精选比的应用教案三篇
作为一名无私奉献的老师,可能需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。来参考自己需要的教案吧!下面是小编为大家收集的比的应用教案3篇,欢迎阅读,希望大家能够喜欢。
比的应用教案 篇1
教学目标:
1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;
2、培养学生应用所学数学知识解决实际问题的能力;使学生真正成为课堂的主人;
3、通过实例使学生感受到数学来源于生活,生活离不开数学。
教学重点:
1、正确理解按比例分配的意义。
2、掌握按比例分配应用题的特征和解题方法。
教学难点:能正确、熟练地解答按比例分配的实际问题。
教学过程:
一、课前组织复习旧知
同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某兴趣小组男生和女生的人数比是5:4,从这组比中,你能推断出什么信息呢?”(课件出示题目)
学生自由发言,预设推断如下:
1、全班人数是9份,男生占其中的5份,女生占其中的4份。
2、以全班为单位“1”,男生是全班的`,女生是全班的。
3、以男生为单位“1”,女生是男生的,全班是男生的。
4、以女生为单位“1”,男生是女生的,全班是女生的。
5、女生比男生少(或20%)。
6、男生比女生多(或25%)。
追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)
二、探索方法,建立模型
1.理解题意
(1)什么是稀释液?怎样配置的?
(2)什么是按比例分配?
2.自主探究,合作学习
自学数学书P49例题2,思考:
(1)你从例题2中得哪些信息?
(2) 1:4表示什么?你从中得到哪些信息?
(3)你能用画图的方法给同位讲解吗?
(4)方法一先求什么?再求什么?方法二先求什么?再求什么的?
3.小组展讲
小结:方法一把各部分数的比看作份数关系,先求每一份,然后再求各部分的量;方法二把各部分的比转化成分别占总数的几分之几,根据分数乘法的意义,直接求总数的几分之几是多少。
三、巩固练习
1.一个三角形三条边的长度比是3∶5∶4.这个三角形的周长是36厘米,三条边的长度分别是多少厘米?
2.填空
3.一个长方形的周长是28cm,长与宽的比是5:2,长与宽各是多少cm?
4.一个班,男生比女生人数多10人,男生与女生人数的比是3:2,全班有多少人?
比的应用教案 篇2
教学要求
1. 使学生理解比的意义,认识比的各部分名称。会正确读写比。
2. 能正确的求比值,掌握比、除法和分数的关系。
3. 培养学生的比较、分析和抽象概括能力。
4、加强知识间的联系,使所学的知识系统化,渗透知识间相互联系的观点。
教学重点:理解比的意义
教学难点:理解比与分数、除法的关系。
教材分析:
这部分是学生学过分数与除法的关系,分数乘除法的意义,分数乘除法应用题的基础上教学的。由于分数与除法有着密切的联系,把比的知识放在分数除法的后面进行教学,加强了知识间的内在联系,又为学习其他知识以及比例的知识打好基础。
学情分析:
因为比的现象在生活中司空见惯,例如按一定的比稀释清洁剂,加工混凝土等等都用到比的知识。学生有生活的一些体验,因而可以从学生的兴趣出发展通过观察、比较、讨论,感受比的含义和特征。进而了解比与除法、分数的关系。
教学过程:
活动一
1、情境引入:出示一面国旗联合国旗的图案,我国第一艘载人飞船神州五号顺利升空。这是扬利伟在飞船上向人们展示的一面中华人民共和国和联合国国旗的图案,这个图案长是15厘米,宽是10厘米,根据这两个条件可以提出什么问题?(可提的问题很多,教师有选择地板书。①长是宽的几倍?②宽是长的几分之几?)
2、揭示课题:长是宽的几倍或者宽是长的几分之几是我们用以前学过的除法对这面旗的长和宽进行比较的,今天我们再学习一种对两个数量进行比较的新的方法。这就是比(板书课题)
活动二:
1、教学比的意义。
有时我们也把这两个数量之间的关系说成:长和宽的比是15比10 ,宽与长的'比是10比15。
2、进一步理解比的意义。
神舟五号进入运行轨道后,在距地350千米的高空做圆周运动,平均90分钟绕地球一周,大约运行42252千米。
你能提出什么问题?
你能用比表示路程和时间的关系吗?
3、小组讨论,你是怎么理解比的意义?
得出:两个数相除又叫两个数的比。
4、 比的写法和各部分名称及求比值的方法
介绍比号、比表示的方法、比的各部分名称,
①中间的:叫做比号,读的时候直接读比。
②比的各部分名称是什么呢?请大家看书p44的内容。
③介绍比各部分的名称,求比值方法,并板书。
5、比、除法、分数之间的关系
比、除法、分数有什么联系和区别?
联系:a:b= ab=
区别:比表示两个数关系的式子,分数是一个数,除法是一种运算。
那比的后项能不能为零呢?既然比的后项不能是0,而足球赛中常出现的2: 0的意义是什么?它是一个比吗?
足球赛中记录的2: 0的意义只表示某一队与另一队比赛各得的进球分数,不需表示两队所得分数的倍比关系,这与今天学习数学中的比的意义不同,它虽然借用了比的写法,但它不是一个比。
比的另一种表示方法,就是写成分数形式。
(4)质疑:对本节课的内容你又不清楚的地方吗?
活动三
1. 填空:
(1)完成一项工程,甲8天完成,乙12天完成,甲乙两人工作时间的比是( ):( )。
(2) 如果a:b=c,那么a是比的( ),b是比的( ),c是比的( )。
(3)求比值:72:24,0.8:3.2,1.5小时:20分钟。
2、完成44页做一做内容。
3、根据下面的信息,你能想到那些问题?
六年一班有男生24人,女生26人。
张师傅5天加工300个零件。2枝钢笔11元。
比的应用教案 篇3
人教版第十一册数学比的应用——按比例分配
教学内容:
小学数学人教版第十一册第52页~53页的内容,练习十三的`第1~4题。
教学目标:
1、使学生理解按比例分配的意义。
2、使学生理解按比例分配应用题的数量关系,并会解答此类应用题。
3、使学生能运用所学知识来解决生活中的一些简单问题,体会数学与生活的密切联系。
教学重点:掌握按比例分配应用题的解题方法。
教学难点:按比例分配应用题的实际应用。
教学准备:自制多媒体课件。实物投影仪。
教学过程():
一、复习引入:
1、问:我班男女生人数各是多少?你能根据我班男女生人数用比的知识和分数的知识来说一句话吗?
学生汇报:
(1)男生人数是女生人数的( ), 男生人数和女生人数的比是( )
(2)女生人数是男生人数的( ),女生人数和男生人数的比是( )
(3)男生人数占全班人数的( ),男生人数和全班人数的比是( )
(4)全班人数是男生人数的( ),全班人数和男生人数的比是( )
(5)女生人数占全班人数的( ),女生人数和全班人数的比是( )
(6)全班人数是女生人数的( ),全班人数和女生人数的比是( )
2、口答应用题
六年级(1)班和二年级(1)班共同承担了面积为100平方米的.卫生区保洁任务,平均每个班的保洁区是多少平方米?
口答:100÷2=50(平方米)
提问:这是一道分配问题,分谁?(100平方米)
怎么分?(平均分)
六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?这样分还是平均分吗?
在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们研究按比例分配问题。(板书:按比例分配)
指出:按比例分配就是把一个数量按照一定的比来分配。
【比的应用教案】相关文章:
《比的应用》教案09-04
教案:《比的应用》07-13
《函数的应用》教案02-26
【精选】比的应用教案四篇02-19
教案:《比的应用》15篇07-13
比的应用教案6篇01-27
比的应用教案六篇02-03
勾股定理的应用教案04-06
精选比的应用教案3篇02-16
密度知识的应用教案02-18