当前位置:育文网>教学文档>教案> 圆的周长教案

圆的周长教案

时间:2022-01-26 22:47:58 教案 我要投稿

圆的周长教案四篇

  作为一名老师,时常要开展教案准备工作,教案是教学活动的总的组织纲领和行动方案。那么你有了解过教案吗?下面是小编收集整理的圆的周长教案4篇,仅供参考,希望能够帮助到大家。

圆的周长教案四篇

圆的周长教案 篇1

  【本课内容在教材中的地位和作用】

  学生以前已经学过直线图形,上节课又学习了“圆的认识”,这些知识为本课教学打下了扎实的基础。教材通过一系列问题情境、实践操作,让学生在观察、分析、归纳中理解圆的周长的含义以及圆周长与直径的关系。通过圆周率的形成过程,圆周长公式的推导、应用,让学生掌握圆周长的计算。从而为下节课学习利用圆的周长公式,反求圆的直径或半径,作好了理论上的准备。应该说,这堂课起承前启后作用。

  【教学目标】

  1.学生通过动手绕一绕、滚一滚,找出圆的周长与直径的倍数关系。知道什么是圆的周长、什么是圆周率。掌握圆的周长公式,并会运用公式进行简单的计算。

  2. 通过对圆周率π值的探求,培养学生科学的和实事求是的探索精神及数学的概括能力和逻辑思维能力,增强学生的动手操作能力。

  3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

  【教学重点】

  理解和掌握圆的周长的计算公式。

  【教学难点】

  对圆周率的认识。

  【教学准备】

  1、学生准备直径为5厘米、10厘米、15厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。

  2、教师准备课件、带绳小球,圆规,尺子,保温杯。

  【教学过程】

  (一)复习旧知、创设情境、引出新知

  1、复习:圆心、半径、直径、直径与半径的关系(略去)

  2、课件出示问题情境:龟兔赛跑

  师评价:你们对圆的认识很到位,下面我要问同学们一个问题,你听说过龟兔赛跑的故事吗?哪个同学愿意说说故事的大概意思?(学生说)

  师:兔子因骄傲自大输了比赛,过后很不服气,于是想出一个办法,进行第二次比赛(课件出示),你们猜,这次谁会输?

  提问引导:

  (1).沿着正方形路线跑实际就是求正方形的什么?(正方形的周长)

  (2).正方形的周长怎么求?用字母怎样表示?

  (3).正方形的周长与谁有关?有什么关系?

  生:正方形的周长与边长有关。周长是边长的4倍。

  (4).兔子沿着圆形的路线跑实际上就是求圆的什么?(圆的周长)

  3引出课题:

  那到底什么是圆的周长,怎样求圆的周长?圆的周长和正方形的周长到底哪个长?这节课我们就一起来研究圆的周长。上完这节课后,我相信同学们都会解答这个问题了。(板书:圆的周长)

  [设计意图:设置问题情景,引发求知欲望,引出新课,同时为后面圆的周长与直径的关系教学做好铺垫。]

  (二)教学新课

  1.认识圆的周长。

  (1)请同学们拿出学具中最大的圆用手摸一摸哪个是圆的周长?指一名到前面摸一摸。注意起点、终点。

  (2)同桌互相说一说:什么是圆的周长?

  生:围成圆的曲线的长叫做圆的周长。

  (3)电脑出示圆的周长概念 ,读一遍。

  [设计意图:让学生动手摸,动画看,动嘴说,引出圆周长概念。]

  2.化曲为直,引发求知欲。

  (1)我们想知道你课桌的周长怎么办?

  生:用直尺量出课桌的长和宽。

  (2) 实物演示:老师这有一个杯子,用它喝水有时烫手,我想编一个隔热套, 用直尺测量它的周长方便吗?

  生:不方便,因为直尺是直的,而圆的周长是曲线围成的。

  (3)用什么办法化曲为直测量出圆的周长呢?(学生讨论)。谁来说一说?

  ①用围的方法。指名演示。(板书:围)

  问:要注意什么?

  生:先拉直后,只能量围的一周的长度。

  ②用滚的方法。指名演示。(板书:滚)

  问:要注意什么?

  生:在圆上先作了记号,沿直尺滚动一周。

  师:你们棒极了。用围和滚的办法可以把圆的周长转化为直线来测量。是不是所有圆的周长都可以用这两种方法测量呢?

  (4)谁能用围的方法量一量黑板上圆的周长?

  两名学生量。说一说自己的感觉。

  (5)老师拿一条绳子,在绳的一端拴上一个小球,甩动绳子使小球转动起来。

  问:小球转动时走过的路线成什么图形?这个圆的周长能用围、滚的办法测量吗?这说明不是什么样的圆都可以用围、滚的办法测量。因此我们需要探讨出一种计算圆的周长的方法。(比如像正方形)

  [设计意图:通过一系列操作,如:量桌面周长,测量保温杯隔热带,如何测量黑板圆的周长,如何测量带绳小球绕成的圆等,将问题一步步引向深入,在教给学生围、滚的方法同时,引起学生思维冲突吗,激发求知欲。]

  3寻找关系,创设情景,测量圆的周长

  (1)出示探究:a:正方形的周长和谁有关?有什么关系?

  (板书:c=4a)

  b、那圆的周长与谁有关呢?有怎样的关系?(课件出示验证)

  c、根据学生回答,教师板书:圆的周长 直径

  (2) 问题情景:是不是圆的周长与直径之间也像正方形的周长与边长之间那样存在着固定不变的倍数关系呢?同学们今天也当一次数学家,看看我们能不能发现什么规律,下面我们进行一组实验,看看圆的周长与直径之间到底又怎样的关系。

  (3)小组合作,测量数据。

  ①拿出你们的学具圆,汇报一下,直径分别是几厘米?(5cm、10cm、15cm)

  ②下面以小组为单位用围或滚的方法量一量圆的周长,并算一算,周长与直径有怎样的关系?请小组长负责分工,看哪一组量得准,算得快。结果填在表格中。

  (4)比较验证,揭示规律:

  ①汇报交流:通过测量和计算,你发现什么规律?

  生:直径不同,周长也不同,但周长总是直径的'三倍多一些。

  ②问:是不是所有圆的周长都是直径的3倍多一些呢?

  电脑演示围、滚的过程和结果,让学生看看圆的周长是直径的几倍。

  [设计意图:通过学生探究圆的周长与直径的关系、小组实验操作与计算、电脑演示验证等,让学生发现圆周长与直径的关系。]

  4.介绍圆周率,推导公式,探求新知(重点和难点)。

  (1)引导得出圆周率概念:

  师:看来圆不论大小,圆的周长总是它直径的3倍多一些。这是个固定不变的倍数关系。(师质疑:为什么我们测量和计算的结果会不一样?解释:测量误差)。数学上我们把圆的周长和直径这个固定不变的比值叫做圆周率,用字母π表示。用式子表示是:

  补充板书:圆的周长÷直径=圆周率π(固定)

  教师讲解:π=3.141592653 ‥‥(无限不循环小数)

  π≈3.14

  (2)引导自学圆周率小资料:其实,很早以前,人们就开始研究圆周率这个问题了,关于这方面知识,我们可以在课后自学书上p63表后相关介绍。

  师:现在,我们根据这个规律能否探究出圆的周长公式呢?

  (3)公式推导:

  师指圆周率公式:刚才我们通过自学知道圆周率是圆的周长与直径的比值,用字母表示是:

  板书:C÷d=π

  师:已知圆的直径怎样求圆的周长呢?同桌互相说一说。

  板书:C=πd

  师:已知半径怎么求圆的周长呢?

  板书:C=2πr

  问:知道什么条件就可以计算圆的周长?(强调:d、r)

  师:这样,今后我们要知道圆的周长不但可以用围或滚的测量,现在我们还可以用公式计算了,下面我们就应用这两个公式解决一些实际问题。

  5、应用公式解决实际问题。

  (1)解决龟兔赛跑问题:

  问:学了周长公式,现在你们会解决龟兔赛跑问题了吗?

  ? 学生尝试解答

  ? 指名板演,

  ? 集体订正,问:这位同学是利用什么公式做的?需要什么条件?

  ? 教师课件演示规范步骤。

  (2)实际应用:汽车车轴距离地面0.4米,车轮滚动一周是多少米?如果车轮滚动了1000周,那么汽车行了多少路程?

  [学习知识的目的是为了应用,在应用环节设计了两个例题,一是解决课前的问题,是已知d求c。二是小车轮胎问题,是已知r求c。这是两个学生经常接触的数学问题,具有代表性。]

  (三)课堂小结

  这堂课你有什么收获?(出示填空)

  1、基础练习:(略)

  2、知识延伸:(略)

  3、课后思考:(略)

  [巩固练习设计三个层次:基础题是解决当堂重要知识和易错点;提高题是让学生能综合利用;课后思考是为下节课承前启后.]

  (五)作业:

  1、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?

  2、钟面分针长10厘米,求针尖一天走过多少厘米?

  3、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?

  (六)板书设计(略)

圆的周长教案 篇2

  一,教学目标

  1,理解圆周率的意义,掌握圆周率的近似值。理解和掌握圆的周长的计算公式,并能应用它解决简单的实际问题。

  2,培养学生的观察,比较,概括和动手操作能力。

  3,结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。

  二,教学重点

  掌握并理解圆的周长,公式推导过程。

  三,教学难点

  理解圆周率的意义。

  四,教学过程

  一,创设情境,提出问题

  1,师出示圆形桌布,提出在桌布的边缘镶上一圈花边。要想知道至少准备多长的花边,怎么办 请你帮忙想想办法。

  2,你们知道这圈花边的边长是什么 (生:圆的周长。)

  3,用直尺测量圆的周长,你感到方便吗 能不能找到比较简便的方法

  二,师生共同提出假设

  1,请学生回忆正方形周长和边长的关系。(边长×4)

  2,师:能不能求圆周长的同时也找到这样的倍数关系呢 测量圆的什么比较方便呢

  生:半径,直径……

  3,请生先画几条长短不一样的直线作直径画圆。师:观察自己画的圆,你发现了什么

  学生仔细观察:分组讨论研究圆的周长和直径是否存在倍数关系。

  4,师:你估计圆的周长是其直径的几倍

  生猜想:3倍左右。

  5,师:你有办法验证吗 生讨论

  教学意图:正方形的周长只与边长这个数有关系,这点与圆的周长计算方法相似,本环节选择这一教案内容,用于复习旧知和引入新知,渗透的作用是非常有效的。

  三,合作交流,发现规律

  1,学生思考后可能出现的以下办法:

  ⑴ 用一根线(或纸条)绕圆一周,剪去多余的部分,再拉直量出它的长度,得到圆的周长。

  ⑵ 把圆放在直尺上滚动一周,直接量出圆的周长。

  师启发学生:用滚动,绳测的方法可以测出圆的周长,但有局限性,那么:我们能不能探讨出一种求圆的周长的普遍规律呢

  ⑶ 学生在小组内动手操作,测量进行验证。

  直径(cm) 周长(cm) 周长是直径的几倍

  2 6。2 3倍多一点

  3 9。1 3倍多一点

  4 12。9 3倍多一点

  2,

  a,”圆的`周长÷直径”等于3倍多一点,经过科学家精密的论证,计算发现这个”3倍多一点”是一个固定数叫圆周率3。14159……是一个无限不循环小数,我们在计算时通常取3。14,用字母π表示(请学生写一写)

  b,结合圆周率进行爱国注意教育。

  c,师生共同推导计算圆的周长公式。

  教学意图:在圆的周长测量中,充分发挥学生的主体地位,课堂上,使学生手脑都动起来,通过各种形式的个人实践及小组合作实践使学生亲而义举的发现规律,掌握知识,学生不是在学习知识,而是在探究,实验,发现新知,这样的课堂,可以使学生的动手,动脑,动嘴,合作的能力都能得到锻炼提高。

  四,实践应用,拓展新知

  1,学生尝试求圆的周长

  d=2cm r=3。5cm d=10cm

  2,圆形花坛的直径是20cm,它的周长是多少m

  3,请同学们画一个周长是15cm的圆。

  教学意图:设计有坡度的练习,目的是让学生运用圆周长的计算公式反映生活中的实际问题,巩固已经学过的公式,培养学生的学习兴趣,提高学生学习探索的能力。

  五,,体验成功

  1,通过这节课的学习,你学会了什么

  2,课后思考:从边长是4cm的正方形中画出一个最大的圆,这个圆的周长是多少cm

  板书设计:

  圆的周长

  围成圆的曲线的长叫做圆的周长。

  c=πd c=2πr

圆的周长教案 篇3

  教学目的:

  1.让学生知道什么是圆的周长.

  2.理解圆周率的意义.

  3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.

  教学重点:

  推导圆的周长计算公式.

  教学难点:

  理解圆周率的意义.

  教具学具:

  1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.

  2.电脑软件及演示教具.

  教学过程:

  一、复习:

  上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?

  二、导入:

  这节课我们继续研究圆的周长(板书课题).

  1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?

  2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?

  问:什么是圆的周长?

  板书:围成圆的曲线的长是圆的周长.

  3.你能测量出这个圆的周长吗?(能)

  4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?

  5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?

  回答:不能.

  想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?今天我们就来研究这个问题.

  三、请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?

  四、学生动手测量、教师巡视指导.

  五、统计测量结果.

  观察表中数据,想一想发现什么?圆的周长总是直径的.三倍多一些!任何圆的周长都是直径的3倍多吗?

  六、电脑演示

  (几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读“通过实验”到“π≈3.14”.

  七、看书后回答问题:

  1.是谁把圆周率的值精确计算到6位小数?

  2.什么叫圆周率?

  3.知道了圆周率,还需知道什么条件就可以计算圆的周长?

  4.如果用字母c表示圆的周长,d表示直径,r表示半径,π表示圆周率,圆的周长的计算公式应该怎样表示?

  现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(π取3.14)

  八、出示例1:

  一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?

  (得数保留两位小数)

  请同学们想一想:车轮滚动一周的距离实际指的是什么?

  解:d=1.95 单位:米

  c=πd

  =3.14×1.95

  =6.123

  ≈6.12(米)

  答:车轮滚动一周约前进6.12米.

  九、课堂练习:

  1.投影:计算下面图形的周长.

  2.判断下面各题(正确的出示“√”,错误的出示“×”)

  (1)圆周率就是圆的周长除以它的直径所得的商. ( )

  (2)圆的直径越大,圆周率越大. ( )

  (3)圆的半径是3厘米,周长是9.42厘米. ( )

  3.小明和爷爷分别沿小圆(A→B→C→D→E→A)和大圆两条路线散步.(如图)

  如果速度相同,两人同时出发,谁先回到出发地点?为什么?

  小明的路线长:20×3.14+20×3.14

  =62.8+62.8

  =125.6(米)

  爷爷的路线长:3.14×(20+20)

  =3.14×40

  =125.6(米)

  两条路线一样长,两人应同时回到出发点.

  4.一棵大树(投影)又粗又壮,不用锯倒大树,你能知道大树的直径是多少吗?讨论.

  结论:先测量大树一周的长度,再用周长除以圆周率,就得到了直径.

  小结:今天我们共同努力研究出了圆的周长的计算方法,谁能说说圆的周长应当怎样计算?计算时要注意什么问题?今后我们在学习探索新的知识时一定要积极动手动脑,扎扎实实地学好科学知识.

圆的周长教案 篇4

  教学目标:

  1、通过教学使学生理解并掌握圆的周长和面积计算方法。

  2、培养学生分析问题和解决问题的能力,发展学生的空间观念。

  3、灵活解答几何图形问题。

  教学重点:认真审题,分辨求周长或求面积。

  教学过程:

  一、复习。

  1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。

  C=r2

  3.1473.1432

  =21.98(厘米)=3.149

  =28.26(平方厘米)

  2、分辨面积与周长有什么不同?

  (1)概念

  圆的周长是指圆一周的长度

  圆的面积是指圆所围成的平面部分的大小。

  (2)计算公式

  求圆的周长公式:C=d或C=2r

  求圆的面积公式:S=r2

  (3)使用单位

  计算圆的周长用长度单位

  计算圆的面积用面积单位

  二、练习。

  1、判断下面各题是否正确,对的打,错的打3。

  (1)计算直径为10毫米的圆的面积的列式是3.14(102)?。()

  (2)半径为2厘米的圆的周长和面积相等。()

  (3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内)()

  (4)面积:3.1462=3.1412=37.68()

  2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。

  ⑴半圆的周长是多少厘米?(2)半圆的面积:

  3.14223.142+22

  r=2cm=3.144=6.28+4

  =12.56(平方厘米)=10.28(cm)

  3、一个圆的.周长是25.12米,它的面积是多少:

  已知:C=25.12米求:S=?

  r=25.12(23.14)S=r2

  =4(米)=3.1442

  =50.24(平方米)

  4、一个环形的铁片,外圆半径是7厘米,内圆半径是0.5分米,这个环形的面积是多少平方分米?

  已知:R=7厘米=0.7分米r=0.5分米求:S=?

  S环=(R2-r2)

  3.14(0.72-0.52)

  =3.140.24

  =0.7536(平方分米)

  三、巩固发展.

  1、思考题p71(8)

  一条绳子长31.4米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)

  (1)围成长方形:31.42=15.7(m)(长和宽的和)

  长宽=面积

  当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大.

  (2)围成圆形

  直径:31.43.14=10(m)

  半径:102=5(m)

  面积:3.1452=78.5(m2)

  (3)比较:长方形面积:61.6m2正方形面积:61.6225m2圆面积:78.5m2

  围成圆的面积最大。

  2、思考题p71(9)、(10)

  四、作业。

  课本P71第6、7题。

  教学追记:

  学生在学完圆的面积后,往往容易把圆的面积与周长混淆。因此我特意设计了本堂对比课。对比我,我引导学生分清以下几点:(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。(2)求圆面积公式是S=r2,求圆周长的公式是C=d或C=2r。(3)计算圆的面积用面积单位,计算圆的周长用长度单位。根据以上三方面,帮助学生理清了圆的面积和周长的不同之处,练习中反映出来的情况也较好。

【圆的周长教案】相关文章:

圆的周长教案07-05

《圆的周长》教案07-13

【热】圆的周长教案03-30

圆的周长教案【精】04-29

圆的周长教案【推荐】03-25

【荐】圆的周长教案03-25

【精】圆的周长教案03-25

圆的周长教案【荐】03-27

圆的周长教案【热门】03-27

【推荐】圆的周长教案03-13