程的练习。
前面曾经说到,例1和例2都有列方程和解方程两个教学内容,列出的方程必须正确地解,才可能得到正确的答案。因此,两个练习的第1题都安排了解方程。练习一在例1解方程的基础上向两个方向扩展,一是引出了a+bx=c、ax-b=c等结构与例题不完全相同的方程,二是把小数及运算纳入了方程。只要体会了例题里解方程的转化思想和转化方法,会进行小数四则计算,就能够适应这两个方面的扩展。要注意的是,小学阶段不要求解形如a-bx=c的方程。因为解这个方程,如果等式的两边都减a,就会出现-bx=c-a,不但等号左边是负数,而且右边c比a小;如果等式的两边都加bx,就出现a=c+bx,这些都是现在难以解决的问题。练习二在例2解方程的基础上带出形如ax-bx=c的方程,解方程涉及的除法计算都控制在三位数除以两位数以及相应的小数除法范围内,学生一般不会有困难。
还有一点要提及,整理与练习中安排小组讨论像3.4x+1.8=8.6、5x-x=24这样的方程各应怎样解,表明教材十分重视引导学生组建认知结构。如果既从两个方程的特点回顾解法的不同,又从策略角度进行整理,对学生是有好处的。练习中出现的方程15x2=60,是为应用三角形面积公式解决实际问题服务的。
二、 列方程解决实际问题的关键找出相等关系。
列方程解决实际问题要找到相等关系,方程是依据相等关系列的。其实,某个实际问题为什么选择列方程的方法解答,或者为什么选择列算式的方法解答,经常是由相等关系决定的。所以,两道例题的教学,都是先找出相等关系。
相等关系是一种数学模型,它把数量关系表达成等式。列算式解决实际问题要分析数量关系,这时的分析着眼于挖掘已知条件之间的联系,沟通已知与未知的联系,通常把条件作为一个方面,问题作为另一个方面,因而用已知数量组成的算式求得问题的答案。实际问题里的相等关系也是数量间的关系,它的最大特点是将已知与未知有机联系起来,通过已知数量和未知数量共同组成的等式,反映实际问题里最主要的数量关系。学生在五年级(下册)初步感受了相等关系,能找出简单问题的相等关系。本册教学寻找较复杂问题的相等关系,就应充分利用学生已有的知识经验。
1. 灵活开展思维活动,找出相等关系。
较复杂的问题之所以复杂,在于它的数量关系错综复杂。例1里大雁塔的高度比小雁塔的2倍少22米,其中既有倍数关系,也有相差关系,是两种关系的复合。例2里已知颐和园水面面积与陆地面积一共290公顷,还已知水面面积大约是陆地面积的3倍,这是两个并列的条件。因此,寻找复杂问题的相等关系,要梳理数量关系,分清主次和先后。
寻找相等关系没有固定的模式照搬、照套,教材从实际问题的结构特点和学生的思维发展水平出发,灵活设计寻找相等关系的教学方法。学生在二年级(下册)已经能解决类似红花有10朵,求红花朵数的2倍少4朵是几朵的问题,对几倍少几这样的数量关系已有初步的理解。因此,例1要求学生找出大雁塔与小雁塔高度之间的相等关系,让他们利用已有的倍数概念和相差概念,通过推理,把比小雁塔的2倍少22米改写成数学式子小雁塔高度2-22,从而得到相等关系。例1为什么提出还可以怎样列方程,这是由于同一个几倍少几的关系,可以写出不同的相等关系式,如小雁塔的高度2-大雁塔的高度=22、小雁塔的高度2=大雁塔的高度+22等。在小组里交流想法是尊重学生的思考,允许学生按自己的想法解题。要注意的是,这里不是要求学生一题多解。要组织学生对各种解法进行比较,体会它们在概念上是一致的,仅是表现形式不同;还要引导学生体会例题里呈现的等量关系,得出答案时的思考比较顺,从而自觉应用这样的等量关系。对于学生中未出现的相等关系,不必提及,以免搞乱思路。
怎样合理利用例2里的两个并列的已知条件?教材选择了线段图。先在表示水面面积的线段上填3x,再在线段图的右边括号里填290,在图上感受水面面积和陆地面积之间的倍数关系和相并关系。然后通过填空写出等量关系,体会水面面积和陆地面积一共290公顷是这个实际问题里的等量关系。
2. 加强写式练习,进一步把握数量关系,为列方程打基础。
含有字母的式子是方程的重要组成部分,根据数量关系列方程时,都要写出含有字母的式子。是否具有用字母表示数的意识,能否顺利写出含有字母的式子,对列方程解答实际问题是至关重要的。因此,教材加强写式的练习。
练习一第2题写出表示梨树棵数的式子3x+15,表示鳊鱼尾数的式子4x-80,都是解答几倍多几、几倍少几实际问题所需要的基本技能。安排写式练习,使学生进一步理解数量关系,养成顺着梨树比桃树的3倍多15棵、鳊鱼比鲫鱼的4倍少80尾这些数量关系的表述进行思考,并转化成数学式子的习惯,从而选择最适当的相等关系解决实际问题。所以,这道练习题既是写式训练,也是思路引导。
练习二第2题是和倍、差倍问题的专项训练。根据黄花x朵和红花朵数是黄花的3倍,先写出红花有3x朵,用含有字母的式子表示红花的朵数,再用x+3x(或4x)表示两种花一共的朵数,用3x-x(或2x)表示红花比黄花多的朵数,发展联想能力。联想到的式子,正是方程里等号左边的部分,这道题也在写式训练的同时,进行思路引导。
3. 列方程解答新颖的问题,拓展等量关系。
本单元安排两节练习课,分别教学练习一第6~13题、练习二第6~11题。着重解答一些与例题不同的实际问题,找到这些问题的等量关系是教学重点,也是难点,对发展数学思考非常有益。
练习一第7题起拓展等量关系的作用。第(1)小题画出了三角形,学生看到图上的高和底,就能想到三角形的面积计算公式,于是把底高2=三角形的面积作为解题时的等量关系。第(2)小题利用熟悉的括线表示19.8元的意思,形象显示了3枝铅笔的钱+1个文具盒的钱=一共的钱是问题里的等量关系。教材的意图是通过这些题打开思路,让学生体会不同的问题里有不同的等量关系,两个部分数之和往往是可利用的等量关系。这就为继续解答第8、9、12题作了有益的铺垫。至于第13题,把两种温度的换算公式作为等量关系。公式在题中已经揭示,只要在它上面体会已知华氏温度求摄氏温度,列方程解答比较好。反之,已知摄氏温度求华氏温度,依据公式能直接列出算式。
例2和练一练分别是典型的和倍、差倍问题,已知的总数或相差数是等量关系的生长点。练习二第7~11题的题材和例题不同,且各有特点。但是,等量关系的载体仍然是已知的总数与相差数。第7题用线段图配合展示题意,便于学生发现小丽走的米数+小明走的米数=两地相距的米数这一等量关系,并把这个经验迁移到解答后面的习题中去。
小学方程的教案13
教学内容:
人教版第九册第102页练习二十五的习题。
教学目标:
1、通过练习,进一步理解和掌握ax±b=c这一类简易方程的解法,并能正确解简易方程。
2、养成自觉检验的良好习惯。
3、培养分析推理能力和思维的灵活性,提高解方程的能力。
教学重点:
进一步理解和掌握ax±b=c这一类简易方程的解法。
教学难点:
能正确解简易方程。
教学过程:
一、复习温顾。
1、根据下面的情景列方程并求方程的解,结合情景说说怎样解方程,每一步算出什么。
8×5+3x=70
2、把下列解方程和检验过程补充完整。
5x-3.7=8.5
解:5x=8.5○()
()=12.2
x=()○()
x=2.44
检验:把x=2.55代入原方程,
左边=5×()-3.7=()
右边=()
左边○右边
所以x=2.55是原方程的解。
8x-4×14=0
解:8x-()=0
()=56
()=56÷8
x=()
检验:把x=()代入原方程,
左边=()×()-4×14=()
右边=0
左边○右边
所以x=()是原方程的解。
3、解下列方程:
⑴6x=42
⑵6x+35=77
⑶6x+5×7=77
比较:这几道方程有什么相同和不同?解题后有什么体会?
(这几道题方程的解都是一样的,后几道方程都是由第一道方程演变过来的,每一道方程都比前一道要复杂,解题步骤也相应地增多。体会:再复杂的方程只要解题方法正确,都能化成一般简单的形式。)
二、巩固练习。
1、可以把5x看作减数的是方程()。
A.5x-6=20B.30+5x=75C.30-5x=5D.5x÷3=20
2、2x在下列方程中可以看作什么部分数?
①2x+2.5=32.5()②2x-30=60()③2x-3×5=45()
④2x×7=42()⑤30×2-2x=12()⑥2x÷12=35()
3、不解方程,你能判断下列方程的解是否正确吗?说说你的方法。
①7x+15=120的解是x=15。()
②5x-3×6=22的解是x=9。()
③6x÷5=12的解是x=15。()
④12×5-3x=30的解是x=10。()
4、解下列方程。(也可以选择第2题的方程其中3题)
4x-7.2=10
0.4(x-5)=16
1.2x+0.16÷0.2=3.2
5、列出方程并求方程的解。
8与5的`积减去一个数的4倍,差是20,这个数是多少?
以上各题4人小组独立完成后,先交流订正,再集体订正。
第4、5题,要求做错的题目,订正在练习纸的右栏。
三、错题分析。
1、出示学生作业中的错题,学生分析指出错误,并说说理由。(需批改作业时收集)
2、出示常见的错题。
观察下列各题的解方程是否正确,不正确的指出错处。
7x-3.5=17.5
解:x-3.5=17.5÷7
x-3.5=2.5
x=2.5+3.5
x=6
7x-3.5=17.5
解:x=17.5+3.5
x=21
7x-3.5=17.5
解:x=17.5+3.5
7x=21
x=21÷7
x=3
2x+4×3=48
解:2x=4×3
2x=12
2x=48-12
2x=36
x=36÷2
x=18
四、拓展练习。
1、根据方程24×6-x=80创作情景(编题)或把下列情景补充完整。(视学生情况而定)
情景:学校食堂买来6袋大米,每袋()千克,用去了一些,还剩()千克,()多少千克大米?
2、解下列方程(可以只选择其中两道方程,快的同学可以全部做完)
①6x+5×7=70+7
②2×3x+5×7=70+7
③(3+2x)×2=30
3、如果2x+4=16,那么4x+8=()
4、⑴x等于什么数时,3x-9的值等于12?
⑵x等于什么数时,3x-9的值大于12?
五、复习小结。
小学方程的教案14
教学目标:
通过比较,使学生理解用方程解应用题和用算术方法解应用题的异同,知道两种解法的适用范围,感受用方程解的优越性。
重点难点:
使学生弄清用两种方法解答应用题的不同点,知道两种方法的适用范围,进一步体会列方程解应用题的优越性。
教学过程:
一、复习准备:
说说列方程解应用题的一般步骤?最关键的是哪一步?
二、学习新课
1、出示例8
(1)读题,分析题意
(2)用方程解的话,该抓住哪一个相等关系来列方程?
(3)反馈说理
(4)归纳小结:列方程时,只要抓住正确的相等关系就可以
(5)用算术方法解,该从哪里开始考虑?
(6)反馈,说理。解:(25×4+60)÷2.5
(7)说说每一步表示的意义
(8)分组解方程,计算用算术方法解的`结果。
(9)小结:同一个问题可以用方程解也可以用算术方法解,可用多种方法来解答。
2、比较
(1)用方程解应用题和用算术方法解应用题有什么不同之处?
(2)学生同桌互相讨论
(3)归纳小结(按课本P131上的结语,归纳后板书)
3、练习试一试:先用方程解,再用算术方法解
(1)讲评时要求学生说出思考过程
(2)讨论:用方程解与用算术方法解应用题,哪种方法更合理些?
三、巩固练习:完成练一练
四、总结并布置作业
小学方程的教案15
一、设计理念:
随着学生学习知识的迁移,让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,既巩固了小学基础知识,又为初中教学打下坚实的基础。
二、教学目标:
知识与技能:让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,运用相关规律,熟练的进行解方程计算。
过程与方法:让学生通过体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。
情感态度与价值观:运用“勾漏”双向四步教学法,适当创设教学情境,激发学生的学习兴趣。
三、教学重、难点:
教学重点:让学生在让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,掌握各类解方程的一些规律,运用相关规律,熟练的进行解方程计算。
教学难点:让学生体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。
四、教学方法:“勾漏”双向四步教学法;观察法、比较法、归纳法。
五、教学准备:教学课件
六、教学过程
(一)、勾人入境:
同学们,利用等式的性质我们学会了解方程,其实上,熟练后,我们可以不用写得那么麻烦,三言两语就可以轻松地解方程了啊!想学吗?
(二)、漏知互学:
我们先按运算符号把方程分成四大块:一、加法方程,二、乘法方程;三、减法方程;四、除法方程
先来看第一大块的加法方程
186+x=200
用等式的性质这样解:
186+x=200
解:x+186—186=200—186
X=14
熟练后可以这样解:
186+x=200
解:x=200—186
X=14
有什么规律呢?先看符号(+——--符号相反)再看数字(数字顺序也相反),那合起来说就是:加法方程,数符相反。有趣吗?
现在我们再看第二大块的乘法方程
36×x=108
用等式的性质这样解:
36×x=108
解:X×36÷36=108÷36
X=3
熟练后可以这样解:
36×x=108
解:X=108÷36
X=3
师:他们又有什么规律呢?(课件展示)哦真聪明!乘法方程与加法方程的规律一样,数字顺序和运算符号都相反了,所以我们把乘法方程与加法方程合在一起称为:乘加方程,数符相反。明白了吗?记住了吗?
现在我们再来看第三大块,减法方程:
X—36=12
用等式的性质这样解:
X—36=12
解:X—36+36=12+36
X=48
熟练后可以这样解:
X—36=12
解:X=12+36
X=48
那么它们又有什么规律呢?先看未知数x都在减号前,接下来的运算符号都用加法,那么是不是所有的.减法方程都是用加法呢?别急,请看:
108—X=60
用等式的性质可以这样解:
108—X=60
解:108—X+X=60+X
108 =60+X
60+X =108
X+60-60 =108-60
X=48
熟练后可以这样解:
108—X=60
解:X=108—60
X=48
同学们,比较一下,这两题减法方程与上面两题有什么不同呢?对,未知数x都在减号后面,运算符号都是用减法,那么我们就可以把这两张种减法方程合并起来说:减法方程,前加后减。未知数x在减号前用加法,未知数x在减号后,用减法。
接下来我们再来学习第四块,除法方程:
X÷12=5
用等式的性质可以这样解:
X÷12=5
解:X÷12×12=5×12
X=60
熟练后可以这样解:
X÷12=5
解:X=5×12
X=60
同学们,你发现了什么?对,眼睛真厉害!未知数x在除号前,解完这道题,谁发现,有没有似曾相识的感觉:与减法一样,1、未知数X在除号前面,2、都用乘法,3、数字没有相反。怎么办,对,先算完另外一种情况(X在除号后的)再说,那么请开始吧。
48÷X=3
用等式的性质可以这样解:熟练后可以这样解:
48÷X=3 48÷X=3
解:48÷X×X=3×X解:X=48÷3
48=3×X X=16
3×X=48
X=48÷3
X=16
仔细观察比较,你发现了什么?解除法方程的规律你找到了吗?1、未知数X在除号后面,2、都用除法,3、数字没有相反。以上说明在除号前后的计算方法不一样,那么它的规律要根据X在除号前后来判断,X在除号前用乘法,X在除号后用除法,从而得出他的规律是除法方程,前乘后除,它和减法有类似感。
(三)、流程对测:
小组内各出加减乘除的方程各一条,然后交换计算,看谁算得又快又准确。
小组开始探究,教师巡逻指导
(四)、结课拓展:请同学们说说这节课你学到了什么?
【小学方程的教案】相关文章:
《圆的方程》教案06-13
《方程的意义》教案04-03
简易方程教案04-03
解方程教案08-16
认识方程教案09-12
方程的意义教案07-05
《方程》教案(精选15篇)10-13
《方程》教案15篇09-04
《方程》教案(15篇)11-09
小学六年级方程教案12-12