当前位置:育文网>教学文档>教案> 比的应用教案

比的应用教案

时间:2022-01-19 05:48:06 教案 我要投稿

比的应用教案合集5篇

  作为一名人民教师,有必要进行细致的教案准备工作,编写教案有利于我们科学、合理地支配课堂时间。那么什么样的教案才是好的呢?以下是小编帮大家整理的比的应用教案5篇,仅供参考,大家一起来看看吧。

比的应用教案合集5篇

比的应用教案 篇1

  教学目标

  1、让学生了解比在生活中的广泛应用,探索按比例分配的解决方法,并能用来解决有关实际问题。

  2、培养学生自主探索解决问题的能力,培养学生的创造性思维和实践能力。

  3、树立用自己学来的知识帮忙解决问题的意识。

  教学重点掌握按比例分配的解决方法.

  教学难点灵活解决实际问题。

  教材分析:这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,掌握了按比例分配的解题方法,不仅能有效地解决生活、工作中把一个数量按照一定的比进行分配的问题,也为以后学习比例比例尺奠定了基础。

  学情分析:对于按比例分配问题学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的`一个巩固的规范的分配方法。

  教学过程

  活动一

  1、课前调查

  奶茶中牛奶和红茶的比是2∶9。从这句话中你看出了什么?

  牛奶是红茶的2/9,红茶是牛奶的9/2,红茶是奶茶的/9/11,牛奶是奶茶的2/11。

  2、实际操作

  要配置220毫升奶茶,需要多少牛奶和多少红茶?

  学生讨论,研究不同算法。

  解法一:220/(2+9)=20ml,20*2=40ml,20*9=180ml

  解法二:2+9=11220*(9/11)=180ml220*(2/11)=40ml

  讨论出几种就是集中不强求,比较后找出自己认为的最简单的解法。

  学生配置奶茶,共同品尝。

  活动二

  1、教学例2

  书上例2,列式计算

  2、生活中常常要把一个数量按一定的比来进行分配,这节课我们来研究比的应用。(板书:比的应用)接下来希望大家能够学以致用,来解决更多的实际问题。

  活动三:

  1、请帮忙配糖:

  一种什锦糖是由奶糖、水果糖和酥糖按3:5:2混合成的,要配制这样的什锦糖50千克,需要奶糖、水果糖、酥糖各多少千克?(鼓励求异思维)

  3、帮刘爷爷收电费

  刘爷爷管收四家电费,四家合用一个总电表,四月份供付电费83.2元,按每家分电表的度数分摊电费,每家各应收多少钱?

  住户王家张家赵家李家

  分电表度数40382953

  3、陆老师和高老师合租一套房,高老师住30平方米的房间,陆老师住20平方米的房间,客厅厨房等公用部分的面积是30平方米,每月房租1000元,房租怎样分配才合理?

  4、总结全课

  比的应用广泛,在工业、农业、医药......用途很广,同学们今后要留心观察生活,在实际生活中运用所学的知识来解决问题。

比的应用教案 篇2

  教学内容:

  北师大版六年级数学上册第55页、第56页。

  教学目标:

  1、能运用比的意义解决按照一定的比进行分配的实际问题。

  2、进一步体会比的意义,提高解决问题的能力。

  3、培养学数学的兴趣,养成良好的思维品质。

  教学重点:

  理解和掌握按一定的比进行分配的意义,并进行实际应用。

  教学难点:

  把比熟练地转化成分数,将分数知识横向迁移。

  教学准备:

  多媒体课件。

  教学过程:

  一、复习牵引(课件出示)

  同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某班男生和女生的人数比是5:4”,从这组比中,你能推断出什么信息呢?(课件出示题目)

  学生自由发言,预设推断如下

  1、全班人数是9份,男生占其中的5份,女生占其中的'4份。

  2、以全班为单位“1”,男生是全班的(),女生是全班的()。

  3、以男生为单位“1”,女生是男生的(),全班是男生的()。

  4、以女生为单位“1”,男生是女生的(),全班是女生的()。

  5、女生比男生少(或20%)。

  6、男生比女生多(或25%)。

  追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)

  二、情境导入,引出课题(课件出示)

  昨天我和王老师合伙买福利彩票,我出了30元,王老师出了50元,结果我们中了一个二等奖,奖金8000元。我想对半分,各分4000元,王老师说这不公平,你们认为呢?怎么分奖金才合理呢?

  三、合作探索,解决矛盾

  1、你能帮老师解决这个问题吗?请试试看,可以小组内交换意见、讨论想法。

  2、说以说你的想法。组织反馈,逐一展示学生解题思路。

  3、我们分到的奖金是否合理,该怎样检验?(两个数量和要等于8000,出资的比是3:5或5:3)

  4、小结:像这样把8000元彩票奖金按照出资多少来进行分配的情况叫做按比例分配。(板书:按比例分配)

  (出示课题:比的应用)

  四、自主探索

  1、课件出示教材(1),把一筐橘子分给大班和小班,大班30人,小班20人。

  思考:把这筐橘子分给大班和小班,怎么分合理?

  学生商量分法,得出:按大班和小班的人数来分比较合理。

  2、大班人数和小班人数的比是3:2 学生分好后,交流分法,填表完成。

  3、如果有140个橘子,按3:2分,可以怎样分?你会分吗?试着分一分。

  学生试做。

  4、与同学交流分的方法。分组讨论疑点,并试着在组内解决。

  四、交流方法,老师精讲

  1、班内交流,老师答疑

  三种方法

  (1)、方法一:借助表格分。

  (2)、方法二:画图

  发现橘子总数被平均分成了5份,大班占3份,小班占2份。先求出一份的数,再分别乘以3和2,就求出了大班和小班分的橘子个数。

  140个

  140÷(3+2)=28 大班:28×3=84(个)

  小班:28×2=56(个)

  追问:为什么要“140÷(3+2)”?

  (3)、方法三:根据分数的意义解题。先求出一共分成几份,再求出大班和小班分的个数分别占橘子总数的几分之几,最后根据分数的意义解题。

  3+2=5 140× = 84(个)

  140× = 56 (个)

  答:大班分84个,小班分56个,比较合理。

  2、以上几种方法你最喜欢哪种?说明理由。引导学生小结方法⑶的思路。

  ⑴计算分配的总份数。

  ⑵计算各部分占总量的几分之几。

  ⑶根据分数乘法的意义解题。

  五、巩固练习,深化认识

  1、小清要调制2200克巧克力奶,巧克力和奶的质量比是2:9。需要巧克力和奶各多少克?

  2、 3月12日是植树节,学校把种植60棵小树苗的任务分配给602班和603班,两班都是43人。想一想,如果你是大队辅导员,你会按怎样的比例分配,两班各栽多少棵?

  3、完成教材第56页练一练第3题合理搭配早餐。

  六、总结评价

  1、回顾这节课所学的知识,谈谈收获。

  2、布置作业。

  板书设计:

  比的应用

  3+2=5 140× = 84(个)

  140× = 56 (个)

  答:大班分84个,小班分56个。

比的应用教案 篇3

  教学目标

  使学生加深对比的认识,进一步掌握比的知识在解决实际问题中的应用,并加深认识不同问题的特征和解题方法,并沟通知识间的联系,提高学生应用比的知识解决实际问题的能力,以及思维能力和思维品质。

  教学重难点

  运用比的知识解决实际问题。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、基本训练

  二、应用题练习

  三、小结

  四、作业

  1、口算

  练习1310

  2、说出下面每句话的具体意思。

  一本书,已看页数和剩下页数的比是2∶1。

  苹果筐数和橘子筐数的'比是3∶4

  一个长方形长和宽的比是5∶3

  男生与全班人数的比是4∶9

  要求说出各占几份,再说出每个数量各占总数量的几份之几和一个数量是另一个数量的几分之几或几倍。

  3、用比表示下列数量之间的关系。

  合唱组人数是美术组的3倍。

  大米袋数是面粉的1.5倍。

  公牛头数是母牛的1/3

  摩托车辆数是自行车的2/5。

  1、解答应用题

  配制黑火药用的原料是火硝、硫磺和木炭。这三种原料重量的比是15∶2∶3。要配制240千克这种黑火药,需要三种原料各多少千克?

  上下练习;

  问:已知什么,要求什么?这是什么应用题?关键是什么?

  2、练习1311

  问:4∶1是哪两个数量的比?长和宽对应的总长度是40米吗?为什么?

  要下求什么,再求长和宽?

  上下练习。

  3、练习1313

  明确题意后指出:能根据数量与比之间的对应关系把它改编成分数应用题吗?

  学生口述后解答。说想法。

  能把(2)改编成分数应用题吗?

  练习131213

  课后感受

  同学们能运用比的知识解决实际问题.

比的应用教案 篇4

  教学目标:

  1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;

  2、培养学生应用所学数学知识解决实际问题的能力;使学生真正成为课堂的主人;

  3、通过实例使学生感受到数学来源于生活,生活离不开数学。

  教学重点:

  1、正确理解按比例分配的意义。

  2、掌握按比例分配应用题的特征和解题方法。

  教学难点:能正确、熟练地解答按比例分配的实际问题。

  教学过程:

  一、课前组织复习旧知

  同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某兴趣小组男生和女生的人数比是5:4,从这组比中,你能推断出什么信息呢?”(课件出示题目)

  学生自由发言,预设推断如下:

  1、全班人数是9份,男生占其中的5份,女生占其中的4份。

  2、以全班为单位“1”,男生是全班的,女生是全班的。

  3、以男生为单位“1”,女生是男生的,全班是男生的。

  4、以女生为单位“1”,男生是女生的,全班是女生的'。

  5、女生比男生少(或20%)。

  6、男生比女生多(或25%)。

  追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)

  二、探索方法,建立模型

  1.理解题意

  (1)什么是稀释液?怎样配置的?

  (2)什么是按比例分配?

  2.自主探究,合作学习

  自学数学书P49例题2,思考:

  (1)你从例题2中得哪些信息?

  (2) 1:4表示什么?你从中得到哪些信息?

  (3)你能用画图的方法给同位讲解吗?

  (4)方法一先求什么?再求什么?方法二先求什么?再求什么的?

  3.小组展讲

  小结:方法一把各部分数的比看作份数关系,先求每一份,然后再求各部分的量;方法二把各部分的比转化成分别占总数的几分之几,根据分数乘法的意义,直接求总数的几分之几是多少。

  三、巩固练习

  1.一个三角形三条边的长度比是3∶5∶4.这个三角形的周长是36厘米,三条边的长度分别是多少厘米?

  2.填空

  3.一个长方形的周长是28cm,长与宽的比是5:2,长与宽各是多少cm?

  4.一个班,男生比女生人数多10人,男生与女生人数的比是3:2,全班有多少人?

比的应用教案 篇5

  教学目标:

  (1)知识目标:使学生理解按比例分配的意义。

  (2)能力目标:使学生灵活掌握按比例分配应用题的数量关系和解答方法。

  (3)情感目标:在教学中渗透事物是相互联系的辩证唯物主义思想。

  教学重点:分析理解按比例分配应用题的数量关系。

  教学难点:掌握按比例分配应用题的解答方法。

  教具准备:多媒体课件

  教学过程:

  一、学前准备

  1、一个农场计划在100公顷的地里播种60公顷的大豆和40公顷玉米。大豆和玉米的播种面积各占这块地的几分之几?大豆和玉米播种面积的比是多少?

  60÷100=3/5

  40÷100=2/5

  这里的3/5和2/5是什么意思?

  2、60:40=3:2

  你发现了什么?

  二、探究新知

  1、导入新课

  在日常生活中,我们有时需要把一些数量按照一定的比来分配,你能举出这样的例子吗?

  2、教学例题2

  一个农场计划在100公顷的地里播种大豆和玉米。播种面积的比是3:2,两种作物各播种多少公顷?

  (1) 学生独立思考,相互说说:要分配什么?3:2是什么意思?

  (2) 探究问题解决的'方法

  (3) 交流

  (4) 用分数怎么解答?

  总面积平均分成的份数:3+2=5

  播种大豆的面积:100×3/5=60(公顷)

  播种玉米的面积:100×2/5=40(公顷)

  (5) 用归一方法怎么解答?

  3、归纳小结:按比例分配的应用题有什么特点?怎样解答?

  4、学习例题3

  (1) 小组尝试解答检验

  (2) 全班交流、反馈

  三个班的总人数:47+45+48=140(人)

  一班应栽的棵数:280×()=( )棵

  二班应栽的棵数:280×()=( )棵

  三班应栽的棵数:280×()=( )棵

  (3) 例题2和例题3有什么相同点和不同点

  三、巩固练习与检测

  1、水果店运来桔子和梨共840千克,梨和桔子的重量的比是3:2,桔子和梨各重多少千克?

  2、一个三角形的三个内角的度数比是2:3:7,求这个三角形的各个内角的度数。

  3、教材53页的2、3题

  四、小结(略)

  五、作业:练习十三的第一、二、五题。

【比的应用教案】相关文章:

《比的应用》教案09-04

教案:《比的应用》07-13

《函数的应用》教案02-26

【精选】比的应用教案4篇01-09

精选比的应用教案三篇01-12

比的应用教案6篇01-27

【精选】比的应用教案四篇02-19

勾股定理的应用教案04-06

精选比的应用教案3篇02-16

密度知识的应用教案02-18