当前位置:育文网>教学文档>教案> 分数乘法教案

分数乘法教案

时间:2022-01-18 21:15:37 教案 我要投稿

分数乘法教案锦集十篇

  作为一名默默奉献的教育工作者,就有可能用到教案,编写教案有利于我们科学、合理地支配课堂时间。那么什么样的教案才是好的呢?下面是小编整理的分数乘法教案10篇,希望对大家有所帮助。

分数乘法教案锦集十篇

分数乘法教案 篇1

  教学目标:

  1、理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

  2、引导学生在经历猜想、验 证等数学活动中,发展学生的思维能力。

  3、通过小组合作学习,培养学生进行交流的能力与合作意识。

  教学重点:

  使学生能够熟练分数的简便运算。

  教学难点:

  会用运算定律对分数进行简便运算。

  教具准备:

  自作课件。

  教学过程

  一、 复习导入

  1、 回顾学习过的乘法运算定律。

  (1)请学生说一说已学过的乘法运算定律,根据学生的回答,教师板书:

  乘法交换律:ab=ba

  乘法结合律:(ab)c=a(bc)

  乘法分配律:(a+b)c=ac=bc

  (2) 用简便方法 计算下面各题。

  251348(9+12.5) 12524

  2、 下面的`每组算式的左右两边有什么样的关系?

  1/21/3○1/31/2 (1/42/3)3/5○1/4(2/33/5)

  (1/21/3)1/5○1/21/5+1/31/5

  3、在学生发表自己的发现后,教师明确指出整数乘法的交换律、结合律和分配律也适用于分数乘法。

  二、 探究新知

  1、整数乘法运算定律推广到分数乘法

  (1) 各组观察复习第2题的每组中两个算式,你们发现了什么?

  (2) 各组发表本组同学的发现。

  2、 应用

  (1) 教学例5.计算3/51/65.

  ① 请试着做一做.

  ② 让学生互相交流自己的计算方法.(有的学生是按运算顺序计算的;有的是按运算定律进行计算的。)

  ③ 比较:哪一种方法简便?应用了什么运算定律?

  ④ 跟据学生的回答教师板书:

  3/51/65

  =3/551/6(应用乘法交换律)

  =1/2

  (2) 教学例6 .计算(1/10+1/4)4

  ① 让学生观察算式的特点,想一想,怎样计算比较简便?

  ② 学生计算完后,请学生说一说计算中应用了什么定律?

  ③ 根据学生的交流,教师板书:

  (1/10+1/4)4

  =1/104+1/44(应用乘法分配律)

  =2/5+1

  =1.2

  3、 小结

  在学生交流后,强调以下两点:

  (1) 整数乘法的交换律、结合律和分配律,对分数乘法同样适用。

  (2) 在计算中,要根据题目的特点,灵活、合理的运用定律,使计算简便。

  三、 巩固练习

  1、 学生在书上直接.完成练习三的第6题。

  请学生说一说每个题目应用了什么运算定律?

  2、 完成第10页做一做。其中的第2小题教师可作适当指导。(可以把87看作86+1来计算)

  四、 课堂作业

  完成练习三的第7、8、9题。

  五、总结

  通过这节棵的学习你学会了什么?有哪些收获?

  六、板书设计:

  分数乘法的简便运算

  乘法运算定律 乘法交换律 ab=ba

  乘法结合律 (ab)c=a(bc)

  乘法分配律 (a+b)c=ac+bc

  例5 计算3/51/65例6 计算(1/10+1/4)4

  3/51/65 (1/10+1/4)4

  =3/551/6(应用乘法交换律) =1/104+1/44(应用乘法分配律)

  =1/2=2/5+1

  =1.4

分数乘法教案 篇2

  教学内容:人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。

  教学目标:

  1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。

  2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。

  3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。

  教学重点:掌握分数乘整数的计算方法。

  教学难点:理解分数乘整数和一个数乘分数的意义。

  教学准备:课件。

  教学过程:

  一、情境创设,探求新知

  (一)探索分数乘整数的意义

  1.教学例1(课件出示情景图) 师:仔细观察,从图中能得到哪些数学信息?这里的“个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)

  师:想一想,你还能找出不一样的方法验证你的计算结果吗?

  2.小组交流,汇报结果 预设:(1)(个);(2)(个);(3)(个);(4)3个就是6个就是,再约分得到(个)。(根据学生发言依次板书)

  3.比较分析 师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的`?

  预设: 生1:每个人吃个,3个人就是3个相加。

  生2:3个个相加也可以用乘法表示为。

  提出质疑:3个相加的和可以用乘法计算吗?为什么?

  预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

  引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

  师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

  引导说出:这两个式子都可以表示“求3个相加是多少”。

  师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

  4.归纳小结

  通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。(二)分数乘整数的计算方法

  1.不同方法呈现和比较 师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,的计算过程用式子该如何表示?

  预设: 生1:按照加法计算=(个)。 生2:(个)。

  师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个。

  2.归纳算法 师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢? 引导说出:用分子与整数相乘的积作分子,分母不变。(板书)

  3.先约分再计算的教学

  师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?

  预设:一种算法是先计算再约分,另一种是先约分再计算。

  师:比较一下,你认为哪一种方法更简单?为什么? 小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。

  二、巩固练习,强化新知

  1.例1“做一做”第1题 师:说出你的思考过程。

  2.例1“做一做”第2题 师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。

  三、探索一个数乘分数的意义

  教学例2(课件出示情景图)

  (1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。

  预设1:求3桶共有多少升?就是求3个12 L的和是多少。 预设2:还可以说成求12 L的3倍是多少。

  预设3:单位量×数量=总量,所以12×3=36(L)。 (2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。) 交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的是多少。” (3)出示第2小题学生自练。引导说出:“12×表示求12 L的是多少。”在这里都是把12 L看作单位“1”。

  (4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。) 归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。

  四、课堂练习,深化理解

  1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的,吃了多少千克? 师:你能说说这个算式表示的意义吗?“求3千克的是多少。”

  2.比较两种意义 出示:一袋面包重千克,3袋重多少千克?

  师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?

  预设1:一个是分数乘整数,另一个是整数乘分数。

  预设2:它们表示的意义相同但有所区别。 引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。 师:那么,它们有什么是相同的呢?(计算方法和结果)

  五、联系实际,灵活运用 1.算式可以列成 × ,表示 ;或者表示 ;

  也可以列成 × ,表示 。

  师:选择一个算式进行计算,想一想,计算时要注意什么?

  2.比较练习

  (1)一堆煤有5吨,用去了,用去了多少吨?

  (2)一堆煤有吨,5堆这样的煤有多少吨?

  3.拓展练习

  1只树袋熊一天大约吃 kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?

  六、课堂小结,拓展延伸

  1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?

分数乘法教案 篇3

  一、教学目标。

  1、使学生理解分数乘整数的意义与整数乘法意义相同。

  2、使学生掌握分数乘整数的计算方法,能正确进行计算,明白计算过程中能约分的要先约分的道理。

  二、教学重点。

  使学生理解分数乘整数的意义及计算方法。

  三、教学难点。

  总结分数乘整数的计算方法,理解分数乘整数算式的意义。

  四、教学过程。

  (一)设疑激趣,提出问题

  1、把9+9+9+9+9改成乘法算式。

  2、把O.2+0.2+O.2+O.2改成乘法算式。

  3、(1)口答整数乘法的意义。

  (2)求几个相同加数和的简便运算。

  4、列式计算。

  (1)5个12是多少?

  12×5=

  (2)12个1.5是多少?

  1.5×12=

  (3)3个是多少?

  5、提出问题。

  教师:求3个是多少,能不能用算式×3来表示呢?今天,我们就一起来学习分数乘法。

  板书课题:分数乘法(一)。

  (二)引导探索,解决问题。

  1、分数与整数相乘的意义。

  (1)出示题目。

  1个占1张彩纸的,3个占这张彩纸的几分之几?

  (2)探索交流。

  ①用图示表示。

  1个图案占这张彩纸的。3个图案占这张彩张的。

  ②用加法计算。

  ③用乘法计算。

  (3)引导发现。

  教师:求几个相同的分数和,可以用乘法计算。分数与整数相乘的意义与整数乘法的意义相同。

  2、分数与整数相乘的计算方法。

  (1)涂一涂,算一算。呈现题目。

  (2)引导观察算式和结果。教师:在中,你是怎么算出得数的?算式中的数字与得数的数字有什么关联?让学生认真观察算式数字,思考其中的关联,并和同学交流,说一说自己有什么发现。在这一基础上,师生共同探索其中的.联系。

  (3)总结计算方法。让学生用自己的语言表述分数与整数相乘的计算方法。

  (4)试一试。

  3、约分。

  教师:再计算时你有什么体会?让学生回答问题,同学之间进行交流,通过算式比较。最后,使全班学生明白:

  (1)在计算过程中,能约分的要先约分。

  (2)最后结果应该是最简分数。

  (三)巩固练习完成课文第3页“练一练”。

  1、第1题。

  完成后要将算式得数和涂的结果进行比较,并说明计算中的要点。

  2、第2题。利用教材提供的素材,教育学生节约用水。

  3、第3题。

  (1)让学生独立完成。

  (2)同学之间互相交流、校对,发现问题,及时反馈。

  (3)说一说计算的步骤、方法:

  ①分子与整数相乘作分子,分母不变。

  ②能约分的要先约分,再计算。

  4、第4题。

  (1)学生独立完成。

  (2)说一说,你是如何解决问题的。爸爸和小红一天分别吃多少→爸爸和小红一天共吃多少→爸爸和小红3天共吃多少。

  5、第5题。让学生都算出结果,再观察各组题目的算式及结果,然后说一说有什么发现。

  (四)作业选用课时作业。

分数乘法教案 篇4

  教学目标 :

  1. 通过知识迁移,使学生明确求一个数的几分之几是多少可以用乘法进行计算。

  2. 通过操作活动使学生理解分数乘分数的算理,并经过观察、猜测、验证归纳出分数乘分数的计算方法,并能熟练计算。

  3. 通过对算理、算法的探究培养学生的观察力、推理能力、归纳能力。

  教学重点:

  掌握分数乘分数的计算方法,并能熟练计算。

  教学难点:

  理解分数乘分数的乘法意义及算理。

  教具准备:

  多媒体课件。

  教学过程:

  一、导入新课(激发兴趣,明确目标)

  1. (课件出示一个正方形)这个正方形我们可以用数字“1”表示。现在涂色部分是它的几分之几? ( )

  2. 如果取这 的 ,现在得到的是整个正方形的几分之几?(看图得出结论 )

  3. 如果再取这 的 ,又是多少呢?你是怎么想的?(在学生回答后再出示图验证)

  【设计意图:讲课一开始采用了看图说分数的方式引入,既是对分数意义的一个回顾,也为本节课理解分数乘分数的算理提供了形的依托。】

  二、合作探究(小组合作,解决问题)

  出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)

  (一)探究几分之一乘几分之一的算理算法

  1. 求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的整数乘分数的意义进行类推)

  求一个数的几分之几,我们可以用乘法来计算。

  2. 等于多少呢?说说你的想法,并把你的想法在纸上写下来。

  3. 学生进行尝试(可引导学生用画图的方式来解释自己的想法)。

  4. 进行交流反馈

  重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固

  把1个正方形看作1公顷,先平均分成2份,每份表示 公顷,再把 公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(2×5)份,取其中的一份,就是 公顷。

  5. 得出结果

  根据大家的想法, 。我们再来看看本节课开始的图形,是不是也可以用乘法算式来表示?

  6. 猜想计算方法

  观察这几个算式,说说你发现了什么?你觉得几分之一乘几分之一可以怎样计算?这个方法可以推广到所有分数乘分数的计算中吗?

  【设计意图:尊重学生,培养学生的学习探索能力是很重要的。本节课的教学除了有之前所学分数的意义作为基础之外,学生还在前一课时明确了整数乘分数可以用来表示一个数的几分之几是多少,因此在本堂课中完全可以放手让学生们自己去思考、学习、尝试,教师只要起到一定的点拨作用就可以了。】

  (二)探究几分之几乘几分之几的算理算法

  1. 尝试猜想

  请你试着用这个方法解决第二个问题:求 公顷的 ,用乘法算式表示就是 。根据我们刚才的想法,结果应该是?( 公顷)。这个猜想正确吗?能不能想办法来进行验证?在老师提供的练习纸中画一画、算一算,并和同桌进行交流,有困难的学生也可以打开课本第4页看一看。

  2. 探究验证。学生自行探索分数乘法的计算方法。(探索完成的学生可以完成例3做一做第2题进一步验证)

  3. 验证反馈

  (1)请几个采用不同验证方法的学生进行一一展示。

  (预计方法:A. 画图(图形或线段);B. 转化成小数再进行计算;C. 利用分数的意义进行计算)

  (2)请已经完成例3做一做2的学生说一说自己计算的结果及得到的想法。

  4. 得出结论

  看来咱们的猜想是正确的,分数乘分数如何计算?在同学讨论回答后得出结论:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分母。

  【设计意图:猜想——举例——验证——得出结论是学生学习数学的一种方式,在本节课的设置上先提供了探索的范例,再让学生提出猜想,最后通过举例、验证形成共识,得到分数乘分数的计算法则,理解算理,使学生既获得了探索的体验,又掌握了基础知识。】

  三、展示交流(展示交流,调拨归纳)

  简化计算过程

  根据我们所得的结论,试着解决下面的问题

  出示例4:无脊椎动物中游泳最快的是乌贼,它的'速度是 千米/分。

  (1)李叔叔的游泳速度是乌贼的 。李叔叔每分钟游多少千米?

  (2)乌贼30分钟可以游多少千米?

  1. 读题,独立列式并解答。

  2. 反馈

  (1)题(1)展示不同的计算过程:A、先计算再约分;B、先约分再计算。

  (2)题(2)明确整数与分数相乘,可以在计算时直接将整数和分母约分,结合学生的情况说明约分的书写格式。

  (3)对比体会得出结论:在计算时,先仔细观察数的特征,能约分的先约分再乘,会比较简单。

  3. 练习

  例4做一做1。

  【设计意图:培养简便计算的意识对于提高学生计算的准确性和速度至关重要。让学生通过计算和对比体会到在分数乘法中先约分再计算比较简单,对培养学生的简算意识很有帮助。】

  四、拓展总结(应用拓展,盘点收获)

  1. 基础练习

  (1)先看数再计算(练习一6、7两题)

  反馈校对、纠错。

  在反馈时通过对比、纠错让学生明白先观察数的特征,可以约分的先约分再计算,这样能又对又快地得到结果。

  预计错题,估计错例:由于4和 的分子相同,学生有可能会将整数4与分子4相约分,在计算 时,结果错算成 。应该使学生明确:整数与分数相乘,可将整数与分母约分(也就是把整数看成分母是1的分数),再进行计算。

  【设计意图:将练习一的6、7两题并在一起,并将题目的考查形式改成先看数再计算,有助于学生形成计算的审题习惯。让学生发现通过观察可以感知数的特征并进行约分,这样可以让计算变得更加简单,正确率也可以得到更大的提升。第6题不以改错的方式出现,而直接以计算题的方式出现,是出于不强加错的思考,来自于学生的错例,学生更易于记在心上。】

  (2)完成例3、例4做一做剩下的题

  反馈校对、纠错。

  在校对答案后,可以进行小结,使学生进一步明确:分数乘法就是求一个数的几分之几是多少的运算。

  2. 练习提升

  在○里填“>”“<”或“=”。想一想,哪些式子,你不计算就可以直接填出来?

  ○ ○ ○ ○

  反馈:请学生说说自己的想法,哪些式子可以不计算就直接得出结果。

  (1)题1、题3主要引导学生从分数乘法的意义来理解;

  (2)题2、题4主要是对分数计算方法的巩固。

  【设计意图:计算的练习往往比较枯燥,这时题目的设计就显得比较重要了。本题的设计让学生们在练习反馈中既对分数乘法的意义进行了回顾,又将整数乘分数和分数乘分数的意义进行对比,还对计算方法进行了巩固和应用,对学生的思维的拓展也是大有益处的。】

  3.拓展总结

  这节课我们学习了什么?我们是怎样得出这些结论的?

  没错,“猜想——举例——验证——得出结论”是我们学习数学很有效的方法,在以后的学习中,同学们可以用这样的思路去学习更多的数学知识。

  【设计意图:在对本节课的小结中,对猜想——举例——验证——得出结论的数学学习方法进行回顾,对于六年级的学生来说很重要。】

分数乘法教案 篇5

  教学重点:

  1、掌握两步分数应用题的解题思路和方法。

  2、画线段图分析应用题的能力。

  教学难点:

  渗透对应思想。

  教学过程:

  一、复习、质疑、引新

  1.指出下面分率句中谁是单位1(课件一)

  ①乙是甲的;

  ②小红的身高是小明的

  ③参加合唱队的同学占全班同学的;

  ④乙的相当于甲。⑤1个篮球的价钱是一个排球价钱的倍。

  2.口头分析并列式解答

  ①小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?

  ②小华储蓄了15元,小新储蓄的是小华的`,小新储蓄了多少元?

  3.引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?(这就是本节课要学习的新内容),出示课题--分数应用题。

  二、探索、悟理

  1.出示组编的例题

  例2小亮储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的,小新储蓄了多少元?

  学生审题后,教师可提出如下问题让学生思考讨论。

  ①小华储蓄的钱是小亮的,是什么意思?谁是单位1?

  ②小新储蓄的是小华的,又是什么意思?谁是单位1?

  思考后,可以让学生试着把图画出来。

  (演示课件)

  然后请同学说出思路,讲方法,教师同时将算法板书在黑板上。根据小华储蓄的钱是小亮的,把小亮的钱看作单位1,可以求出小华储蓄的钱:。根据小新储蓄的是小华的,把小华的钱看作单位1,再标出小新的储蓄钱:。

  由此基础上试列综合算式:

  2.做一做

  小华有36张邮票,小新的邮票是小华的,小明的邮票是小新的,小明有多少张邮票?

  1)可先让学生一起分析数量关系,然后独立画图并列式解答。

  请一名中等学生板演。

  (张)

  (张)

  答:小明有40张。

  ③你能列综合算式吗?

  三、归纳、明理

  1.在上述两个题研究探索的基础上,师生共同讨论用连乘解答的题有什么特点?解题思路是什么?在充分讨论的基础上,老师可把解题思路用语言归纳一下。

  ①认真读题弄清条件和问题

  ②确定单位1找准数量关系

  根据分数乘法的意义,找准量、率对应关系,即谁是谁的几分之几。

  ③列式解答

  板书为:抓住分率句,找准单位1,

  画图来分析,列式不用急。

  2.质疑问难

  四、训练、深化

  1.联想练习根据下面的每句话,你能想到什么?

  ①苹果的个数是梨的,(如,梨是单位1;苹果少,梨多;苹果比梨少等)

  ②修了全长的

  ③现在的售价比原来降低了

  2.先口头分析数量关系,再列式解答。

  ①鹅的孵化期是30天,鸭的孵化期是鹅的,鸡的孵化期是鸭的,鸡的孵化期是多少天?

  ②3个同学跳绳,小明跳了120下,小强跳的是小明的,小亮跳的是小强的倍,小亮跳了多少下?

  3.提高题。

  六、板书设计

  分数乘法应用题

  小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的,小新储蓄的钱是小华的。小新储蓄了多少钱?

分数乘法教案 篇6

  一、梳理知识

  1.怎样计算分数乘法

  2.怎样的两个数互为倒数?怎样求一个数的倒数?

  3.举例说说你能解决哪些用分数乘法计算的实际问题。

  二、基础练习

  1.写出下面各题的数量关系式

  (1)绿花的朵数是黄花的 。

  (2)黄花的.朵数比绿花多。

  (3)一件上衣降价出售。

  (4)实际比计划增产。

  2.计算

  21×= ×26= ×= ×15×=

  3.计算下面各题,再观察每组题目和结果,你有什么发现?

  4. ×16 ○16× 13 ○×13 ×○ ×○×

  5. 米=( )厘米 吨=( )千克 w W w .x K b 1.c o M

  时=( )分 平方米=( )平方分米

  6. ×( )=( )×0.5=( )×6=( )×=1

  三、应用练习

  1.(1)黄花有50朵,红花是黄花的,红花有多少朵?

  (2)黄花有50朵,红花比黄花多,红花比黄花多多少朵?

  (3)黄花有50朵,红花比黄花多,红花有多少朵?

  2.(1)食堂有吨煤,用去一部分后还剩。还剩多少吨?

  (2)食堂有吨煤,用去吨。还剩多少吨?

  (3)食堂有吨煤,用去。还剩多少吨?

  (4)食堂有吨煤,用去。还剩几分之几?

  3.一辆卡车1千米耗油升,照这样计算,行千米耗油多少升?50千米呢?

  4.一件毛衣原来销售56元,现降低销售,降价多少元?现价是多少元?

  5.小军家有5口人,早上每人喝一瓶升的牛奶,一共喝了多少升?每升牛奶大约含钙克,一瓶牛奶含钙多少克?

  6.六年级一班有48名同学,二班的人数是一班的,三班的人数是二班的,六年级三班有多少人?

分数乘法教案 篇7

  教学目标

  1.使学生掌握求一个数的几分之几是多少的两步分数乘法应用题的解题思路和解答方法。

  2.在画图、分析的过程中培养学生的分析能力、推理能力等初步的逻辑思维能力。

  教学重点和难点

  1.正确分析关键句,找准单位1。

  2.掌握分析思路,弄清所求问题是求谁的几分之几是多少。

  教学过程

  (一)复习准备

  1.口算,并口述第二组算式的意义。

  2.列式。

  这些算式求的是什么?(求一个数的几分之几或几倍是多少。)

  这里的b,a,x就是什么?(单位1)

  3.找出下列各句子中的单位1,再说明另一个数量与单位1的关系。

  提问:(3)题中怎样求甲?(4)题中怎样求乙?

  今天我们继续学习分数乘法应用题。

  (二)讲授新课

  1.出示例3。

  2.理解题意,画出线段图。

  (1)读题,找出已知条件和所求问题。

  (2)提问:你认为应着重分析哪些已知条件?(小华储蓄的钱是小亮的

  (3)分组讨论这两个已知条件应怎样理解。

  (4)学生口述已知条件的意义,老师板演线段图,加深学生对题意的理解。

  18元看作单位1,平均分成6份,小华储蓄的钱数相当于这样的5份。

  师板演:

  数看作单位1,平均分成3份,小新储蓄的钱数相当于这样的2份。

  所以小新储蓄的钱数是以谁为单位1?(以小华储蓄的钱数为单位1。)

  怎样用线段表示小新的钱数?

  生口述,师继续板演:

  (把小华储蓄的钱数平均分成3份,小新储蓄的钱数相当于这样的2份。)

  求什么?(小新的钱数)

  3.分析数量关系,列式解答。

  (1)根据刚才的分析,再结合线段图想一想,能不能一步求出小新储蓄的钱数?(不能)

  必须先求什么?再求什么?(先求小华储蓄的钱数,再求小新储蓄的钱数。)

  因此这道题要分两步解答。

  根据哪两个条件能求出小华的钱数?

  求出小华的钱数,又怎样求小新的钱数?

  (2)以小组为单位共同完成列式解答。

  (3)口述列式,并说明理由。

  求什么?为什么这样列式?(求小华储蓄的钱数。因为小华储蓄的钱

  求什么?根据什么列式?(求小新储蓄的钱数,因为小新储蓄的钱数

  (4)你能列综合算式解答吗?

  答:小新储蓄了10元。

  (三)巩固反馈

  1.出示做一做。

  小明有多少枚邮票?

  (1)读题,找出已知条件和问题。

  (2)请你确定从哪些条件入手分析。

  (3)小组讨论:分析已知条件并画线段图。

  (4)反馈:请代表分析,并出示该小组的线段图。

  作单位1,平均分成6份,小新的邮票数量是这样的5份。

  均分成3份,小明的邮票是这样的4份。求小明有多少邮票。

  应先求什么?再求什么?

  (6)列式解答,做在练习本上。

  2.出示21页的9题。

  要求学生独立画图,分析解答。再互查。

  3.变换条件和问题进行对比练习。

  (1)找出已知条件中的相同处和不同处。

  (2)画图分析并列式解答。

  4.选择正确列式。(小组讨论完成)

  第二天看了多少页?

  (四)布置作业

  课本20页第6题,21页第10,12题。

  课堂教学设计说明

  解答分数应用题的.关键是弄清题中的数量关系,谁和谁比,把谁看作单位1,求的是谁的几分之几。这也正是课堂教学的重点与难点,是学生分析能力的体现。是我们课堂的教学目标之一。

  这节课是分数乘法应用题的第二节。学生已具备初步分析已知和找单位1的能力,但是例3增加了一个条件,并增加了一个数量。要利用已有的分析方法分步分析,才能化难为易。

  教学中采用小组合作的形式,发挥集体智慧,在共同讨论中理解已知条件,有利于学生排除思维障碍。教师再配以线段图加深强化学生理解题意,以实现旧知识向新知识的迁移和飞跃。练习的设计,由易到难、变换条件,有助于学生灵活分析,防止定势。

分数乘法教案 篇8

  教学目标:

  1.使学生通过自主探索,理解分数乘整数的意义与整数乘法相同,初步理解分数乘整数的计算法则。

  2.使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。

  教学重点:

  分数乘整数的意义和计算法则。

  教学难点:

  分数乘整数的计算方法以及算法的优化。

  教学方法:

  自主合作探究。

  教具准备:

  多媒体

  教学过程:

  一、复习引入

  1.同学们,我们已经学会了分数的加法和减法,下面口算。

  2.今天我们来学习分数乘法。板书

  谁能编一道分数乘法算式(择几道板书黑板一侧)

  分数乘法有很多,今天先研究其中一种:分数乘整数。

  看了今天的课题,可能有同学马上想知道分数乘法怎么算呢?其实,每一个新知识的产生都与原有的旧知密切相关,对于分数乘整数来说,当然也是如此。下面我们来讨论!

  二、探究

  1.理解意义。

  出示例题1:做一朵绸花用 米绸带。

  (1)小芳做了3朵这样的绸花,一共用了几分之几米绸带?

  课件: + + =(米)

  (2)小华做7朵这样的绸花,一共用了几分之几米绸带?

  课件: + + + + + + =(米)

  (3)学校庆国庆活动一共要做15朵这样的绸花,你能用加法计算出几分之几米绸带?

  + + + + + + + + + + + + + + =?

  这么多米加起来,你有什么感觉?有没有什么好办法?有没有什么好办法?

  导入:如果把这道加法算式改写成乘法,你特别需要知道什么?

  板书: ×3= 7×= ×15=

  谁能说说 ×3表示什么意思?7×呢?

  前面大家所说的(黑板一侧板书的)乘法算式,谁能说说他们的`意思?对比一下,你们觉得是分数加法简便,还是分数乘法简便?

  2.探究算法。

  现在我们来看分数乘整数怎样计算。我们先来研究×3, ×3=怎么算呢?请大家尝试解决。指名板演典型算法。

  ×3= =

  ×3=++=

  ……

  交流:第二种按照加法计算,不简便,重点体会第二种和加法有着联系:×3=+ + = = = (教师板书),符合加法计算结果,是正确的,也是简便的。同时借助直观图观察验证。

  练习:×7,与原来加法结果比较,完全正确。

  谁能试着总结一下分数乘整数的计算方法:分母不变,分子和整数相乘,所得积做分子。

  继续研究:×30

  提示:这道题与前面几题相比可能有些新情况,你看出来了嘛?先试试看,再同桌交流。

  指名板演新情况:都有相同点?(约分),不同是什么?(主要是约分的区别)

  讨论:约分的先后序。(先乘后约,还是先约后乘),体会到先约后乘的简便。

  练习:先判断可不可以约分?怎样约分?

  总结注意事项:能约分的先约分再乘。

  三、练习

  填一填:练习第一、二题。

  算一算:完成3第三、七题。

  四、总结

  本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?

  五、作业

  练习八第2题、第4题。

分数乘法教案 篇9

  教学内容:

  分数乘法练习一

  教学目标:

  1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  2、知识目标:复习分数乘以整数和分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以整数和一个分数乘以另一个分数的结果。

  3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  重点难点:

  学生能够熟练的计算出分数乘以分数和分数乘以整数的结果。

  教学方法:

  师生共同归纳和推理。

  教学准备:

  教学参考书、教科书。

  教学过程:

  一、复习导入

  教师出示教学板书,请学生计算下列分数乘法运算题。

  教师:来回巡视学生的.做题情况,并提问学生说说自己如何计算的?这些分数乘法运算有什么不同?

  学生寻找完毕,纷纷举手准备回答问题。

  教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。分数乘以整数,整数乘以分子,分母不变。)

  二、课堂练习

  学生做第1题,让学生用学过的分数乘以整数的知识求1000克牛肉中的蛋白质和脂肪的含量各是多少?

  学生做第2题,注意让学生用分数乘以整数的知识求出全年我市空气质量为优的天气是多少天?培养学生从小保护环境的环保意识。

  学生做第3题,让学生计算整数乘以分数和分数相乘的算式。

  学生做第4题,让学生能够学会比较整体1的几分之几是多少?

  学生做第5题,教师注意让学生求整体的几分之几是多少?

  学生做第6题,让学生用整数乘以分数的知识来解决生活中有关分数的生活问题,培养学生一方有难,多方支援的人道主义思想。

  学生做第7题,教师注意让学生利用分数乘法学会解决生活中实际问题。

  三、课堂小结

  同学们,这一节课你学到了哪些知识?(提问学生回答)

分数乘法教案 篇10

  教学目标:

  1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。

  2、发展学生思维,侧重培养学生分析问题的能力。

  教学重点:理解数量关系。

  教学难点:根据多几分之几或少几分之几找出所求量的对应分率。

  教学过程:

  一、复习

  1、口答:把什么看作单位1的量,谁是几分之几相对应的量?

  (1)一块布做衣服用去。(2)用去一部分钱后,还剩下。

  (3)一条路,已修了。(4)水结成冰,体积膨胀。

  (5)甲数比乙数少。

  2、口头列式:

  (1)32的是多少?(2)120页的是多少?

  (3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了,降低了多少分贝?

  (4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的,人现在听到的声音是多少分贝?

  3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?

  4、根据学生回答,出示例4,并指出:这就是我们今天要学习的稍复杂的分数乘法应

  用题。

  二、新授

  1、教学例2

  (1)运用线段图帮助学生分析题意,寻找解题方法。

  (2)让学生说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位1的量?让后把线段图表示完整。

  (3)四人小组讨论,根据线段图提出解决办法,并列式计算。

  解法一:80-80=80-10=70(分贝)

  (4)鼓励学生根据题意、结合线段图,想出第二种解答方法。

  解法二:80(1-)=80=70(分贝)

  (5)学生讨论两种解法的不同:两种方法都是从整体与部分的关系入手。第一种思路是从总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的几份之几是多少的方法求出这个部分量。

  2、巩固练习:P20做一做

  3、教学例3

  (1)读题理解题意后,提出婴儿每分钟心跳的次数比青少年多表示什么意思?(组织学生讨论,说说自己的理解)

  (2)引导学生将句子转化为婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的。着重让学生说说谁与谁比,把谁看作单位1。

  (3)出示线段图,学生讨论交流,结合例2的解题方法,学生独立列式计算后全班交流两种解题方法。

  解法一:75+75=75+60=135(次)

  解法二:75(1+)=75=135(次)

  4、巩固练习:P21做一做(列式后让学生说说算式各部分表示什么)

  三、练习

  1、练习五第2、3题:引导学生抓住题目中关键句子分析,找到谁与谁比,谁是表示单位1的量。

  2、练习五第3、4题:学生依据例题引导的解题方法,独立完成3、4题。

  四、布置作业

  练习五第7、8、9、10题。

  教学追记:

  例2和例3都是在理解和掌握了求一个数的`几分之几是多少的问题的思路和方法的基础上,学习解决稍复杂的求一个数的几分之几是多少的问题。教学中,我依然依据教学例1时教给学生的解答步骤进行分析解答,找出单位1,并画出线段图帮助理解。教学中,我引导学生紧扣线段图,直观地理解题意,并引导学生从数量和分率两方面入手,培养学生思维的多样性。但本堂课,老师讲解的部分似乎多了一些,留给学生讨论、练习的时间稍为稀薄。

【分数乘法教案】相关文章:

分数乘法的教案02-28

《分数乘法》教案06-08

分数乘法教案01-17

关于分数乘法的教案03-31

关于分数乘法教案05-18

分数乘法简便运算教案03-09

分数乘法教案15篇01-19

分数乘法教案15篇01-22

精选分数乘法教案10篇01-26

【精选】分数乘法教案4篇01-26